
Contact Angle of Sessile Drops in Lennard–Jones

Systems

Stefan Becker,† Herbert M. Urbassek,‡ Martin Horsch,∗,† and Hans Hasse†

Laboratory of Engineering Thermodynamics, University of Kaiserslautern,

Erwin-Schrödinger-Straße 44, 67663 Kaiserslautern, Germany, and Physics Department and

Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663

Kaiserslautern, Germany

E-mail: martin.horsch@mv.uni-kl.de

∗To whom correspondence should be addressed
†Laboratory of Engineering Thermodynamics
‡Physics Department and Research Center OPTIMAS

1



Abstract

Molecular dynamics simulations are used for studying the contact angle of nanoscale ses-

sile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard–

Jones potential. The entire range between total wetting and dewetting is investigated by vary-

ing the solid–fluid dispersive interaction energy. The temperature is varied between the triple

point and the critical temperature. A correlation is obtained for the contact angle in dependence

of the temperature and the dispersive interaction energy. Size effects are studied by varying the

number of fluid particles at otherwise constant conditions, using up to 150000 particles. For

particle numbers below 10000, a decrease of the contact angle is found. This is attributed to a

dependence of the solid–liquid surface tension on the droplet size. A convergence to a constant

contact angle is observed for larger system sizes. The influence of the wall model is studied

by varying the density of the wall. The effective solid–fluid dispersive interaction energy at

a contact angle of θ = 90◦ is found to be independent of temperature and to decrease linearly

with the solid density. A correlation is developed which describes the contact angle as a func-

tion of the dispersive interaction, the temperature and the solid density. The density profile

of the sessile drop and the surrounding vapor phase is described by a correlation combining a

sigmoidal function and an oscillation term.
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1 Introduction

Wetting of a solid phase by a liquid plays an important role in many processes. The equilibrium

wetting behavior is often classified by the contact angle 0◦ ≤ θ ≤ 180◦ of a sessile drop. The contact

angle depends on the interaction between the particles, namely the fluid–fluid and the solid–fluid

interactions. These can be explicitly described with force fields and, hence, the force fields yield

the contact angle. While much work is available on force fields which describe the interaction

in fluids,1–13 solid–fluid interactions have been studied less systematically. In that field, mainly

adsorption of simple fluids in nanopores is considered14–20 which enables fitting model parameters

to adsorption isotherms. There are also reports on predicting the contact angle with force fields

both for droplets,21–33 and for fluid cylinders.34,35 However, they are restricted to few particular

material combinations such as water on graphene.

The present work is devoted to studying the influence of the dispersive solid–fluid interaction

on the contact angle in a model system by molecular dynamics (MD) simulations. This model

system consists of a single sessile drop on a planar wall. The truncated and shifted Lennard–

Jones (LJTS) potential36 is used for describing the fluid–fluid, solid–solid as well as the solid–

fluid interactions, extending previous studies on interfacial properties of the LJTS fluid.37–39 The

solid–fluid interaction and the temperature are varied and a quantitative correlation describing

their influence on the contact angle is presented. The density of the solid substrate affects the

total potential of the solid–fluid interaction by the number of interaction sites located in a certain

distance to a fluid particle.40 This is examined in simulations with solids of varying densities.

A correlation is established for predicting the contact angle as a function of temperature, solid–

fluid dispersive interaction, and solid density. The findings are discussed in the context of the

results from different studies on the wetting behavior of Lennard–Jones (LJ) fluids.18,24–26,30,31,37

Furthermore, an empirical correlation is presented that qualitatively describes the density profile

of a sessile drop on a planar wall.

The system sizes accessible to MD simulation are getting closer to the smallest experimental

settings, but systematic MD studies like the one carried out in the present study are still limited to
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nanoscale scenarios. When dealing with wetting phenomena on the nanoscale, one has to consider

effects such as the line tension41 or a decrease in the liquid–vapor surface tension due to the strong

curvature of the interface.42 In the present study, a brute force approach is used to deal with this:

The system size is increased until no dependence of the contact angle on the size is observed.

The number of fluid particles finally used is 15000, which is large enough to ensure that a further

increase would not lead to significantly different results.

The paper is organized as follows: In section 2, the molecular model and the simulation method

are described. The results regarding the size effects, the density profile, the contact angle and

the influence of the wall density on the contact angle are presented in section 3 and discussed

in section 4. Conclusions are drawn in section 5. Additional information is presented in the

supporting information.
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2 Model and Simulation Method

2.1 Molecular Model

Like the original LJ potential uLJ(ri j) = 4 ε[
(
σ/ri j

)12
−

(
σ/ri j

)6
] the LJTS potential36

uLJTS(ri j) =


uLJ(ri j)−uLJ(rc), ri j < rc

0, ri j ≥ rc

(1)

with a cutoff radius of rc = 2.5 σ can accurately reproduce the thermophysical properties of simple

nonpolar fluids, especially noble gases and methane.38 It is used in the present study to describe

all the three interaction types, i.e. fluid–fluid, solid–solid and solid–fluid.

The accurate description of solids usually requires the use of multibody potentials that are com-

putationally more expensive.43 The present study, however, is not concerned with the properties

of a solid phase but rather with the influence of the solid–fluid interaction on the fluid, if solely

dispersive and repulsive interactions are present. The wall is represented here by particles arranged

in a face–centered cubic (fcc) lattice with the (100) surface exposed to the fluid. To maintain the

wall in the solid state, the LJ energy parameter of the solid (s) is related to that of the fluid ( f ) by

εs = 100 ε f which essentially yields a static lattice. With the size parameter of the solid σs, the

lattice constant of the solid phase is a = 1.55 σs and the particle density is ρs = 1.07 σ−3
s . It may be

noted that the present choice of the cutoff radius, i.e. rc = 2.5 σ f , yields practically the same lattice

constant as would have been obtained for rc −→∞, i.e. for the full LJ potential. Unless stated other-

wise, the size parameters of the solid and the fluid are the same in the present study, i.e. σs = σ f .

For a set of simulations in which the influence of the solid density is studied, the LJ size parameter

of the solid σs is varied. By scaling down σs, the lattice constant of the solid is decreased and,

hence, the density is increased: For the size parameters σs = 0.80 σ f and σs = 0.646 σ f , the solid

density is ρs = 2.10 σ−3
f and ρs = 4.02 σ−3

f , respectively.

The dispersive and the repulsive interaction between the solid and the fluid phase is also de-

scribed by the LJTS potential. The LJ size parameter of the unlike interaction between solid and
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fluid particles (s f ) is chosen to be σs f = σ f . Note that σs f = σ f even holds in the cases where the

size parameter σs is varied. The LJ energy parameter of the solid–fluid interaction is scaled by

εs f = ζε f . (2)

ζ is called reduced solid–fluid interaction energy. Its influence on the contact angle is studied

systematically.

2.2 Simulation Method

MD simulations in the canonical ensemble are carried out with the program ls1 MarDyn44 to

obtain the contact angle dependence on the temperature and the reduced solid–fluid interaction

energy. Velocity Scaling was applied for temperature control. The parallelization is accomplished

by spatial domain decomposition based on a linked cell data structure. Newton’s equations of

motion are integrated via the Verlet leapfrog algorithm with a time step of 5 ·10−4 ε−1/2
f m1/2 σ f .

A sessile drop on a planar solid wall is simulated (see shanpshot in Figure S.1 in the supporting

information). The system contains a single drop, i.e. there is no drop on the opposite side of the

wall. This corresponds to the stable configuration in the entire regime of partial wetting (0◦ < θ <

180◦).22 The wall is located in the (x,z)–plane, and y represents the distance from the plane in

which the centers of the uppermost wall particles lie. Periodic boundary conditions are applied in

all directions, leaving a channel for the fluid between the wall and its periodic image. The size of

the simulation box is adapted such that for small contact angles the fluid has sufficient space in

lateral dimensions. On the other hand, when large contact angles are expected, the spacing of the

channel is chosen sufficiently large to avoid a perturbation of the droplet by the periodic image of

the wall. The height of the channel exceeds 30 σ f in all cases, which avoids artifacts due to finite

size effects45 related to the channel height. The number of wall particles varies according to the

box dimensions. The wall thickness of two and a half crystal unit cells exceeds the cutoff radius

of the fluid and thus avoids periodic artefacts, which could be caused by an interaction of fluid
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particles on different sides of the wall. The initial configuration of the system consists of a cuboid

with liquid density38 and a surrounding vapor phase, both in contact with the wall. The number of

fluid molecules is 15000 except for a series of simulations conducted to investigate size effects, in

which this number is varied. The equilibration time is at least 2.5 million time steps, followed by

3.5 million time steps of production.

The sampling of the density profile ρ(R,y) during the simulation is accomplished via binning

in a cylindrical coordinate system, in terms of the distance from the wall y and the distance from

the symmetry axis of the droplet R. In the vicinity of the solid wall, the fluid is affected by strong

ordering effects. By choosing a bin size of 0.1 σ f in the direction normal to the wall, these effects

are monitored. The liquid-vapor interface is defined by the arithmetic mean density (ρ′+ρ′′)/2

where ρ′ and ρ′′ are the saturated bulk densities of the LJTS fluid known from previous studies.38

As will be shown in section 3, the vapor phase is supersaturated so that the density is higher than

the corresponding bulk value at saturation. Nevertheless, the bulk values are employed for the

definition of the drop boundary because the location of the interface is rather insensitive to the

vapor density. A sphere is fitted to the liquid–vapor interface, considering distances to the wall

larger than 2 σ f whereas no weighting factors are introduced in the fitting procedure. The region

close to the wall is excluded because it shows perturbations due to strong ordering effects. The

tangent on this sphere at the intersection with the wall (y = 0) is used to determine the contact

angle (cf. Figure 1). The mean contact angle is determined from the density profile averaged over

the entire production period. The uncertainty is estimated by the standard deviation of contact

angles evaluated every 500 000 time steps during the production period.

The interaction of a fluid particle with the wall is the cumulative interaction of that fluid particle

with all wall particles.40 This cumulative potential uΣ depends on the density of the wall and the

distance of the particle to the wall y. As the wall potential is not uniform but periodic it also

depends on the lateral position above the wall, given by x and z. At a given lateral position (x,z)

of the fluid particle, there is a minimum of this cumulative potential uΣ
min(x,z) with respect to the
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distance y from the wall. The average minimum potential

−W =
1

LxLz

Lx∫
0

Lz∫
0

dx dz uΣ
min(x,z), (3)

where Lx and Lz denote the system size in lateral dimensions, is defined by the average over

these minima. For the LJTS potential used in the present study, W depends linearly on ζ via Eq.

(2). While different measures of the solid–fluid interaction are possible,31,46 in the present study

the magnitude of W is employed as a measure, following Grzelak et al.31 The calculation of the

surface of minimal potential is numerically accomplished by setting up a cubic mesh with a spacing

of ∆x = ∆z = 0.031 σ f and ∆y = 0.01 σ f . The average minimum potential of the standard wall

investigated in the present study (ρs = 1.07 σ−3
s ) is given by

W = 3.08 ζkTc, (4)

where k is the Boltzmann constant and Tc = 1.078 ε f /k is the critical temperature of the LJTS

fluid.38 The average minimum potential is given by W = 4.83 ζkTc for ρs = 2.10 σ−3
f , and W =

8.07 ζkTc for ρs = 4.02 σ−3
f . In the range of the solid density investigated in the present study, the

average minimum potential correlates linearly with the solid density ρs. W is well described by

Eq. (5) (cf. supporting information):

W(ζ,ρs) =

1.7 ρs

σ−3
f

+ 1.3

ζkTc. (5)

On average, the minimum potential is located 0.96 σ f above the topmost wall layer. The topogra-

phy of the surface of minimal potential along with the local potential values is shown in the sup-

porting information. According to Grzelak et al.,31 the molecular roughness of the atomistically–

resolved wall does not influence the contact angle. As chemical heterogeneities as a second source

for contact angle hysteresis47 are absent, it can be assumed here that no hysteresis occurs. Thus,

the results of this study represent the true thermodynamically stable contact angle.
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3 Simulation Results

3.1 Size Effects

To test the influence of the system size on the contact angle and the validity of the present re-

sults, simulations with different numbers of fluid particles at otherwise constant conditions are

performed. The simulations are carried out for T = 0.8 ε f /k and a reduced solid–fluid interaction

energy ζ of 0.35, 0.5 and 0.65, with numbers of fluid particles N = 750, 1500, 45000 and 150000.

The results are shown in Figure 2. It can be seen that above about N = 10000 fluid particles

the observed contact angles do not depend significantly on the system size. For the smaller system

sizes, smaller contact angles are observed, consistently. The deviation increases with increasing

solid–fluid interaction energy. There are several reasons for this deviation which, however, can not

be identified seperately from the deviation of the contact angle.34 As can be seen in Figure 1, there

is a layering effect of the fluid density in vicinity to the wall. For small droplets with N = 750 and

1500 particles, the layering affects the liquid density in the entire droplet and there are no bulk

liquid properties.48 found for planar liquid interfaces a significant decrease in the liquid–vapor

interfacial tension due to the absence of bulk liquid properties, which is beyond the Tolman correc-

tion to the interfacial tension.42 In addition to the decrease of the liquid–vapor interfacial tension,

the solid–liquid interfacial tension is assumed to decrease by the lack of bulk liquid properties.

Another contribution affecting the contact angle is due to the growing influence of the three phase

contact line with the line tension L and the curvature κ. The influence of these effects can be

assessed from41

cosθ =
γsv−γsl

γlv
−
Lκ

γlv
, (6)

i.e. an adequately extended version of the Young equation

cosθ =
γsv−γsl

γlv
, (7)

which both show that a decrease in γlv would lead to a deviation such that the contact angle would
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be lower in the range of acute angles but higher for obtuse contact angles (or vice versa, depending

on the sign of the line tension). The decrease in γsl also contibutes to a persistent decrase in

the contact angle. The findings of the present study are in line with those of Santiso et al.:49 They

observed a larger contact angle with an increasing droplet size and also a convergence to a constant

angle. In their case the contact angle converged at a system size of about 105 fluid particles which

is larger than in the present case. This shift towards larger fluid particle numbers is attributed to

the slower decay of their interaction potential as compared to the one used here.

3.2 Density Profile

For the case of N = 15000 fluid particles, the characteristics of the density profile of the fluid phase

are studied at different values of the reduced solid–fluid interaction energy and the temperature.

Figure 1 shows a typical density profile of the fluid phase. The sessile drop on the planar wall

has the shape of a spherical cap (circular in the two dimensional plot) and in the interfacial region,

the density decreases radially from the center of the sphere to the vapor phase value. The typical

undulations in density due to the presence of the wall perturb the fluid only in a range of about 5

to 8 σ f . The essential features of the liquid and the vapor phase are correlated by the empirical

ansatz

ρ(R,y) = f (R)g(y),

f (R) =
1
2
(
ρ′+ρ′′

)
−

1
2
(
ρ′−ρ′′

)
tanh

(
2(R−Re)

D

)
,

g(y) = 1 + Asin
((

y
p
− s

)
2π

)
exp(−cy) ,

(8)

where f (R) is the conventional function describing the density profile of a liquid drop surrounded

by its vapor phase,50 with the liquid and vapor densities ρ′ and ρ′′, respectively. The radius of the

drop is Re and the interfacial thickness is D. Similarly, the sessile drop is considered as having a

spherical shape, so that the density varies with radial distance R from the origin of the sphere. The

undulations of the fluid density in vicinity to the wall are modeled by a sinusoidal oscillation term
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with an amplitude A and a period p. The damping parameter c characterizes the exponential decay

of these undulations in terms of the distance from the wall y. There are eight parameters ρ′, ρ′′, Re,

D, A, p, s and c that are determined from fitting the correlation (8) for each profile. The numerical

values of the parameters are given in the supporting information. Figure 3 shows the correlation

in cylindrical coordinates (left) and along the symmetry axis of the droplet (right) for the case of

ζ = 0.65 and T = 0.8 ε f /k. In Figure 3, R denotes the distance from the symmetry axis of the drop,

i.e. a cylindrical coordinate, as opposed to the spherical coordinate R from Eq. (8).

The correlation performs best for intermediate values of the reduced solid–fluid interaction en-

ergy for which the contact angle ranges from approximately 45◦ to 135◦. Beyond that range, the

correlation shows significant deviations from the densities observed in the simulation. The cur-

vature of the liquid–vapor interface yields vapor densities that differ from the saturation densities

in the planar case due to the additional Laplace pressure.50 The densities that are obtained from

Eq. (8) are compared to the saturation densities which are obtained by the conditions of phase

equilibrium for curved interfaces. A more detailed description can be found in the supporting

information. Fair agreement between the fluid densities obtained via Eq. (8) and the saturation

densities for the curved interface is found. The average deviation of the liquid density is 2.2 % and

that of the vapor density is 6.9 %. The interfacial thickness D varies between 2.3 σ f at T = 0.7 ε f /k

and about 8 σ f at T = 1.0 ε f /k which agrees with the results of Vrabec et al.38 The period p of

the density undulations is found to be about 0.9 σ f throughout, as it is characteristic for a packing

structure. The damping parameter c of the density undulations increases from 0.5 σ−1
f to 3.0 σ−1

f at

elevated temperatures and low values of the reduced solid–fluid interaction energy. It corresponds

to a decay length of about 2 σ f at low temperatures and strong interaction to 0.3 σ f at high tem-

peratures and weak interaction, respectively. The radius Re of the drop from Eq. (8) agrees well

with the dividing surface that is determined by the threshold ρ = (ρ′+ρ′′)/2. As the interfacial

thickness and the density undulations are independent from the system size,51 the density profile

can be extrapolated to droplets of different size.
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3.3 Contact Angle

The reduced solid–fluid interaction energies are varied at temperatures between 0.7 and 1.0 ε f /k.

This covers most of the range of the vapor–liquid coexistence of the LJTS fluid between the triple

point39 at the temperature 0.65 ε f /k and the critical point38 at the temperature 1.078 ε f /k. The

simulation results are shown in Figure 4 and Figure 5, and the corresponding numerical data are

listed in the supporting information.For values of the reduced solid–fluid interaction between 0.25

and 0.75, the contact angle varies from total wetting to total dewetting (i.e. 0◦ ≤ θ ≤ 180◦). The

correlation

cosθ(τ,ζ) = α(1 +τδ)(ζ − ζ0), (9)

where τ= (1−T/Tc), was adjusted to the simulation results and yields good agreement for α= 1.03,

δ=−0.69, and ζ0 = 0.514, cf. Figure 4. While it is not fully resolved wheter the nature of the drying

transition is first or second order in the case of short range potentials,24,52 the linear correlation was

chosen as it shows only minor differences to the simulation data. The parameter δ that characterizes

the temperature dependence of the contact angle is assumed to be independent from the solid–fluid

potential and to solely depend on the temperature. Thus, it is fixed to δ = −0.69 throughout. Due to

the linear relation between the average minimum potential and the reduced solid–fluid interaction

energy ζ (Eq. (4)), this transforms to

cosθ(τ,W) =
ᾱ

kTc
(1 +τδ)(W −W0), (10)

with ᾱ = 0.335. The contact angle θ = 90◦ occurs at ζ0 and thus at an average minimum potential

given by W0 = W(ζ0) = 1.58 kTc. The value of ζ0, and hence that of W0, are both found to be

independent of temperature, confirming previous work.37 High values of ζ correspond to a strong

attraction between the fluid and the wall. As expected, an increasing solid–fluid attraction leads to

a decreasing contact angle (see Figure 4).
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Eqs. (9) and (10) confirm the symmetry relation

cosθ(τ,ζ0 +∆ζ) = −cosθ(τ,ζ0−∆ζ) (11)

previously found by Horsch et al.,37 Sikkenk et al.22 as well as Monson53 both by MD simulations

and by DFT calculations.

The Young equation,54 cf. Eq. (7), relates the contact angle θ to the interfacial tensions γsv,

γsl and γlv of the solid–vapor, solid–liquid and liquid–vapor interfaces, respectively. The liquid–

vapor interfacial tension γlv is not affected by the solid–fluid interaction. At a given temperature, it

follows from Eqs. (9) and (7) that the interfacial tension difference γsv−γsl varies linearly with the

reduced solid–fluid interaction energy ζ. At θ = 90◦ the interfacial tensions γsv and γsl are equal.

The present simulation results indicate that the conditions for which γsv = γsl is fulfilled do not

depend on the temperature.

The influence of the temperature on the contact angle is shown in Figure 5: The extent of

wetting or dewetting increases at elevated temperatures. Applying the Young equation indicates

that the ratio of |γsv−γsl|/γlv increases at higher temperatures. A transition occurs when |γsv−γsl|=

γlv. For the case of a contact angle of 180◦, an intrusion of a solid–vapor interface below the droplet

is observed, cf. Figure 1 (right).

3.4 Wall Density

In order to study the influence of the solid density on the contact angle, simulations are carried out

not only for a wall of the density of ρs = 1.07σ−3
f (results discussed above) but also for walls of two

other densities: ρs = 2.10 σ−3
f and ρs = 4.02 σ−3

f . The simulation results for the contact angles on

surfaces with increased solid densities are correlated by Eq. (10) using the same value for δ=−0.69

as given above, but newly adjusted values for the average minimum potential at θ = 90◦, which is

given by W0, and the gradient ᾱ. The numerical results are shown in the supporting information.

In particular, both W0 and ᾱ are found to depend linearly on the solid density ρs. Correlations for
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W0(ρs) and ᾱ(W0) are obtained by fitting expressions

W0(ρs)/kTc = η1
ρs

σ−3
f

+η2, (12)

ᾱ(ρs) = η3
ρs

σ−3
f

+η4, (13)

to the present simulation results. Good results are obtained for η1 = 0.36, η2 = 1.1, η3 = −0.04, and

η4 = 0.38 (cf. Figure 6).

14



4 Discussion

Contact angles in LJ systems have been studied by different authors before. Table 1 gives an

overview in which also the results of the present study are summarized. There are two additional

studies: One by Bucior et al.18 who have investigated systems with only a single layer of wall

interaction sites, arranged in a closest hexagonal packing. In the study of Horsch et al.,37 the

wall model was meant to represent graphite. Both wall models are characterized by a high lateral

density. In the case of the graphite model, the interlayer distance is large (about 0.9 σ f ). The

arrangement of the solid sites in both studies was forced, and densities vary significantly from the

equilibrium configuration for a solid interacting via a LJ potential. The potential characteristics

will therefore be different from those of the other studies. Accordingly, their results are not quan-

titatively comparable to the other investigations (e.g. see the data of Horsch et al.37 in Figure S.3

in the supporting information). Therefore, the studies of Bucior et al.18 and Horsch et al.37 are not

further discussed here. Furthermore, there are studies that basically mimic one of the models dis-

cussed here for the purpose of comparison.32,33 They are not considered in the present discussion,

either.

The solid–fluid potential of the literature models differ both in the potential type and the cutoff

radius. Ingebrigtsen and Toxvaerd30 have used a continuous LJ 9–3 potential representing the

cumulative interaction of a fluid particle with the wall. Shahraz et al.35 have also used a contiuous

LJ 9–3 potential that differs from the model of Ingebrigtsen and Toxvaerd30 in the ineraction

strength. Furthermore, Shahraz et al.35 consider a simulation setup where they investigate the

contact angle of an infinitely long cylindrical LJ droplet. All other studies mentioned here consider

droplets assuming the shape of a spherical cap. Nijmeijer et al.25 have used a combination of a

particulate and continuous LJ 9–3 solid–fluid potential, whereas all other authors24,26,31 have used

particulate models. The solid density was similar for the studies of Ingebrigtsen et al.,30 Tang

and Harris,26 and Grzelak et al.31 (ρs ≈ 0.6 σ−3
f ). Grzelak et al.31 have studied the contact angle

on several wall models at a constant solid density ρs = 0.58 σ−3
f , but for various lattice structures

and surface orientations. They found a strong correlation between the average minimum potential
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and the contact angle, i.e. the contact angle was well characterized by the average minimum

potential. For that reason, only one of the wall models of that literature source is discussed in the

present study, namely the body centered cubic (bcc) wall with the (100) surface exposed to the

fluid. In the following, it is referred to as the “bcc (100) lattice”. Furthermore, there are several

closely related MD studies on wetting in a LJ system by Sikkenk et al.21,22 as well as Nijmeijer et

al.23–25 All these studies use very similar molecular models and scenarios. The present discussion

exemplarily refers to two of those studies, both by Nijmeijer et al.24,25 In those simulations, the

solid density was ρs = 1.78 σ−3
f . In the first study,24 the solid–fluid potential was particulate. The

other simulation study discussed here25 used a particulate solid–fluid potential and an additional

cutoff correction in form of a LJ 9–3 potential. This is referred to as the Nijmeijer et al.25 combined

model, in the following. It is similar to the one used by Ingebrigtsen and Toxvaerd30 and it was

meant to account for the long range contribution of the LJ potential. However, while the Nijmeijer

et al.25 combined model does consider a long–range correction contribution to the forces acting

on fluid particles at distances y > rc from the wall, the long–range forces are completely neglected

close to the wall (y ≤ rc). Thereby, the Nijmeijer et al.25 combined model, which is considered

here nonetheless, fails to consistently address the issue of scale separation, since both short–range

and long–range forces are actually strongest close to the wall. The way this combined potential

was implemented therefore seems to be inconsistent to the present authors.

The studies of the different authors are carried out at constant but different temperatures. For

some of the studies30,31,35 mentioned above, the average minimum potential W could be directly

obtained from the the literature source. For the studies of Nijmeijer et al.24,25 as well as Tang and

Harris,26 the walls were reconstructed and the average minimum potential was calculated using

Eq. (3). It may be noted that for the earlier study of Nijmeijer et al.,24 the corrected value of the

solid–fluid cutoff radius of 2.21 σ f was used, as it was reported in the erratum in the subsequent

paper by Nijmeijer et al.25 The simulation data for the contact angles from the literature were fitted

using Eq. (10) with δ = −0.69. The results of the fit for the two correlation parameters W0 and ᾱ,

that were adjusted to the literature data, are included in Table 1. They are very well predicted by
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the correlation obtained from the simulation data of the present work, cf. Eqs. (12) and (13). The

results of the Nijmeijer et al.25 combined model, however, deviate considerably.

The results from the correlations obtained in the present study can furthermore directly be

compared to the simulation data for the contact angle from the different sources. The contact

angles are predicted by Eq. (10) using solely the information on the temperature and the solid

density given in the literature sources. The solid density was used to determine ᾱ(ρs) and W0(ρs)

via Eqs. (12) and (13). The final correlation has the form

cosθ(τ,W,ρs) =

η1
ρs

σ−3
f

+η2

(1 +τδ
) W −

η3
ρs

σ−3
f

+η4


 , (14)

with the parameters ηi, i = 1...4 and δ = −0.69 as introduced above. As can be seen from Figure 7,

a good agreement is obtained for most of the simulation data from the literature sources. The

results of the Nijmeijer et al.25 combined model differ considerably from the prediction, which

is attributed to the special type of the solid–fluid potential that was mentioned before. Also, the

contact angle data of the cylindrical droplet from the study of Shahraz et al.35 deviate. This might

be attributed to the different topology of their simulation setup. The general agreement between

Eq. (14) and the simulation data is also obtained for literature data that are not shown in Figure 7,

for clarity.
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5 Conclusions

Sessile drops on a solid wall were studied in a LJTS system. The temperature, the wall density, and

the strength of the dispersive fluid–solid interaction were systematically varied. Simulation results

for the contact angle as a function of these parameters were obtained. The present simulation

data considerably extend the previously available information on systems of the studied type. A

correlation which describes the dependence of the contact angle on the parameters mentioned

above was developed using the data from the present study. This novel and general correlation

agrees well with simulation data obtained by other authors in previous studies on the contact angle

in LJ systems, even though details of the models differ.
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7 Tables and Figures
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Figure 1: Density profiles of liquid droplets. The color indicates the density in units of σ−3
f .

The white circle is fitted to the interface at the positions with ρ = (ρ′ + ρ′′)/2 and employed to
determine the contact angle by extrapolating to y = 0. Left: The reduced solid–fluid interaction
energy is ζ = 0.65 and the temperature T = 0.8 ε f /k. An adsorbed fluid phase can be observed
next to the droplet. Right: Density profile of a droplet under conditions of total dewetting. The
simulation parameters are ζ = 0.25 and T = 0.9 ε f /k.

Figure 2: Impact of the number of fluid particles N in the simulation box on the contact angle θ at
T = 0.8 ε f /k and reduced solid–fluid interaction energies ζ of 0.35 (4), 0.5 (3) and 0.65 (◦). The
dotted lines correspond to the average of the results for the three largest particle numbers N.
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Figure 3: Left: Correlation, cf. Eq. (8), of the density profile of a liquid drop adjusted to the
data shown in Figure 1, i.e. for a sessile drop at ζ = 0.65 and T = 0.8 ε f /k. Left: Two dimensional
profile as obtained by the Eq. (8). The color indicates the density in units ofσ−3

f . Right: Simulation
results (◦) and correlation (–), cf Eq. (8), for the density profile along the axis of symmetry of the
droplet (R = 0) over distance from the wall.

Figure 4: Simulation results (symbols) and correlation (lines), cf. Eq. (9), for the contact angle
as a function of the reduced solid–fluid interaction energy at temperatures of T = 0.7 (◦, ),
0.8 (4, ), 0.9 (�, ), 0.95 (O, ) and 1.0 ε f /k (3, ). The wall density is
ρs = 1.07 σ−3

f , i.e. σs = σ f .
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Figure 5: Simulation results (symbols) and correlation (lines), cf. Eq. (9), for the contact angle
as a function of temperature at values of the solid–fluid interaction energy ζ of 0.25 (◦), 0.3 (�),
0.35 (4), 0.4 (O), 0.5 (3), 0.6 (7), 0.65 (9) and 0.75 (H#). The wall density is ρs = 1.07 σ−3

f , i.e.
σs = σ f .

.

Figure 6: Left: Value of W0, corresponding to the average minimum potential that yields θ = 90◦,
for wall models of different density. Right: Gradient ᾱ of the contact angle cosine over the solid
density. This work: ρs = 1.07σ−3

f (N), ρs = 2.10σ−3
f (�), ρs = 4.02σ−3

f (_). Ingebrigtsen and
Toxvaerd30 (#); Shaharaz et al.35 (I); Grzelak et al.,31 bcc (100) lattice (O); Tang and Harris26

(�); Nijmeijer et al.24 (4); Nijmeijer et al.25 combined model (3); The lines represent the fit
obtained using from the present simulation data using Eqs. (12) and (13). The parameters are
η1 = 0.36, η2 = 1.1, η3 = −0.04, and η4 = 0.38.
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Figure 7: Contact angle cosine over the absolute magnitude W of the average minimum potential.
The lines represent Eq. (14) with the parameters η1 = 0.36, η2 = 1.1, η3 = −0.04, and η4 = 0.38.
The symbols are the simulation results at different temperatures T . This work at a temperature
of 0.8ε f /k: ρs = 1.07σ−3

f (N), ρs = 2.10σ−3
f (�), ρs = 4.02σ−3

f (_). Ingebrigtsen and Toxvaerd,30

0.75 ε f /k, (#); Shaharaz et al.,35 0.7 ε f /k, (I); Grzelak et al.,31 bcc (100) lattice, 0.70 ε f /k, (O);
Tang and Harris,26 0.90 ε f /k,(�); Nijmeijer et al.,24 0.90 ε f /k, (4); Nijmeijer et al.25 combined
model (3). The simulation results and the corresponding lines representing Eq. (14) are linked by
the colors.

Table 1: LJ model systems used for studies on wetting. The solid–fluid potential of Ingebrigtsen
and Toxvaerd30 and of Shaharaz et al.35 is a continuous LJ 9–3 model, all other potentials are
particulate LJ 12–6 models. The values of W/ζ were obtained from the literature sources (see
text). The parameters W0 and ᾱ of a correlation of the literature data based on Eq. (10) are given.

source ρs/ rc,s f / T / W / W0 / ᾱ

σ−3
f σ f ε f /k ζkTc kTc

Ingebrigtsen 0.60 ∞ 0.75 1.32 1.37 0.356
and Toxvaerd30

Shaharaz et al.35 3.0 ∞ 0.7 3.61 1.73 0.246
Grzelak et al.31 0.58 5.00 0.70 3.00 1.38 0.376
bcc(100) lattice

Tang and Harris26 0.62 2.75 0.90 2.62 1.45 0.323
Nijmeijer et al.24 1.78 2.21 0.90 3.61 1.58 0.371
Nijmeijer et al.25 1.78 2.35 0.90 4.03 1.22 0.338
combined model

1.07 2.50 0.80 3.08 1.58 0.335
this work 2.10 2.50 0.80 4.83 1.82 0.288

4.02 2.5 0.80 8.07 2.67 0.215
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The saturation densities of the curved interfaces are determined by the conditions of phase

equilibrium that are stated in Eqs. (S-1) to (S-3):

T ′ = T ′′ (S-1)

p′ = p′′+∆p (S-2)

µ′(T, p,N) = µ′′(T, p,N), (S-3)

where a single prime denotes the liquid phase and two primes denote the vapor phase. The chemical

potential is denoted by µ, and the number of fluid particles of the single fluid component by N.

For a liquid drop, the pressure difference ∆p in Eq. (S-2) is positive and is obtained from the

Laplace equation,50 Eq. (S-4):

∆p =
2γlv

Re
. (S-4)

The interfacial tension data γlv that are introduced in Eq. (S-4) are taken from the results of Vrabec

et al.38 for the LJTS fluid with a planar interface. The capillarity approximation is applied, i.e. the

interfacial tension is assumed to be independent from the curvature of the interface. The radius Re

is obtained from Eq.(8).

At the given temperature and pressure difference, the phase equilibrium is obatained by equat-

ing the chemical potentials of the liquid and the vapor phase (see Eq. (S-3)). The chemical potential

of the liquid phase is described by Eq. (S-5):

µ′(T, p) = µ0 +

∫ p′

ps

v(T, p)dp (S-5)

where µ0 is the chemical potential at the liquid–vapor coexistence of the planar interface which

serves as a refernce point. ps is the vapor pressure of the fluid with a planar interface and p′ is

the pressure of the liquid drop according to Eq. (S-2). The molar volume v is obtained by the fifth

order virial isotherm of Horsch et al.56 descirbing the saturation properties of the LJTS fluid at

liquid–vapor phase coexistence.
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The chemical potential of the vapor phase is described by Eq. (S-6):

µ′′(T, p) = µ0 +

∫ p′′

ps

v(T, p)dp (S-6)

where p′′ is the pressure of the vapor phase according to Eq. (S-2).

Introducing Eqs. (S-4), (S-5), and (S-6) into Eqs. (S-1) to (S-3) yields the state point at liquid–

vapor coexistence and hence the molar volumes v′ and v′′.
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Table S.1: Contact angle of the LJTS fluid on a solid wall from the present MD simulations with a
wall density of ρs = 1.07 σ−3

f . The correlation using Eq. (10) yields W0 = 1.58 kTc and ᾱ = 0.335.

ζ kT/ε f
0.7 0.8 0.9 0.95 1.0

0.25 143◦±4◦ 154◦±5◦ 180◦±11◦ 180◦±0.0◦ 180◦±0◦

0.30 134◦±2◦ 137◦±2◦ 157◦±7◦ 180◦±14◦ 180◦±0◦

0.35 123◦±2◦ 130◦±3◦ 139◦±6◦ 154◦±9◦ 180◦±0◦

0.40 114◦±2◦ 119◦±2◦ 124◦±5◦ 131◦±5◦ 145◦±17◦

0.50 95◦±2◦ 96◦±2◦ 92◦±2◦ 100◦±2◦ 94◦±11◦

0.60 76◦±2◦ 71◦±2◦ 68◦±3◦ 63◦±5◦ 43◦±12◦

0.65 63◦±2◦ 60◦±2◦ 53◦±3◦ 45◦±6◦ 0◦±0◦

0.75 35◦±2◦ 28◦±2◦ 0◦±0◦ 0◦±0◦ 0◦±0◦
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Table S.2: Simulation results for contact angles at a temperature of T = 0.8 ε f /k and different wall
densities ρs. The parameters W0 and ᾱ are obtained by a correlation based on Eq. (10).

ρs/ ζ θ W0/ ᾱ/

σ−3
f kTc

0.22 144◦±7◦

0.32 105◦±4◦

2.1 0.35 97◦±2◦ 1.82 0.288
0.41 82◦±3◦

0.50 54◦±5◦

0.20 139◦±3◦

0.25 117◦±1◦

4.02 0.30 101◦±1◦ 2.63 0.215
0.35 83◦±1◦

0.40 60◦±2◦
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Figure S.1: Simulation snapshots taken with VMD55 at a temperature of T = 0.8 ε f /k. The reduced
solid–fluid interaction energy is ζ = 0.25 (left) and ζ = 0.65 (right), resulting in different contact
angles.
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Figure S.2: Landscape of the minimal solid–fluid potential, where the normal coordinate y is
varied for given values of x and z. The topography of the minimal potential is represented by
the 3–dimensional surface. The color indicates the value of the solid–fluid potential energy. The
structure of the lattice can be discerned.
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Figure S.3: Density profile of a liquid drop with a total number of 1500 fluid particles. The tem-
perature and the reduced solid–fluid interaction energy are T = 0.8 ε f /k and ζ = 0.65, respectively.
The small droplet is perturbed by layering effects to which the decrease in the contact angle can be
attributed. (The length scale is different from Figure 2.)
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Figure S.4: Average minimum potential as a function of the solid density ρs. This work: ρs =

1.07σ−3
f (N), ρs = 2.10σ−3

f (�), ρs = 4.02σ−3
f (_). Ingebrigtsen and Toxvaerd30 (#); Shaharaz

et al.35 (I); Grzelak et al.31 bcc (100) lattice (O); Tang and Harris26 (�); Nijmeijer et al.24 (4);
Nijmeijer et al.25 combined model (3); Horsch et al.37 (H#). The line represents Eq. (5).
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Table S.3: Density of the liquid phase ρ′ from correlation Eq. (8).

ζ T = 0.7 ε f /k T = 0.8 ε f /k T = 0.9 ε f /k T = 0.95 ε f /k T = 1.0 ε f /k

0.25 0.7922 0.7379 0.6773
0.3 0.7901 0.7340 0.6735 0.6364 0.5857

0.35 0.7885 0.7320 0.6699 0.6367 0.5994
0.4 0.7883 0.7315 0.6649 0.6302 0.5917
0.5 0.7892 0.7317 0.6604 0.6250 0.5611
0.6 0.7915 0.7360 0.6693 0.6340 0.5567

0.65 0.7939 0.7383 0.6755 0.6887
0.75 0.8083 0.7627
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Table S.4: Density of the vapor phase ρ′′ from correlation Eq. (8).

ζ T = 0.7 ε f /k T = 0.8 ε f /k T = 0.9 ε f /k T = 0.95 ε f /k T = 1.0 ε f /k

0.25 0.00824 0.02219 0.04835
0.3 0.00803 0.02235 0.05053 0.07260 0.10481

0.35 0.00834 0.02241 0.05012 0.07425 0.10424
0.4 0.00829 0.02231 0.04992 0.07160 0.10353
0.5 0.00852 0.02230 0.04833 0.06973 0.09742
0.6 0.00915 0.02065 0.04858 0.06559 0.09077

0.65 0.00917 0.02459 0.04521 0.06320
0.75 0.00932 0.01802
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Table S.5: Equimolar radius Re from correlation Eq. (8).

ζ T = 0.7 ε f /k T = 0.8 ε f /k T = 0.9 ε f /k T = 0.95 ε f /k T = 1.0 ε f /k

0.25 16.10 15.90 14.67
0.3 16.53 16.15 14.95 13.65 12.39

0.35 16.89 16.27 15.18 13.65 12.69
0.4 17.40 16.85 15.65 14.24 12.25
0.5 19.46 18.61 18.51 15.83 15.78
0.6 22.44 23.95 22.34 21.33 21.47

0.65 27.16 26.62 28.66 27.64
0.75 52.72 57.33
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Table S.6: Liquid–vapor interface thickness D from correlation Eq. (8).

ζ T = 0.7 ε f /k T = 0.8 ε f /k T = 0.9 ε f /k T = 0.95 ε f /k T = 1.0 ε f /k

0.25 2.338 3.026 5.478
0.3 2.318 2.966 4.163 5.629 7.822

0.35 2.262 2.963 4.230 4.904 6.855
0.4 2.258 2.899 3.862 4.824 6.983
0.5 2.253 2.858 3.910 4.613 6.149
0.6 2.233 2.720 3.900 4.554 7.035

0.65 2.251 2.762 3.891 4.024
0.75 2.352 2.928
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Table S.7: Oscillation amplitude A from correlation Eq. (8).

ζ T = 0.7 ε f /k T = 0.8 ε f /k T = 0.9 ε f /k T = 0.95 ε f /k T = 1.0 ε f /k

0.25
0.3 1.076

0.35 1.025
0.4 1.024 1.074 1.206 1.240 1.248
0.5 1.138 1.086 1.085 1.090 1.143
0.6 1.270 1.166 1.128 1.115 1.130

0.65 1.352 1.225 1.178 1.109
0.75 1.543 1.386
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Table S.8: Period of the density oscillations p from correlation Eq. (8).

ζ T = 0.7 ε f /k T = 0.8 ε f /k T = 0.9 ε f /k T = 0.95 ε f /k T = 1.0 ε f /k

0.25
0.3 0.90

0.35 0.91
0.4 0.92 0.90 0.89 0.91 0.90
0.5 0.93 0.93 0.90 0.91 0.89
0.6 0.93 0.95 0.94 0.92 0.93

0.65 0.93 0.94 0.94 0.93
0.75 0.92 0.94
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Table S.9: Shift parameter s of the density oscillation from correlation Eq. (8).

ζ T = 0.7 ε f /k T = 0.8 ε f /k T = 0.9 ε f /k T = 0.95 ε f /k T = 1.0 ε f /k

0.25
0.3 0.552

0.35 0.503
0.4 0.446 0.527 0.605 0.621 0.622
0.5 0.352 0.426 0.501 0.522 0.557
0.6 0.277 0.341 0.413 0.450 0.467

0.65 0.242 0.311 0.369 0.415
0.75 0.187 0.253
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Table S.10: Damping parameter c of the density oscillation from correlation Eq. (8).

ζ T = 0.7 ε f /k T = 0.8 ε f /k T = 0.9 ε f /k T = 0.95 ε f /k T = 1.0 ε f /k
0.25
0.3 1.570

0.35 1.065
0.4 0.855 1.394 2.655 3.064 3.026
0.5 0.683 0.927 1.342 1.415 1.808
0.6 0.629 0.760 0.962 1.088 1.208

0.65 0.631 0.743 0.921 1.051
0.75 0.579 0.720
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Table S.11: Normal coordinate y(R = 0) of the centre of the droplet from correlation Eq. (8).

ζ T = 0.7 ε f /k T = 0.8 ε f /k T = 0.9 ε f /k T = 0.95 ε f /k T = 1.0 ε f /k

0.25 13.33 14.87 18.96
0.3 11.99 12.39 14.39 14.54 19.25

0.35 9.94 11.25 12.10 13.04 12.81
0.4 7.77 8.78 9.51 10.00 11.02
0.5 2.21 2.76 1.43 3.98 2.13
0.6 -4.51 -7.33 -7.51 -8.73 -13.53

0.65 -11.59 -12.43 -16.31 -19.51
0.75 -42.81 -48.76
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