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Abstract

Recently, an equation of state (EoS) for the Lennard-Jones truncated and shifted (LJTS) fluid has become

available. As it describes metastable and unstable states well, it is suited for predicting density profiles

in vapor-liquid interfaces in combination with density gradient theory (DGT). DGT is usually applied to

describe interfaces in Cartesian one-dimensional scenarios. In the present work, the PeTS EoS is implemented

into a three-dimensional phase field (PF) model which can be used for studying inhomogeneous gas-liquid

systems in a more general way. The results are compared with results from molecular dynamics (MD)

simulations for the LJTS fluid that are carried out in the present work and good agreement is observed. The

PF model can therefore be used to overcome the scale limit of molecular simulations. A finite element (FE)

approach is applied for the implementation of the PF model. This requires the first and second derivatives

of the PeTS EoS which are calculated using hyper-dual numbers. Several tests and examples of applications

of the new PeTS PF model are discussed.

1. Introduction

In order to investigate vapor-liquid interfaces, molecular dynamics (MD) simulations as well as density

gradient theory (DGT, also known as square gradient theory) based on equations of state (EoS) can be

applied. One-dimensional vapor-liquid interfaces have often been the focus of DGT simulations, see e.g.

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. However, to the best of our knowledge, DGT is currently not applied for the

three-dimensional case.
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Phase field (PF) models are used in a variety of research fields including solidification, solid-state phase

transformation, and crack propagation. For a broader overview, the reader is referred to [11] and the

references therein.

A key component of a PF model is the free energy density which is minimized to determine the evolution

of the order parameter of the PF model. As mentioned in [12], the free energy density used within a PF

model should reproduce interfacial properties that are determined on an atomistic scale. The fact that it

can be difficult to determine the necessary parameters for the free energy of the PF model experimentally

makes it favorable to link the free energy of the PF model to atomistic simulations [13].

The general concept of feeding a PF model with data from atomistic simulations has therefore been

applied by various researchers. For PF models dealing with simulations of solidification, an approach in

which the properties of the solid-liquid interface of the PF simulations are taken from MD simulations is

presented in [14]. In [13] the authors extract input parameters for their PF simulations of solidification from

MD simulations and sensitize the fact that when extracting parameters from MD simulations one has also

to consider the difference of the methods regarding the underlying assumptions and approximations. A PF

simulation with parameters that are determined by MD simulations can also be found in [12]. As shown

in [15] MD simulations cannot only be used to determine the input parameters for a PF simulation but can

also provide a meaningful initialization state of the PF order parameter. Along these lines we mention that

the authors of [16] show a method of mapping the discrete data of atomistic grain boundary simulations to a

continuous order parameter. Regarding the field of ferroelectric materials, a fitting of the free energy of the

used PF model to atomistic simulations can be found in [17, 18]. A multiscale approach for the simulation

of precipitation in an aluminum alloy can be found in [19, 20]. There, the energy contributions of the bulk,

interface, and strain are provided from atomistic simulations and are included in the PF model.

A drawback of these models is that the information on the physics obtained from the molecular models is

incorporated into the PF model by fits. It is more attractive to directly incorporate an EoS which adequately

represents the behavior of the considered substance into the PF model. This is, to the best of the authors’

knowledge, done here for the first time.

The Lennard-Jones truncated and shifted (LJTS) model is probably the most simple molecular model

which describes the thermodynamic behavior of fluids realistically. It is therefore often used in systematic

thermodynamic studies of fluids by atomistic simulations, including studies on interfaces [21, 22, 23, 24, 25,

26, 27, 28]. Throughout the present paper LJTS refers to a model with a cut-off radius of 2.5 the LJ size

parameter σ.

Recently, an EoS (PeTS: perturbed LJ truncated and shifted [29]) was developed. The PeTS EoS was

formed based on perturbation theory in such a way as to match results of MD simulations of the LJTS fluid

and describes the properties of the LJTS fluid well not only for stable states but also for metastable and

unstable sates. This distinguishes the PeTS EoS from the two other available EoS for the LJTS fluid [30, 31].
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Hence, the PeTS EoS lends itself for coupling with DGT or PF models of fluid interfaces.

The present work reports on the incorporation of the PeTS EoS into a three-dimensional PF model. As

a result of the direct coupling with the EoS, all properties determined in the PF simulation gain physical

meaning, not only the bulk properties but also all properties in the transition zone, including the width of

that zone and the density gradient. An investigation of the sharp interface limit beyond which the PF results

do not depend on the width of the transition zone, see for instance [32, 33], is therefore not necessary. In

other words, the scale level of the presented PF model is the same as the scale level of the MD simulations.

The general aim of the authors’ effort is to formulate a PF model that is in close accordance with the

underlying physics of the MD simulations but can overcome their scale limitation.

It shall be mentioned that the presented model can be viewed from two different perspectives. On the

one hand, the model can be viewed as a PF model that incorporates a much more evolved and physically

correct energy density function than the commonly used generic double-well potential. On the other hand,

the model can also be seen as a three-dimensional extension of DGT based on an EoS.

The PeTS EoS has a high level of complexity. The first and second derivatives of the EoS are needed

for an implementation of the proposed PF model in the finite element (FE) context. Therefore, the concept

of hyper-dual numbers [34, 35] is used here in order to automatically compute the exact values of the first

and second derivatives of the EoS without an explicit differentiation of the EoS. This makes it possible

to interchange the EoS used for the PF model in a fast and straightforward manner. To the best of our

knowledge, this is the first time that hyper-dual numbers are used to calculate thermodynamic derivatives,

which is astonishing as thermodynamics is known to be a field in which derivatives are highly important

and often have to be obtained for functions with a high level of complexity.

In the following, first the PF model and its coupling with the PeTS EoS are described. Then, results

from PF simulations of different scenarios are presented and compared to results from MD simulations with

the LJTS model. This includes scenarios in which one-dimensional DGT cannot be applied.

2. Phase field model

2.1. Free energy

The basic framework for the free energy FPF of a PF model for inhomogeneous gas-liquid systems in

a computational domain B consists of two parts. One depending on the local value of the order parame-

ter ϕ(x, t) and the other depending on the local gradient of the order parameter ∇ϕ(x, t) where x and t

designate the position in space and the time,

FPF[ϕ,∇ϕ] =

∫

B

[f1(ϕ) + f2(∇ϕ)] dV . (1)

Since the PF simulation strives to minimize the free energy FPF of the system, the slope of the first part f1(ϕ)

defines the value of the order parameter ϕ in the bulk phases where the gradient of the order parameter is
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zero. Moreover, it also defines the free energy of the bulk phases. In classical PF models, often a double-well

potential or double-obstacle potential is used for f1(ϕ) [11]. They typically lead to bulk values of ϕ = 0

and ϕ = 1 and a vanishing free energy density f1(0) = f1(1) = 0 in the bulk phases. In this case, the bulk

values ϕ = 0 and ϕ = 1 do only indicate which phase is present at a certain location and are not a physical

quantity by themselves. Using only the first part f1(ϕ) might lead to infinitely often alternating bulk phases

with sharp interfaces between them. The second part f2(∇ϕ) punishes too steep and too many transitions

between the bulk phases. The combination of both parts allows to adjust the width of the transition zone

between the bulk phases as well as the excess energy of the interface by two parameters that are included

in f1(ϕ) and f2(∇ϕ). Here, the excess energy of the interface is the difference between the actual free

energy of the interface and the interfacial free energy that results from linearly interpolating the free energy

densities of the bulk phases.

The term free energy is commonly used for designating FPF, cf. (1), also when only empirical expressions

are used for the construction of the functions f1(ϕ) and f2(∇ϕ). In the present work, rather than using an

empirical expression for the free energy, results from a molecular EoS, the PeTS EoS, are used. Throughout

the present paper the LJ dimensions are used for all physical quantities, e.g. the free energy. For the values

of the size parameter of the LJ potential σ as well as its energy parameter ε the convention σ = ε = 1 is

employed. Density always refers to particle density.

For a fluid with a homogeneous density ρ the free energy density is given by

fEoS
1 (ρ, T ) = ρ · a(ρ, T ) , (2)

where ρ and the temperature T are used as variables and the free energy per particle a(ρ, T ) is determined

from the PeTS EoS. As the temperature T is held constant in each simulation, it will be omitted in the

notation. As the density determines the bulk phases and the transition zone between them, ρ can be

identified as the order parameter of the present PF model. Following [36], the free energy density of an

inhomogeneous fluid, for which the density ρ(x, t) depends on x and t, depends not only on the local density

but also on the density of the immediate environment of each point according to

fEoS
2 (∇ρ) =

1

2
κ|∇ρ|2 , (3)

with κ determining the weight of the (spatial) gradient term. The constant κ is determined in such a way

that the excess energy of a liquid-vapor interface is consistent with its surface tension. Details are explained

in the next section. The free energy FEoS reads

FEoS[ρ,∇ρ] =

∫

B

[

ρ · a(ρ) + 1

2
κ|∇ρ|2

]

dV . (4)

The term ρ · a(ρ) plays the same role as the double-well potential or obstacle potential in classical PF

models. A plot of ρ · a(ρ) as obtained from the PeTS EoS can be seen in Fig. 1 (left), where the local
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density of the liquid bulk phase is denoted by ρ′ and the local density of the gas bulk phase by ρ′′. The

order parameter of this PF model is not some variable ϕ without a physical background but the actual

local particle density ρ. This is why this PF model can also be viewed as a three-dimensional extension of

classical DGT, as mentioned in the introduction.

A PF model derived from (4) does not necessarily conserve the number of particles, i.e. the mass, inside

the computational domain. In order to meet the constraints of an NVT ensemble, a Lagrange multiplier λ

is added to (4) as described in [37]

F [ρ,∇ρ] =

∫

B

[

ρ · a(ρ) + 1

2
κ|∇ρ|2

]

dV + λ

(
∫

B

ρ dV −N

)

. (5)

Here, N is the number of particles inside the computational domain.

2.2. Computation of κ

In order to make the model physically meaningful it is not enough to determine ρ · a(ρ) from the PeTS

EoS. Also κ has to be chosen in a consistent way. This can be done by considering the fact that the excess

free energy of the interface between the liquid and the gas phase is related to the surface tension γvl between

them. The excess free energy ∆F (or excess grand potential ∆Ω) is computed from

∆F [ρ,∇ρ] = ∆Ω[ρ,∇ρ] =

∫

B

[

ρ · a(ρ) + 1

2
κ|∇ρ|2

]

dV −
∫

B

[µs · ρ− ps] dV

=

∫

B

[

∆ω +
1

2
κ|∇ρ|2

]

dV ,

(6)

with the homogeneous excess free energy density

∆ω = ρ · a(ρ)− µs · ρ+ ps , (7)

the saturated chemical potential

µs =
∂(ρ · a(ρ))

∂ρ

∣

∣

∣

∣

ρ=ρ′

=
∂(ρ · a(ρ))

∂ρ

∣

∣

∣

∣

ρ=ρ′′

, (8)

and the vapor pressure ps [36]. An illustration of ∆ω is shown in Fig. 1.

For a single planar vapor-liquid interface normal to the x-direction with an interface surface area A, ∆F

reduces to

∆F [ρ,∇ρ] = ∆Ω[ρ,∇ρ] = A

∫ +∞

−∞

[

∆ω +
1

2
κ|∇ρ|2

]

dx . (9)

Since ∆F
A

= γvl, the Euler equation as well as the fact that ∆ω is nonzero at the interface only, leads to

γvl =
√
2κ

∫ ρ′

ρ′′

√
∆ω dρ (10)

[36]. Therefore, κ can be computed from

κ =
1

2





γvl
∫ ρ′

ρ′′

√
∆ω dρ





2

. (11)
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Figure 1: Free energy density ρ · a(ρ) and homogeneous excess free energy density ∆ω over particle density ρ. The densities ρ′

and ρ′′ denote the bulk densities, µs the saturated chemical potential, and ps the vapor pressure. Temperature T = 0.7.

In [29] MD simulation data of the surface tension γvl of the LJTS fluid [28] are used to determine κ for

the PeTS EoS. It is found that a temperature independent value of κ = 2.7334 gives good results. This

value is used here, too.

2.3. Numerical solution strategy

A necessary condition for a static solution configuration of the order parameter ρ is given by the first

order optimality condition of F . As there is often a large distance between the initial configuration and the

static solution, an evolution equation of Allen-Cahn [38] type is chosen in order to reduce the distance to

the solution. This numerical relaxation solves

ρ̇ = −M

δρ

(

ρ · a(ρ) + 1

2
κ|∇ρ|2 + λρ

)

δρ
and δλF = 0 (12)

for a number of computational time steps to approach the static solution. Here, ˙(·) is the derivative with

respect to the computational time, M is the mobility and δbA is the first variation of A with respect to b.

Since (5) does include an additional Lagrange multiplier constraint to conserve the number of particles,

i.e. the mass, within the computational domain, the fact that the Allen-Cahn evolution equation does not

conserve mass is meaningless. Once the configuration is close to the stationary solution

∫

B

0.5

(

ρ̇

M

)2

dV ≤ tol , (13)

the quasi static limit conditions

δρF = 0 and δλF = 0 , (14)
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are solved instead of (12). With n denoting the outer normal to the boundary of the computational domain,

the natural boundary condition reads

∇ρ · n = 0 . (15)

Without further ado, this leads to a contact angle of 90◦ at the boundary of the computational domain.

Other contact angles are possible by including the energy contributions of the surface tensions from the

solid-liquid as well as the solid-vapor interfaces into (5), see e.g. [39, 40, 41, 37].

The finite element method (FEM) is applied to solve (12) and (14). For this, ρ and λ are discretized as

ρe = N ρ =
[

N1 N2 . . . Nn

]

















ρ1

ρ2

. . .

ρn

















and λg = Nλ λ = λ . (16)

Here, ρi (i = 1, 2, . . . , n) are the values at the n FE nodes and Ni the FE shape functions. As λ is a global

degree of freedom that is located on the entire domain, Nλ = 1 and λ = λ. The superscripts (·)e and (·)g will

be omitted in the following. Solving (14) using Newton’s method leads to the linearized system of equations

for the increments ∆ρ and ∆λ







δρ

δλ







T
(







Kρ ρ Kρ λ

Kλρ 0













∆ρ

∆λ






=







Rρ

Rλ







)

, (17)

with

Rρ =

∫

B

[

∂ (ρ · a(ρ))
∂ρ

N
T
+ κ∇ρB

T
+ λN

T
]

dV , (18)

Rλ =

(
∫

B

ρ dV −N

)

Nλ
T
, (19)

as the residuals belonging to ρ and λ, and

Kρ ρ =

∫

B

[

∂2 (ρ · a(ρ))
∂ρ2

N
T
N + κB

T
B

]

dV , (20)

Kρλ =

∫

B

N
T
Nλ dV , (21)

Kλρ = Kρ λ
T

(22)

as their derivatives with respect to ρ and λ. Here, B contains the spatial derivatives of the shape functions.

With (18) it becomes apparent that the Lagrange multiplier λ can be identified as the chemical potential

with a change of sign −µ.
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2.4. Hyper-dual numbers

The computation of (18) and (20) requires the first and second derivatives of a(ρ) with respect to ρ.

Since a(ρ) is a very evolved formula, its explicit derivation is time consuming and prone to errors. This is

why the concept of hyper-dual numbers [34, 35] is applied here to compute the first and second derivatives.

Hyper-dual numbers extend the concept of a complex step first derivative approximation. They enable

calculating exact and step-size independent first and second derivatives. A hyper-dual number xhd consists

of one real and three imaginary parts

xhd = a+ ǫ1b+ ǫ2c+ ǫ1ǫ2d . (23)

The imaginary units ǫi have the properties

ǫ21 = ǫ22 = (ǫ1ǫ2)
2 = 0 , (24)

and

ǫ1 6= ǫ2 6= ǫ1ǫ2 6= 0 . (25)

Developing the Taylor series of a function g at the position of the real variable x and evaluating it at the

new position yhd = x+ ǫ1h1 + ǫ2h2 + ǫ1ǫ2 · 0 with arbitrary constants h1 and h2 leads to

g(yhd) = g(x) + (ǫ1h1 + ǫ2h2)g
′(x) + ǫ1ǫ2h1h2g

′′(x) . (26)

All terms of higher order vanish in the Taylor series due to (24). Therefore, (26) is the complete Taylor

series and the exact derivatives can be obtained as

g′(x) =
Imǫ1g(yhd)

h1
=

Imǫ2g(yhd)

h2
and (27)

g′′(x) =
Imǫ1ǫ2g(yhd)

h1h2
. (28)

Within the FE code of the present model, a subprogram is used in order to compute the values of

∂ (ρ · a(ρ))
∂ρ

and
∂2 (ρ · a(ρ))

∂ρ2
(29)

at each integration point. The subprogram is written in Fortran and extends the mathematical operations

to the new variable class of hyper-dual numbers using operator overloading. The subprogram contains the

formula for the free energy per particle a(ρ, T ) but not for its derivatives. However, by feeding ρhd =

ρ + ǫ1h1 + ǫ2h2 + ǫ1ǫ2 · 0 and T the values for (29) which are needed in (18) and (20) are obtained, see

Fig. 2. It is easy to interchange the EoS as one only needs to change the term for a(ρ, T ) but does not have

to derive the analytic expressions for (29).
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Subprogram

Figure 2: Subprogram computes (29) using hyper-dual numbers. Input: ρhd and T . Output: derivatives with respect to density.

3. Simulation

In this section, four three-dimensional scenarios for application of the PF model based on the PeTS

EoS are discussed. In the first example a situation with a random initial density distribution is studied.

The second and third examples regard the basic configurations of a planar interface and a liquid droplet

surrounded by a gas phase. The last example shows different evolution paths of two droplets.

3.1. Modeling

The PF model is implemented into the FE program FEAP [42]. For all PF simulations the computational

area is a cube with an edge length of le = 20 and ne = 80 hexahedral elements across each edge. 8-node

elements with tri-linear shape functions are used. The temperature T and the number of particlesN (defining

the average density of the computational domain) vary between the scenarios and are given below. The free

energy is computed from (5).

The MD simulations, with which the PF results are compared, are carried out in the canonical (NVT)

ensemble using the massively parallel code ls1 mardyn [43]. For all simulations the LJTS potential is

used. The temperature is kept constant with the Andersen thermostat [44] with a collision frequency

of ν = 0.05. The starting configuration corresponds to a supersaturated vapor in all scenarios. The time

step is ∆t = 0.0005. Further details (e.g. the number of particles NMD) vary between the scenarios and are

given below.

The level of parallel computing is different for the PF and MD simulations. They are also not carried

out on the same machine and the PF simulations are not optimized for speed. Solely to give an idea on how

the computational effort compares, the computation times are stated. Here, computation time refers to the

sum of the times spend on the individual CPUs.

Phase separation

In order to test the robustness of the model to describe phase separation, the computational domain is

initialized with a random density distribution. The random density distribution is obtained by setting the

value for each of the 813 nodes of the FE mesh to a random density value between ρ′ and ρ′′. The random

density values are generated using MATLAB (ρinit = (ρ′−ρ′′) ·rand(813, 1)+ρ′′). Due to the steep density
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gradients, this initialization is very challenging for the PF model. The temperature is set to T = 0.7 and

the number of particles is N = 3 200. The value of the mobility constant is M = 10.

Planar interface

The PF simulations regarding a planar interface between a liquid and a gas phase are done for three

different temperatures T ∈ { 0.7 0.8 0.9 }. The number of particles is N = 3 200. Each PF simulation

is initialized with the same density profile, cf. dashed line in Fig. 4 (right). The solution density profile is

evaluated across a line that goes through the center of the computational area and is perpendicular to the

interface (Fig. 4 (left)).

The MD simulations of the same scenario are carried out using NMD = 25 624 particles, a cubic simulation

box with an edge length of 40 and periodic boundary conditions in every direction. Due to the periodic

boundary conditions the edges of the MD simulation box have to be twice the size as those of the PF

simulation box, i.e. the volume and therefore also the number of particles are eight (23) times as large as in

the PF simulations. The simulations took at least 11 000 000 time steps until equilibrium was reached and

a planar interface was developed.

The width of the interface is evaluated for the PF and MD simulations. There are different definitions

for the width of the interface [45]. Often the ”10-90 thickness” L10−90 is evaluated

L10−90 = x(ρ = ρ2) − x(ρ = ρ1) (30)

with

ρ1 = ρ′′ + 0.9(ρ′ − ρ′′) and ρ2 = ρ′′ + 0.1(ρ′ − ρ′′) , (31)

cf. Fig. 5. Another option is based on constructing the tangent to the point where the density is in the

arithmetic mean of the bulk phases with the slope

tρ =
dρ(x)

dx

∣

∣

∣

∣

ρ=ρ=0.5(ρ′+ρ′′)

. (32)

The width of the interface Lt is then given by the difference of the x-positions at which the tangent reaches

the values of the bulk phases, cf. Fig. 5.

To check if κ is chosen correctly and is valid for all three temperatures, the excess free energy for all

three PF solution states is computed using (6) in a post-processing step. This excess free energy divided by

the surface area of the interface A is the surface tension calculated from the PF model and has to be equal

to the surface tension values given in [28].

Liquid droplet in gas phase

In this scenario liquid droplets surrounded by a gas phase are studied. To study the stability of droplets,

different numbers of particles inside the computational domain, i.e. different average densities of the domain,
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are considered. If the number of particles is too low, only a homogeneous gas phase is observed. For higher

number of particles drops of different sizes are observed. The temperature is set to T = 0.7.

For N = 800 particles inside the computational domain the PF results are compared to MD simulations.

The MD simulations are carried out using a cubic simulation box with an edge length of 20 and NMD = 841

particles. The simulation ran for 12 000 000 time steps. The statistical error of the density of the liquid

droplet and the vapor phase is estimated as three times the standard deviation of five block averages where

the block length is 500 000 time steps.

For the other numbers of particles, the PF results are compared to results from analytic solutions for

the case of a droplet surrounded by a gas phase with an approximated vapor-liquid interface as well as for

the case of a homogeneous density distribution. The analytic free energy Fd of the droplet is obtained by

approximating the density profile of the interface between the liquid droplet and the gas phase by a linear

transition (ρ ∼ r) from ρ′ to ρ′′ as shown in Fig. 9(a). Here, r is the distance to the center of the droplet.

The width of this approximated interface is chosen in accordance with LPF
t from the planar interface section

(cf. Fig. 5) and set to L = 2.042. The radius rini is defined as the distance from the center of the droplet to

the position where the density is in the arithmetic mean of ρ′ and ρ′′. The value of rini therefore determines

the number of particles. Following the approach of [46] and classical nucleation theory (CNT) based on the

capillarity approximation [47, 48], i.e., assuming that the surface tension and the width of the interface are

constant, the free energy (4) is computed analytically. The analytic free energy of the homogeneous density

distribution is given by Fh. Details regarding the computation of the analytic free energies Fd and Fh are

shown in Appendix A. The PF simulations are initialized according to (A.5) for different rini values

rini ∈ { 2 3 3.25 3.5 3.75 4 4.25 4.5 5 } . (33)

The number of particles N is set to match the initialization radius.

Additionally, for all values of N that lead to a solution configuration with a liquid droplet surrounded

by a gas phase the equimolar radius

re =

(

3
∫∞

0
(ρ(r) − ρ∞)r2 dr

ρ0 − ρ∞

)

1

3
(34)

[49] is computed. Here, ρ0 and ρ∞ are the PF solution densities of the droplet and the gas phase.

Since ρ(r) = ρ∞ in the gas phase, the integral needs to be evaluated from 0 to 10, only. The pressure

values p0 and p∞ that correspond to ρ0 and ρ∞ (and T = 0.7) are obtained from the PeTS EoS and the

pressure difference

∆p = p0 − p∞ (35)

is calculated. For comparison, the pressure difference resulting from the Young-Laplace equation

∆pYL =
2γvl
re

(36)
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[50] is calculated using the γvl value computed in the planar interface section.

Two droplets

This scenario contains two droplets within the computational domain. In the first case, two droplets

of the same size are initialized such that their respective transition zones between the liquid and the gas

phase are in contact with each other. The number of particles is N = 503. In the second case, one droplet

is larger than the other and the two are not in contact. The number of particles is N = 367. For both

cases the temperature is set to T = 0.7 and the value of the mobility constant is M = 10. This scenario

demonstrates how the present PF model can be applied to scenarios in which a radially symmetric extension

of one-dimensional DGT cannot be applied.

3.2. Results

Phase separation

Fig. 3 shows iso-surfaces of the local density for different computational times t. The first plot shows

the initialization state and the total computational runtime is given by ts. During the evolution of the PF

one can at first see that the liquid and gas phase separate from each other creating numerous interfaces

(t = 0.010 ts and t = 0.015 ts). In the next phase of the evolution the smaller interfaces start to vanish

(t = 0.049 ts and t = 0.148 ts). The solution is given by a planar interface between liquid and gas, which is

the expected result. The PF model can cope with the challenging initialization.

Planar interface

The PF density profiles are compared to those of the MD simulations in Fig. 4 (right). Due to the periodic

boundary conditions the position of the interface is different for each of the MD simulations. Therefore,

the MD profiles were moved arbitrarily in Fig. 4 (right) so that a comparison between the PF and MD

simulations is possible. As one can see, the bulk values of the PF simulations match the ones of the MD

simulations well. The resulting interface widths are given in Table 1. The widths of the interfaces determined

by the MD simulations are larger than those from the PF simulations (cf. L10−90 and Lt values). This can

be explained by the fact that a surface of equal density is not a plane in the MD simulations but rather a

corrugated surface that changes its shape in time. The dots in Fig. 4 (right) show a time averaged profile

(over 500 000 time steps) of the density averaged in the directions tangential to the interface. The fact

that the difference in the width of the interface between the PF and the MD simulations is larger for high

temperatures supports this explanation. Except for the MD simulations at T = 0.9, the L10−90 interface

widths are wider than then the Lt interface widths. The computation times are approximately 30 h for each

of the PF simulations and approximately 1 500 h for each of the MD simulations.

The surface tension calculated from the PF simulations is found to be in excellent agreement with the

values given in [28], cf. Fig. 6. Therefore, κ is chosen correctly and is valid for all three temperatures.
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t = 0 t = 0.010 ts t = 0.015 ts

t = 0.049 ts t = 0.148 ts t = ts

Figure 3: Evolution of density iso-surfaces determined by PF simulations using the PeTS EoS for an initialization with a
random density distribution and T = 0.7. The random density distribution is obtained by setting the value for each of the
813 nodes of the FE mesh to a random density value between ρ′ and ρ′′. ts denotes the total computational runtime.

Figure 4: Density profile across a planar interface as determined by PF simulations using the PeTS EoS and MD simulations
with the LJTS fluid for three different temperatures. The picture on the left shows a contour plot from the PF simulations.
The diagram on the right does also show the density profile used for the PF initialization.
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Figure 5: Representative comparison between in-
terface width definitions L10−90 and Lt.

Table 1: Widths of the planar interfaces of the
LJTS fluid as determined by PF and MD simu-
lations. Results for different temperatures and de-
finitions of the interface width (cf. Fig. 5).

T 0.7 0.8 0.9

LPF
10−90 2.070 2.492 3.229

LMD
10−90 2.353 3.124 4.232

LPF
t 2.042 2.471 3.122

LMD
t 2.205 2.660 4.274

Figure 6: Surface tension calculated from the PF simulations using the PeTS EoS and surface tension given in [28] for different
temperatures.
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Liquid droplet in gas phase

For N = 800 a contour plot of the PF solution state is shown in Fig. 7 (left). The solution densities of

the PF simulations are ρ = 0.8060 for the liquid droplet and ρ = 0.0113 for the gas. The solution densities of

the MD simulations are ρ = 0.806(15) for the liquid droplet and ρ = 0.0112(26) for the gas (The number in

parentheses indicates the statistical uncertainty in the last decimal digit.). These density values are higher

than they would be for a planar interface at the same temperature (see section planar interface), cf. black

lines in Fig. 7 (right). The curvature of the interface with the surface tension γvl causes the pressure (and

thereby the density) inside the droplet to rise. Since the chemical potentials of the liquid and the gas phase

have to be the same in an equilibrium, this causes a rise in the density of the gas phase. The PF results

agree with the results from the MD simulations within the error bars of the MD simulations (Fig. 7 (right)).

The computation time is approximately 3.3 h for the PF simulations and approximately 14 h for the MD

simulations.

In the PF simulations for the other numbers of particles the droplet disappears for small values of rini

and the corresponding solution is given by a homogeneous density distribution. Fig. 8 (left) shows the

initialization (top) and solution (bottom) state for rini = 3. The homogeneous density of the solution state

is higher than the density of the initialized gas phase leaving the computational area in an oversaturated

state. A PF solution configuration with a liquid droplet surrounded by a gas phase is obtained for higher

values of rini. The first value of rini that leads to a solution configuration with a liquid droplet surrounded

by a gas phase is rini = 3.75. Fig. 8 (right) shows the initialization (top) and solution (bottom) state

for rini = 5. The densities of the liquid as well as the gas phase in the solution state are higher than their

initialization values. This is in accordance with the influence of the curvature of the interface shown above.

The symbols in Fig. 9 (b) show the free energies from the solution states of the PF simulations and the lines

show plots of the analytically determined free energies Fd and Fh for different values of rini. The fact that

the free energy of the homogeneous density distribution Fh is smaller than the free energy of the droplet

configuration Fd for small values of rini indicates that the homogeneous configuration is favored and a liquid

droplet is not stable for the number of particles that is defined by those values of rini. Analogously, the

configuration of the liquid droplet becomes favorable (and thereby stable) for larger values of rini. The PF

results follow the low energy path of Fd and Fh, cf. Fig. 9 (b). It is stated above that the first value of rini

that leads to a PF solution configuration with a liquid droplet surrounded by a gas phase is rini = 3.75. The

value of rini for which Fd and Fh cross each other is rini = 3.99. The PF result for the smallest stable droplet

is in good agreement with the analytic result. The difference can be explained by the linear approximation

of the interface in the analytic expressions.

Fig. 10 (a) shows the equimolar radius re over the number of particles for the values of rini that lead to a

solution configuration with a liquid droplet surrounded by a gas phase. The equimolar radius of the smallest
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Figure 7: Liquid droplet in gas phase for N = 800 and T = 0.7. Contour plot of PF with PeTS EoS solution (left) and
comparison between PF and MD solution (right). Densities are higher than the liquid and gas densities of the planar interface

(black lines).

stable droplet is rmin
e = 3.17. A plot of ∆p over re is shown in Fig. 10 (b). Fig. 10 (b) also shows ∆pYL

resulting from the Young-Laplace equation. The pressure differences ∆p and ∆pYL show good agreement

for larger re values. For smaller values of re the droplet is so small that its radius is of similar size as the

finite width of the diffuse interface. Therefore, the assumptions on which the Young-Laplace equation is

based do not hold and the disagreement of ∆p and ∆pYL does not surprise. Investigating spherical droplets

using DGT the authors of [51] show that the predictions of the Young-Laplace equation do not hold for

droplet radii smaller than around 5σ. This agrees well with our results. The same breakdown has been

shown by [52] for bubbles with radii below 5σ to 10σ depending on temperature.

Two droplets

Fig. 11 shows iso-surfaces of the local density of the first case (left) and the second case (right) for

different computational times t. The iso-surfaces are cut through the center of the droplets. The top plots

show the initialization and the bottom plots the solution state. During the evolution of the first case the

two droplets unite and form a single droplet. During the evolution of the second case the smaller droplet

shrinks and vanishes. As the number of particles is held constant, this causes the larger droplet to grow.

Due to this growing the larger droplet gets in contact with the boundary of the computational domain.

A 90◦ contact angle evolves according to (15) and the solution shows a hemisphere.

4. Summary and Outlook

The present work incorporates the PeTS EoS into a three-dimensional PF model. The PeTS EoS

describes the properties of the LJTS fluid well not only in the stable range but also in the metastable and

unstable range. Therefore, all properties (also those in the transition zone between the liquid and the gas
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Figure 8: PF simulations using the PeTS EoS with an initialization according to (A.5). Initialization (top) and solution
(bottom) contour plots for rini = 3 (left) and rini = 5 (right).
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(a) (b)

Figure 9: (a) Real (PF) density profile across vapor-liquid interface and approximated density profile. (b) Analytic free
energy for homogeneous density distribution Fh and droplet configuration Fd for different numbers of particles (defined by
the value of rini). The symbols show the free energy from PF simulations using the PeTS EoS initialized according to (A.5).
Temperature T = 0.7.

(a) (b)

Figure 10: (a) Equimolar radius over the number of particles of PF simulations using the PeTS EoS that result in a solution
configuration with a liquid droplet surrounded by a gas phase. (b) Difference between the pressure of the droplet and the
pressure of the gas phase for the simulations shown in (a), for comparison, the plot also shows the pressure difference resulting
from the Young-Laplace equation using the surface tension computed in the planar interface section. Temperature T = 0.7.
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Figure 11: Evolution of density iso-surfaces determined by PF simulations using the PeTS EoS for an initialization with two
droplets of same size in contact (left) and an initialization with two droplets of different size not in contact (right). The top
plots show the initialization and the bottom plots the solution state. Temperature T = 0.7.
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phase) determined by the PF simulations are physically meaningful. Hence, the PF model can also be seen

as a three-dimensional extension of DGT based on EoS. The FE implementation of the presented model is

assisted by the use of hyper-dual numbers. The approach is presented in a way that does not depend on the

specific choice of the EoS and can easily be applied for other EoS. Several numerical examples demonstrate

the pertinency of the presented approach. The PF model is able to properly separate phases when starting

with an unfavorable initialization with a random density distribution. The PF results are in good agreement

with MD simulations for the case of a planar interface as well as a droplet surrounded by a gas phase. The

correct surface tension is obtained and the size of the smallest stable droplet is in agreement with theory.

The model can be used for studying scenarios in which one-dimensional DGT cannot be applied.

Future work will strive towards the ability to study scenarios in which solid walls are relevant so that

wetting phenomena can be investigated. Additionally, the model shall gain the ability to properly describe

the dynamics of droplet motion. With this, scenarios like droplet coalescence and dynamic wetting on

different scale levels will move into the scope of the present PF model.
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Appendix A. Analytic free energy approximation for liquid droplet surrounded by gas phase
and homogeneous density distribution

The free energy of the droplet configuration Fd consists of three parts. The free energy of the liquid

inside the droplet Fdl, the free energy of the gas phase Fdg, and the free energy of the interface between

liquid and gas Fdi,

Fd = Fdl + Fdg + Fdi . (A.1)

The free energy of the liquid domain Bl inside the droplet is given by

Fdl =

∫

Bl

ρ′ · a(ρ′) dV = ρ′ · a(ρ′) · V ′ with V ′ =
4

3
π

(

rini −
L

2

)3

. (A.2)

The free energy of the gas domain Bg is given by

Fdg =

∫

Bg

ρ′′ · a(ρ′′) dV = ρ′′ · a(ρ′′) · V ′′ with V ′′ = VB − 4

3
π

(

rini +
L

2

)3

. (A.3)
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In this, VB is the volume of the entire computational area. The free energy of the interface between the

liquid and the gas phase (domain Bi) can by computed from

Fdi =

∫

Bi

[

ρ · a(ρ) + 1

2
κ|∇ρ|2

]

dV

=

∫

Bi

[

∆ω +
1

2
κ|∇ρ|2 + µs · ρ− ps

]

dV

= γvl · 4πr2ini +
∫

Bi

[µs · ρ− ps] dV .

(A.4)

This holds true since the excess free energy density ∆ω +
1

2
κ|∇ρ|2 integrated across the interface is equi-

valent to the surface tension γvl multiplied by the surface area of the droplet. With the already mentioned

approximation of the interface profile

ρ = ρ(r) =
ρ′′ − ρ′

L

(

r − rini +
L

2

)

+ ρ′ , (A.5)

as well as a spherical coordinate system, the free energy of the interface between liquid and gas can be

written as

Fdi = γvl · 4πr2ini +
∫

Bi

[

µs ·
[

ρ′′ − ρ′

L

(

r − rini +
L

2

)

+ ρ′
]

− ps
]

dV

= γvl · 4πr2ini + 4π

∫ rini+0.5L

rini−0.5L

[

r2µs ·
[

ρ′′ − ρ′

L

(

r − rini +
L

2

)

+ ρ′
]

− r2ps
]

dr .

(A.6)

Here, r is the distance to the center of the liquid droplet.

The free energy Fh of the homogeneous density distribution is given by

Fh = ρh · a(ρh) · VB , (A.7)

with ρh as the homogeneous density

ρh =

[

ρ′V ′ + ρ′′V ′′ +

∫

Bi

ρ dV

]

1

VB

=

[

ρ′V ′ + ρ′′V ′′ + 4π

∫ rini+0.5L

rini−0.5L

r2
[

ρ′′ − ρ′

L

(

r − rini +
L

2

)

+ ρ′
]

dr

]

1

VB

.

(A.8)
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