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Abstract. Growing concerns over the lack of transparency in AI, par-
ticularly in high-stakes fields like healthcare and finance, drive the need
for explainable and trustworthy systems. While Large Language Mod-
els (LLMs) perform exceptionally well in generating accurate outputs,
their "black box" nature poses significant challenges to transparency
and trust. To address this, the paper proposes the TranspNet pipeline,
which integrates symbolic AI with LLMs. By leveraging domain expert
knowledge, retrieval-augmented generation (RAG), and formal reasoning
frameworks like Answer Set Programming (ASP), TranspNet enhances
LLM outputs with structured reasoning and verification.This approach
strives to help AI systems deliver results that are as accurate, explain-
able, and trustworthy as possible, aligning with regulatory expectations
for transparency and accountability. TranspNet provides a solution for
developing AI systems that are reliable and interpretable, making it suit-
able for real-world applications where trust is critical.
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1 Introduction

Symbolic AI, a fundamental branch of artificial intelligence, focuses on using
structured representations of knowledge and formal logic to simulate human rea-
soning, problem-solving, and decision-making processes [27]. Unlike data-driven
approaches such as machine learning and Large Language Models (LLMs), which
derive patterns from vast amounts of unstructured data, symbolic AI models
intelligence is based on rule-based systems that explicitly define rules, relation-
ships, and logical structures. These structures include formal logic, ontologies,
and semantic networks, enabling symbolic AI to work with well-defined rules to
draw logical conclusions and make interpretable decisions [7].
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A core component of symbolic AI is knowledge representation, where symbols
denote real-world entities and their relationships. Representations in symbolic AI
often employ hierarchical or graph-based structures such as semantic networks
or ontologies [1,15]. In contrast, LLMs GPT4 [22] and BERT [6], while highly
effective in generating contextually relevant responses, face challenges in offering
the same level of explainability due to their "black box" nature [32]. This gap
is particularly concerning in high-stakes domains like healthcare, finance, and
legal reasoning, where trust and transparency are paramount.

This gap between the complexity of LLMs and the demand for transparency
poses a significant challenge for AI development, particularly given the legal re-
quirements imposed by regulations like the EU’s General Data Protection Reg-
ulation (GDPR), which grants individuals the right to receive an explanation
when subjected to automated decision-making processes [14].

In addition, the proposed AI Act in the European Union, for example, man-
dates that AI systems—particularly those relying on LLMs in high-risk applica-
tions—be designed with human oversight, transparency, and risk management at
their core [10]. One of the key barriers to achieving trustworthiness with LLMs
is the inherent uncertainty in their predictions, which can be influenced by fac-
tors such as noisy data, biases in training data, or insufficient training on edge
cases. Addressing these uncertainties while maintaining transparency and trust-
worthiness is a critical challenge in developing LLM-based systems for real-world
applications [23].

To address this, systems like the proposed TranspNet pipeline combine the
strengths of LLMs with symbolic AI by integrating domain expert knowledge,
retrieval-augmented generation (RAG), and formal reasoning frameworks like
Answer Set Programming (ASP). This hybrid approach allows LLMs to benefit
from the structured, logical reasoning of symbolic AI, ensuring that their outputs
are not only accurate but also explainable and trustworthy [19]. Ontologies play
a key role in this integration, providing a framework for verifying LLM outputs
and enhancing their transparency, a characteristic central to symbolic AI [27].

By combining the power of LLMs with formal reasoning, retrieval-augmented
generation, multimodal data processing, and robust documentation practices,
our pipeline addresses the key challenges associated with explainability and
trustworthiness in AI systems. The integration of formal logic through ASP
further distinguishes our approach by providing a mechanism for verifying the
logical soundness of the LLM’s outputs and addressing uncertainty in a struc-
tured and interpretable manner.

2 State-of-the-Art in LLM Reasoning

Large language models (LLMs) have revolutionized natural language processing,
achieving breakthrough performance on tasks like translation, summarization,
and question-answering through in-context learning, a new paradigm that en-
ables few-shot learning without modifying model parameters [24,26,29]. These
models have demonstrated exceptional proficiency in what Kahneman [17] de-
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scribes as “System 1” tasks – automatic, intuitive operations – but have faced
challenges in “System 2” reasoning tasks, which require conscious, logical steps,
such as solving math word problems [4].

Recent developments in prompt-based reasoning, such as Chain-of-Thought
(CoT) prompting, have been instrumental in addressing these challenges. By
guiding LLMs to generate intermediate reasoning steps, CoT has significantly
improved performance on reasoning-intensive benchmarks, such as the GSM8K
dataset for math word problems [29]. This approach, along with advances in
self-consistency and prompt-engineering techniques, has helped bridge the gap
between LLMs’ ability to perform associative tasks and their capacity for multi-
step reasoning [18].

Despite these advancements, challenges remain in ensuring the faithfulness
and interpretability of reasoning processes in LLMs. Techniques like self-verifica-
tion and reinforcement learning have been employed to minimize errors and im-
prove reliability, but issues such as hallucination and error accumulation persist,
particularly in complex, multi-step reasoning tasks [28]. Additionally, research
continues to explore how reasoning capabilities can be transferred to smaller
models or embodied agents, as computational efficiency becomes an increasingly
important factor in the deployment of LLMs [20].

The proposed pipeline integrates domain expert knowledge, retrieval-augmented
generation, and formal reasoning frameworks, enabling the system to verify and
refine its outputs through external data and structured reasoning. This multi-
layered approach mitigates some of the inherent issues in LLMs, such as halluci-
nation and over-reliance on probabilistic reasoning. The inclusion of ASP [13] in
the pipeline ensures that the reasoning process is grounded in logical consistency,
providing verifiable and interpretable outputs. By incorporating multimodal data
processing, the pipeline allows the system to handle diverse types of input, fur-
ther improving its reliability and decision-making capabilities across different
domains.

3 Methodology

3.1 Overall Knowledge-Driven LLM Verification Pipeline

The proposed pipeline integrates domain expert knowledge and structured data
to enhance the reliability and LLM outputs. The process starts with expert
knowledge and vocabulary analysis, followed by prompt engineering and RAG
to leverage large language models for generating answers. Ontology matching
ensures semantic consistency, with structured ontologies being used for map-
ping concepts. A critical component of the pipeline is the consciousness layer
for LLMs, which incorporates ASP for applying logical reasoning. This layer
enhances the verification, explanation, and trustworthiness of the generated an-
swers, leading to a robust system aimed at providing accurate and explainable
outputs [2,9].
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Fig. 1. Overall knowledge-driven LLM verification pipeline. The pipeline integrates
domain expert knowledge, prompt engineering, retrieval-augmented generation, answer
set programming, and deep learning models to support the generation of accurate,
explainable, and trustworthy outputs from LLMs.

3.2 Domain Expert Knowledge & Data (1.a)

The pipeline begins with the input from domain experts and relevant structured
data. The data may include technical documents, research papers, and domain-
specific databases.

3.3 Identification of Vocabulary, Attributes, and Relationships (1.b)

The identification of vocabulary, attributes, and relationships is a foundational
step in the pipeline, ensuring semantic consistency and alignment with domain-
specific knowledge. This process involves defining key terms (vocabulary), their
properties (attributes), and the logical or causal connections between them (re-
lationships). For example, in healthcare, vocabulary might include terms like
"symptom," "diagnosis," and "treatment," with attributes such as severity or
duration, and relationships such as "symptom X is linked to diagnosis Y." This
step can be performed manually by domain experts, who ensure precision and
relevance, or automated using tools like natural language processing and ma-
chine learning to extract terms and relationships from structured datasets or
research papers. Often, a hybrid approach is used, where automated methods
handle initial extraction, and experts refine or validate the results.
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3.4 Prompt Engineering for Consistent Triple Generation (1.c)

At this stage, the LLM is prompted to generate responses in a consistent struc-
tured format, specifically using (subject-predicate-object) triples in JSON-LD
format [25]. Prompt engineering ensures that the controlled vocabulary is used
consistently in the LLM output.

Prompt Example:

“Using the following vocabulary list, generate responses in the form of
(subject-predicate-object) triples. Ensure all terms are used consistently
according to the provided definitions: [vocabulary list].”

3.5 Retrieval-Augmented Generation (1.d)

RAG combines both retrieval-based and generation-based methods to enhance
the output of LLMs. The retrieval model, typically a dense passage retriever
(DPR), fetches relevant documents from a large corpus based on the input query.
The generator model, usually a transformer, then uses this context to produce
coherent and contextually accurate responses. This hybrid approach leverages
the strengths of both retrieval and generation techniques, improving the overall
relevance and quality of the generated outputs.

3.6 Large Language Model Generation (1.e)

Large Language Models (LLMs) are employed for additional tasks such as refin-
ing responses, summarization, and generating structured outputs.

In this pipeline, Retrieval-Augmented Generation (RAG) first retrieves rel-
evant context from external sources. This context is then provided to the LLM
to guide its response generation, ensuring outputs are grounded in reliable and
contextually relevant information.

After the input query is refined through prompt engineering, the LLM gen-
erates structured responses in a subject-predicate-object format. Leveraging its
extensive training on diverse datasets, the LLM produces contextually accurate
outputs aligned with the controlled vocabulary defined in earlier steps. These
generated triples are subsequently mapped to the ontology, enabling advanced
reasoning and analysis in downstream processes.

3.7 Concept Matching (1.f)

Concept matching compares elements in the generated triples with those in the
ontology to ensure alignment. Multiple matching techniques are used, including:

– Name-Based Matching: String matching algorithms like Levenshtein dis-
tance and Jaccard similarity to compare element names [11].

– Structure-Based Matching: Examination of class hierarchies and prop-
erty relationships in the schema [21].
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– Instance-Based Matching: Comparison of actual data instances for value
similarity [8].

– Linguistic Matching: Use of natural language processing techniques, such
as synonym databases and word embeddings, to find semantically similar
matches [31].

3.8 Ontology EL-Fragment (1.g)

Ontologies structure relationships between concepts within a domain, facilitat-
ing better data integration and analysis. The pipeline leverages EL fragments
(a Description Logic EL fragment) [30], which supports ASP by enhancing the
explainability and tractability of generated data. EL fragments ensure consis-
tent terminology, efficient mapping of triples, and logical reasoning in a scalable
manner, making it ideal for complex applications like biomedical informatics.

3.9 Consciousness Layer for LLM (1.h)

The role of the Consciousness Layer is to reason on the concepts extracted from
(2.a) and the structured response from LLM (1.e). Therefore, the required piece
of information into the domain specific ontology will be use as a knowledge-base
for the ASP solver. The Consciousness Layer includes:

– ASP Knowledge Base: Stores factual and procedural knowledge from
mapped concepts and domain knowledge.

– ASP Rules: Logical rules and constraints for reasoning over the knowledge
base.

– ASP Solver: The ASP solver applies logical inference to refine LLM-generated
answers, ensuring consistency, accuracy, and robustness. This solver verifies
that the generated triples are logically sound and contextually relevant [12].

3.10 Deep Learning Models for Feature Extraction (2.a)

To address classification, regression, clustering, and time-series problems, deep
learning models could be used for feature extraction. These models are capable
of extracting rich features that are then mapped to relevant concepts using
techniques like DeViL (Decoding Vision features into Language) [5].

3.11 Extracted features (2.b)

Extracted features refer to the characteristics obtained after applying deep learn-
ing models for tasks such as classification, regression, or clustering. These mod-
els process data from various multimodal sources, including sensors, to extract
meaningful and relevant features. This approach is particularly advantageous for
our use cases, for example in the Chemical Processes context, where precise fea-
ture extraction from multimodal sensor data is crucial for accurate analysis and
prediction. To further enhance the interpretability and utility of these extracted
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features, it is important to map them to higher-level concepts. Techniques such
as the bottleneck model, inspired by the DeVil model, can be employed to iden-
tify and distill key features that contribute most significantly to the model’s
performance. By identifying these critical features and relating them to specific
concepts, we can achieve a more intuitive understanding of the model’s decision-
making process.

4 Use-Cases

4.1 Use Case 1: Healthcare - Clinical Decision Support System

In healthcare, clinical decision support systems (CDSS) are used to assist physi-
cians in making informed treatment decisions based on patient data and medical
literature. The proposed pipeline can enhance these systems by ensuring the re-
liability, explainability, and trustworthiness of the LLM outputs used in patient
care. The pipeline begins by integrating medical knowledge from domain experts,
including data from medical research papers, clinical guidelines, patient history,
and real-time data from electronic health records (EHR). This step ensures that
the LLM receives accurate and up-to-date medical knowledge relevant to clinical
decision-making.

In the next step, key medical terms, conditions, symptoms, diagnostic tests,
and treatment options are identified and structured. This phase ensures that
the LLM understands the relationships between diseases, symptoms, and treat-
ments, facilitating more accurate clinical recommendations. Using the identified
vocabulary, the LLM is prompted to generate responses related to patient condi-
tions, diagnostics, and treatments in a structured format like (patient-symptom-
disease). The system then retrieves relevant medical literature and studies using
RAG to back up recommendations, ensuring that the generated outputs are
grounded in evidence.

The LLM generates structured outputs, such as (patient has symptoms X, Y,
Z - potential diagnosis: Disease A), based on patient data and retrieved medical
information. Medical ontologies, such as SNOMED CT [3] or ICD-10 [16], are
used to match the generated triples, ensuring semantic consistency and accuracy
in the medical domain. The ASP-based consciousness layer ensures that the rec-
ommendations made by the LLM are logically sound and aligned with clinical
guidelines, reducing the risk of incorrect recommendations. This pipeline ensures
that the clinical decision support system produces trusted and explainable med-
ical recommendations for healthcare providers, with outputs that are clinically
accurate, evidence-based, and compliant with medical guidelines.

4.2 Use Case 2: Battery Design - Material Selection for Energy
Storage

In battery design, selecting the right materials for components such as elec-
trodes and electrolytes is critical to improving battery efficiency and lifespan.
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The proposed pipeline supports engineers and scientists by providing reliable
and explainable recommendations on material combinations for energy storage
systems. The pipeline starts by integrating data from scientific literature, mate-
rial databases, and experimental results related to the battery technology. This
input includes expert knowledge on chemical properties, performance metrics,
and degradation, which guides material selection.

The next step involves identifying key attributes such as material conduc-
tivity, chemical stability, energy density, and thermal properties. Relationships
between these attributes and battery performance (e.g., how conductivity af-
fects charge/discharge rates) are mapped to ensure the LLM understands the
complexity of material behavior in battery systems. The LLM is then prompted
to generate suggestions for materials based on performance criteria, such as
(material X - conductivity Y - potential application Z). For example, the LLM
might propose materials with high conductivity and thermal stability for use in
lithium-ion battery electrodes.

Next, RAG retrieves recent research papers and experimental data on ma-
terials from scientific databases. If the LLM suggests graphene as a suitable
material for a battery component, RAG pulls relevant studies on graphene’s
performance in energy storage applications to substantiate the recommenda-
tion. The LLM generates structured outputs suggesting material combinations
in (material-property-application) triples. For instance, it might recommend us-
ing graphene for electrodes due to its high conductivity and chemical stability.
Material ontologies and databases are used to match the generated triples, en-
suring alignment with the known properties of materials.

Finally, the ASP-based Consciousness Layer applies logical rules to verify
that the suggested materials meet the specific requirements of the battery de-
sign. For example, if a material is recommended for high-temperature environ-
ments, ASP checks whether the material’s thermal stability is sufficient, ensur-
ing logical consistency and trustworthiness. The pipeline produces explainable,
evidence-based recommendations for material selection in battery design, helping
engineers and scientists optimize material choices for performance and longevity,
with clear explanations of the decision-making process.

5 Limitations

One limitation of the proposed pipeline is that its emphasis on structured rea-
soning and logical consistency might reduce the flexibility and adaptability of
LLMs in certain contexts. For example, in applications like healthcare or educa-
tion, the pipeline excels by ensuring outputs are accurate, reliable, and aligned
with established guidelines. This is especially important when making decisions
that directly impact patient safety or the clarity of learning materials.

However, this structured approach might not be as effective in more creative
or exploratory applications, such as marketing, content creation, or brainstorm-
ing new product ideas. In these scenarios, flexibility, innovation, and the ability
to generate unconventional or imaginative responses are often more valuable than
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strict logical accuracy. By limiting the LLM’s predictive power to fit within pre-
defined rules and structures, the pipeline may constrain its potential to explore
diverse or unexpected outcomes.

6 Conclusion

In this work, we presented a pipeline designed to enhance the explainability,
accuracy, and trustworthiness of LLMs. By integrating domain expert knowl-
edge, prompt engineering, RAG, and ASP, the proposed pipeline addresses key
challenges in ensuring that LLM-generated outputs are logically consistent, con-
textually relevant, and semantically aligned with domain-specific knowledge.

The proposed pipeline represents an advancement in addressing the inher-
ent limitations of traditional LLMs. Its ASP-based Consciousness Layer sets
a benchmark for ensuring logical consistency, enhancing trust, and fostering
greater transparency in AI outputs. As LLMs continue to evolve and find ap-
plications in increasingly critical domains, approaches that combine structured
reasoning and expert knowledge, as exemplified by this pipeline, will be essential
for reliability, transparency, and success in real-world implementations.
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