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In order to be able to predict the static solution of three dimensional wetting scenarios, a free energy functional that is depen-
dent on a continuous order parameter is formulated. This free energy functional can be linked to molecular dynamics (MD)
simulations by input parameters. Static equilibrium configurations can be computed by minimizing the overall free energy
using an evolution equation of Allen-Cahn type. Details of the presented model are followed by illustrative examples that
demonstrate the pertinency of the approach.
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1 Phase Field Model

Wettability of structured surfaces, which can be investigated using molecular dynamics (MD) simulations with force fields [1],
plays an important role in a variety of production processes. The high numerical costs for the MD simulations motivate the
development of the presented phase field model which is linked to MD simulations by input parameters and allows for a
treatment of larger scales. A continuous order parameter ϕ(x, t) ∈ [0, 1] indicates the spatial distribution of the two phases
liquid and gas with ϕ = 0 where there is gas and ϕ = 1 where there is liquid. The free energy F of the domain Ω is dependent
on ϕ and defined as
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Equilibrium droplet shapes and wetting conditions are computed by an Allen-Cahn evolution equation,

ϕ̇ = −M
δF

δϕ
, (2)

which by itself does not conserve the liquid volume. In the vicinity of the solution δF = 0 is solved directly. The first
contribution to F (eq. (1)) consists of the separating double well potential f(ϕ) = ϕ2(1 − ϕ)2 as well as the gradient of the
order parameter ϕ. The separation and gradient terms are weighted in such a way that the width of the transition zone between
gas and liquid in the solution state can be defined by κ. The surface tension between liquid and gas is given by γGL. To ensure
a liquid volume conservation a global Lagrange multiplier λ is introduced (second contribution to (1)). As this liquid volume
constraint does not need to conserve the liquid volume in each finite element but within the entire domain, λ represents only
one (global) additional degree of freedom for the entire discretized system. The third contribution to the free energy (eq. (1))
allows to define specific contact angles Θ without a geometric formulation but by including the surface tension between a
potentially structured solid surface and the liquid γSL as well as between the solid and the gas phase γSG into the free energy
of the system [2]. The parts of the boundary where Ω is bounded by a solid surface are denoted by ∂Ωs. Note, that only
the difference γSG − γSL influences the weak form of the free energy F , but not the individual values of γSG and γSL. The
analytic contact angle Θa can be computed by Young’s equation

cos(Θa) =
γSG − γSL

γGL
. (3)

In the volume constraint as well as the energy contribution of the solid surface, the regularized interpolation function h(ϕ) =
ϕ3(6ϕ2 − 15ϕ + 10) is used [3]. The model is discretized using three-dimensional finite elements. Analogously to the two-
dimensional case reported in [4], the volume energy contributions are discretized by 8-node-elements and the solid surface
energy contributions by 4-node-elements.
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502 Section 7: Coupled problems

Fig. 1: Droplet on hydrophobic structured surface, input pa-
rameters are reported in Table 1(a).

Table 1: Dimensionless input parameters (and
analytic contact angle) for (a) droplet on struc-
tured surface and (b) droplet on cylindrical
pedestal.

parameter value (a) value (b)
γGL 1.000 0.403
γSG − γSL -0.866 0.285
κ 2 3
M 500 500
∆t 0.005 0.005
Θa 150◦ 45◦

Fig. 2: Droplet on cylindrical pedestal for different solution states, input parameters are reported in Table 1(b).

2 Numerical Examples
This section demonstrates the ability of the presented model to compute the static solution of three-dimensional droplets on
structured surfaces. The first scenario considers a droplet on a hydrophobic structured surface and can be seen in Fig. 1.
The input parameters as well as the analytic contact angle are reported in Table 1(a). The lower width and the height of each
frustum are κ and the smallest distance between each frustum is 0.5κ. The plot in Fig. 1 shows various isosurfaces of the phase
field variable ϕ. It is clear to see how the structured surface influences the shape of the droplet, perturbing it from its circular
shape. Interestingly, the ϕ = 0.5 isosurface is not in contact with the bottom of the structured surface which indicates partial
dewetting. The second scenario under consideration is a droplet on a cylindrical pedestal. The input parameters as well as the
analytic contact angle can be found in Table 1(b). The diameter of the pedestal is approx. 13.3κ and the height of the pedestal
is approx. 4.2κ. The three plots in Fig. 2 show various isosurfaces of the phase field variable ϕ at different computation
times t. The full runtime of the computation is given by T , therefore the first plot shows the initialization state and the last
plot the final static solution. Even though the computation was initialized with a droplet sitting at the side of the pedestal, the
droplet is moving towards the top of the pedestal as the computation evolves. In the final static solution, the droplet is located
symmetrically at the middle of the pedestal (epitaxial Cassie state). This shows that the configuration in which the droplet is
sitting on top of the pedestal is energetically more favourable than the one with the droplet sitting on the side of the pedestal.
Future work will include the incorporation of a free energy density function corresponding to a thermodynamic equation of
state.
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