
Investigating the Stability of the Phase Field Solution of Equilibrium Droplet

Configurations by Eigenvalues and Eigenvectors

Felix Diewalda,∗, Charlotte Kuhnb, Michaela Heierc, Kai Langenbachc,d, Martin Horschc,e, Hans Hassec, Ralf Müllera
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Abstract

Phase field models have recently been used to investigate the physical behavior of droplets in static as well as dynamic
situations. As those models are often driven by an Allen-Cahn evolution equation, their stationary solution is given by
the first order optimality condition of an energy functional. This includes the possibility of computing saddle points and
maxima rather than minima of the energy functional. The present work shows the post-processing of eigenvalues and
eigenvectors of the system matrix of the phase field model in order to investigate the stability of equilibrium droplet
configurations. This post-processing can easily be ported to other evolution equations. The underlying phase field model
is described and the resulting discrete finite element eigenvalue problem is stated. The investigation of eigenvalues and
eigenvectors is illustrated by examples.
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1. Introduction

Understanding how droplets interact with each other as
well as the ability to predict wetting phenomena is highly
important in a variety of applications, e.g. pyrometallur-
gical processes [1] or inkjet printing [2]. Phase field simu-
lations in which the presence of a phase is described by
a continuous order parameter are capable of gaining this
knowledge not only for a two-phase system but also for
systems with multiple phases [3, 4, 5].

Depending on the case of application, some phase field
models examine the static equilibrium [3] of droplets while
others investigate the dynamics of (possibly) multi-compo-
nent fluid flows [2]. Phase field models offer a straightfor-
ward way to consider dynamic as well as static wetting sce-
narios on a variety of surface geometries. Especially in the
case of microstructured surface wetting a profound kno-
wledge of the static equilibrium wetting state of droplets
is relevant and can serve as a starting point for a deeper
understanding of the underlying effects. Regarding dyna-
mic wetting of microstructured surfaces makes it harder to
distinguish between the different effects due to a greater
number of parameters.

The fact that there is often a large difference between
the initialization state of the phase field calculation and
the final solution brings the necessity of using an evolution
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equation in order to gradually relax the phase field towards
the static solution. Most commonly, an Allen-Cahn [6, 3,
7] or Cahn-Hilliard (see for instance [2] and the references
therein) type evolution equation is chosen.

In order to give the phase field models a physical re-
levance, molecular simulations can provide a link to the
required input parameters for the phase field model and
interaction potentials [8]. Phase field studies that obtain
their input parameters from molecular simulations can, for
instance, be found in [8, 9, 10, 11]. Crucial input parame-
ters for phase field models investigating droplet behavior,
like the contact angle or the width of the transition zone
between the liquid and the gas phase, could, for example,
be derived from [12].

When using a phase field model to compute the static
equilibrium configuration of a droplet that is in contact
with a solid surface the solution is given by the first order
optimality condition of an energy functional. As this can
lead to a computation of saddle points and maxima rather
than minima of the energy functional, a closer investiga-
tion of the obtained solution becomes necessary in order to
determine the stability of the solution and if a minimum
energy configuration is attained. While much work has
been done on the stability analysis of droplet on a variety
of different substrates, see e.g. [13, 14, 15, 16, 17, 18, 19,
20, 21, 22], the investigation of the static solution state of
a phase field model in order to determine the character of
the obtained solution needs (to the best of the authors’
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knowledge) yet to be done and is the main purpose of the
present work.

The basic framework of computing the solution of a
phase field model by solving the first order optimality con-
dition of an energy functional is commonly used in a vari-
ety of different phase field models. Therefore, the presen-
ted post-processing can easily be adapted to a wide range
of phase field models and is not limited to the specific case
presented in this paper.

The following sections will first give an introduction to
the underlying phase field model. Subsequently, an inves-
tigation of the eigenvalues and eigenvectors of the system
matrix and thereby of the stability of droplet shapes is un-
dertaken. In order to illustrate the stability analysis three
examples are presented.

2. Phase field model

The present work incorporates a phase field model for
a two-phase droplet system (liquid/gas) that is capable of
regarding the contact angle between the liquid and a solid
surface as well as preserving a specified droplet volume.
Since the static solution of small-scale droplets is conside-
red, the influence of gravity is neglected. After a descrip-
tion of the phase field model some details of the numerical
implementation are given and the considered eigenproblem
is formulated.

2.1. Model description

Based upon a continuous order parameter ϕ(x, t) that
indicates whether the gas or the liquid phase is present at
a certain location

ϕ =

{

0, for gas

1, for liquid
, (1)

the free energy F is defined as

F =

∫

Ω

[

12
γGL

κ
f(ϕ) +

3

4
γGLκ|∇ϕ|2

]

dV

+ λ

(∫

Ω

h(ϕ)dV − V0

)

+

∫

∂Ωs

[h(ϕ)γSL + (1− h(ϕ))γSG] dA .

(2)

Here, Ω is the domain in which the gas and the liquid phase
exist and ∂Ωs denotes the part of the boundary where Ω is
bounded by a solid surface. In the following, F is simply
referred to as energy. The first contribution to F includes
the separation and gradient terms which are well known
for phase field models. The surface tension between the
gas and the liquid phase is given by γGL and f(ϕ) is a
classical double well potential

f(ϕ) = ϕ2(1− ϕ)2 . (3)

The separation and gradient terms are weighted in such
a way that the width of the transition zone between gas

and liquid can be adjusted by κ. In order to give κ a
physical meaning it can be set to a value that represents
the width of the density gradient between liquid and gas
(approximately 1nm). As mentioned this width can be
obtained from molecular simulations. However, since the
width of the transition zone between gas and liquid needs
to be resolved by an adequate number of finite elements,
simulations that are not done on a molecular scale require
a larger choice of κ in order to limit the numerical cost.
For an interpretation of the parameters in phase field si-
mulations, see e.g. [23]. A deeper discussion of the width
of the transition zone and the so called sharp-interface li-
mit beyond which the phase field results do not depend on
the width of the transition zone can for instance be found
in [24] or [25].

Solely minimizing the energy contributed by the sur-
face tension γGL would inevitably cause the drop to shrink
and vanish. Therefore, an additional volume constraint
has to be added in order to prescribe the liquid volume
Vl. Ideas to enforce a volume constraint within a phase
field model are presented in [6] and [4]. In the present
work we choose a Lagrange multiplier λ to incorporate the
volume constraint (second contribution to (2)). In com-
parison to a penalty term this adds one global degree of
freedom λ which only marginally rises the numerical cost
for the finite element implementation. During the simula-
tion, the liquid volume Vl =

∫

Ω
h(ϕ)dV is conserved with

the target volume V0 without the need of computing and
updating an intermediate solution. Therefore, the volume
constraint does not contribute to the free energy of the
domain. The value of λ is equivalent to the difference be-
tween the pressure inside and outside of a droplet which
can also be obtained analytically by the Young-Laplace
equation for spherical droplets [26].

The third contribution to (2) adds the energy contri-
butions of the surface tension between the solid surface
and the liquid γSL as well as the surface tension between
the solid surface and the gas γSG and allows for an adjust-
ment of the contact angle Θ between a droplet and a solid
surface [3]. With these energy contributions the natural
boundary conditions read

3

2
γGLκ∇ϕ · −→n + h′(ϕ)(γSL − γSG) = 0 , (4)

for the part of the boundary where Ω is bounded by a solid
surface ∂Ωs and

∇ϕ · −→n = 0 , (5)

for the remaining boundary of Ω. Here, −→n is the outer
normal to the boundary. Young’s equation for the contact
angle

cosΘ =
γSG − γSL

γGL

(6)

is not explicitly prescribed. However, it can be shown that
boundary condition (4) leads to Young’s equation. For
more details the reader is referred to [27].
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For numerical reasons (smoothness and stability) the
interpolation function [28]

h(ϕ) = ϕ3(6ϕ2 − 15ϕ+ 10) (7)

is introduced in (2). For both, the volume constraint
as well as the energy contribution from the contact with
the solid, this smooth function brings the advantage that
h′(0) = 0 and h′(1) = 0 while satisfying h(0) = 1 and
h(1) = 1.

Cahn-Hilliard type approaches have a stiff numerical
behavior due to the fourth order spatial derivatives and
(low order) bilinear elements cannot be applied [29]. For
their implementation in the FE context techniques like
mixed finite element methods, coupled equations, interpo-
lation functions that have a high degree of continuity, or
a discontinuous Galerkin method are required [30]. Wit-
hout claiming completeness we cite [30, 31, 32, 29]. In
the context of explicit finite differences the Cahn-Hilliard
type approach requires small time steps thus the identifica-
tion of equilibrium states is very cumbersome. To bypass
these drawbacks an evolution equation of Allen-Cahn [33]
type is chosen for the presented FE model as it allows
for a simpler and therefore resource efficient implemen-
tation [7] and has proven to be useful for the simulation
of droplets [3, 6, 7]. Although the Allen-Cahn evolution
equation might follow a different kinetic path to find the
static equilibrium state of a droplet it will reach the same
stationary solution as the Cahn-Hilliard approach [3]. In
certain scenarios, the Allen-Cahn evolution equation can
also be used to investigate time dependent droplet beha-
vior. In a recent work regarding drop evaporation [34] the
mobility parameter is experimentally fit to substitute the
diffusion coefficient. Unlike the Cahn-Hilliard type appro-
ach the Allen-Cahn type evolution equation does not by
itself conserve the volume of the order parameter [7]. Ho-
wever, since (2) includes a volume constraint this is no
drawback. Firstly,

ϕ̇ = −M
δϕF

δϕ
and δλF = 0 (8)

are solved for a number of computational time steps in
order to shorten the “distance” to the stationary solution.
Note that in this context the sequence of computational
time steps should not bee seen as the dynamic behavior
of the droplet but as a numerical relaxation towards the
stationary solution. In (8), δbA is the first variation of A
with respect to b and M the mobility. In the vicinity of
the stationary solution

∫

Ω

0.5

(
ϕ̇

M

)2

dV ≤ tol , (9)

the evolution equation is replaced by the quasi-static limit
condition

δϕF = 0 and δλF = 0 . (10)

Solving (10) includes the possibility of computing saddle
points and maxima rather than minima of the energy.

The use of an evolution equation as (8) can lead to con-
figurations that represent a saddle point, maximum or lie
within an unstable region of the energy landscape. This
can happen if the computation is started with an initiali-
zation that is close to a saddle point or maxima.

If (by chance) the computation is started with an ini-
tialization corresponding to a saddle point or maximum,
the evolution equation (8) would never lead away from
that saddle point or maximum.

If the initialization is just close to a saddle point or
maximum of the free energy, the evolution equation (8)
would lead away from that saddle point or maximum to-
wards a local minimum. However, this evolution would
be very slow in the vicinity of the saddle point or max-
imum as δF would be small in this region. It is always
cumbersome to determine when a solution is reached by
the evolution equation. Therefore, it is suggestive to use a
velocity norm (9) to determine if the evolution has brought
the phase field sufficiently close to the actual solution. The
fact that this velocity norm would be very small in the vi-
cinity of a saddle point or maximum would promote the
conclusion that a solution was found and the evolution
can be stopped. If (10) is used afterwards the phase field
would eventually converge to a configuration representing
a saddle point or maximum. But even if (10) is not used
the configuration would still be close to the saddle point
or maximum. Therefore, the found configuration would
potentially lie within an unstable region of the energy
landscape and would not be close to a local minimum.
The presented post-processing can reveal the fact that the
found configuration (which would be viewed as a solution)
is in fact not a solution. In practice, the presented post-
processing does therefore not only become important in
the rare event of starting with an initialization exactly
representing a saddle point or maximum but also when
starting with an initialization that lies within the vicinity
of a saddle point or maximum.

In other applications of phase field models (especially
for coupled problems) the presented post-processing can
gain additional relevance. In the case of phase field models
for fracture the energy landscape can change due to outer
loads. This can turn a former local minimum into a saddle
point or maximum. The presented procedure could be
applied to determine if this is the case.

As (10) is not dependent on the choice of evolution
equation that is used to shorten the “distance” to the sta-
tionary solution, the presented post-processing can easily
be adapted to models utilizing a different evolution equa-
tion.

2.2. Residuum and linearization

Newton’s method is used to fulfill (8) and (10) respecti-
vely. Following common finite element procedure the devi-
ations of the current state of the regarded domain from (8)
or (10) will be referred to as residuals. Expressions for the
residuals and linearizations of the residuals are given in
the present section.
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Using (8) the residual with respect to ϕ (referring to
the left equation in (8)) reads

Rϕ =

∫

Ω

[

12
γGL

κ
f ′(ϕ)δϕ +

3

2
γGLκ∇ϕ∇(δϕ)

]

dV

+ λ

∫

Ω

h′(ϕ)δϕdV +

∫

Ω

ϕ̇

M
δϕdV

+

∫

∂Ωs

h′(ϕ)(γSL − γSG)δϕdA .

(11)

Note that the energy contribution from the surface is in-
fluenced by the difference between γSL and γSG only and
not by their absolute values, which is in good agreement
with Young’s equation. The residual with respect to the
global degree of freedom λ (referring to the right equation
in (8)) is given by

Rλ =

(∫

Ω

h(ϕ)dV − V0

)

δλ . (12)

With Db(A)∆b as the linearization of A with respect to b
the linearizations of (11) and (12) can be written as

Kϕϕ = Dϕ(Rϕ)∆ϕ+Dϕ̇(Rϕ)∆ϕ̇

=

∫

Ω

[

12
γGL

κ
f ′′(ϕ)δϕ∆ϕ

+
3

2
γGLκ∇(δϕ)∇(∆ϕ)

]

dV

+

∫

Ω

λh′′(ϕ)δϕ∆ϕdV +

∫

Ω

1

M
δϕ∆ϕ̇dV

+

∫

∂Ωs

h′′(ϕ)(γSL − γSG)δϕ∆ϕdA ,

(13)

Kϕλ = Dλ(Rϕ)∆λ =

∫

Ω

h′(ϕ)δϕ∆λdV , (14)

Kλϕ = Dϕ(Rλ)∆ϕ =

∫

Ω

h′(ϕ)dV δλ∆ϕ , (15)

Kλλ = Dλ(Rλ)∆λ = 0 . (16)

2.3. Discretization and eigenproblem

The finite element discretization of the degree of free-
dom ϕ on element level reads

ϕe = Nϕ =
[
N1 N2 ... Nn

]







ϕ1

ϕ2

...
ϕn






, (17)

and for λ on the global level

λg = Nλ λ . (18)

Here, Ni (i = 1, 2, ..., n) are the shape functions for a num-
ber of n nodes on every element and ϕi the respective no-
dal values. Note that Nλ = 1 as it belongs to the global
degree of freedom λ which is located on the entire domain
and therefore not associated with a distinct node of the

mesh (λ = λ). As described in our recent work [35] 4-node
and 2-node elements are used in the two-dimensional case
for the energy contributions of the region and the surface
respectively. In the vicinity of the solution, where (10) is
solved instead of (8), Newton’s method leads to the global
system




δϕ

T

δλ
T





([

Kϕϕ Kϕλ

Kλϕ 0

]

︸ ︷︷ ︸

K

[

∆ϕ

∆λ

]

=

[

Rϕ

Rλ

])

,

(19)
with

Rϕ =

∫

Ω

[

12
γGL

κ
f ′(ϕ)N

T
+

3

2
γGLκ∇ϕB

T

+ λh′(ϕ)N
T
]

dV

+

∫

∂Ωs

h′(ϕ)(γSL − γSG)N
T
dA ,

(20)

Rλ =

(∫

Ω

h(ϕ)dV − V0

)

Nλ
T
, (21)

Kϕϕ =

∫

Ω

[

12
γGL

κ
f ′′(ϕ)N

T
N +

3

2
γGLκBT B

+ λh′′(ϕ)N
T
N

]

dV

+

∫

∂Ωs

h′′(ϕ)(γSL − γSG)N
T
NdA ,

(22)

Kϕλ =

∫

Ω

h′(ϕ)N
T
NλdV , (23)

Kλϕ = Kϕλ
T
. (24)

Here, K is the global tangent matrix of the system and B
contains the spatial derivatives of the shape functions.
Once (10) is solved within tolerance the eigenproblem stu-
died in the present work reads

(Ksol − Λ1)v = 0 . (25)

With Ksol being the global tangent matrix of the solu-
tion state of (10). Nontrivial solutions of (25) yield the
eigenvalues Λ and the normalized eigenvectors v.

The eigenvector v represents a perturbation from the

solution state of the degrees of freedom
[
ϕ λ

]T
. A po-

sitive eigenvalue Λ connotes that the change in the resi-

duals
[
Rϕ Rλ

]T
that is caused by this disturbance has

the same sign as the disturbance v itself, which indicates
that the solution lies within a convex (stable) region of
the free energy of the entire system. Analogously a ne-
gative eigenvalue Λ reveals that the found solution is not
stable. A subspace iteration is used to extract the lowest
ne eigenpairs.

In [36] the authors use a similar approach in order to
evaluate the modes of initial droplet growth for droplet
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Table 1: Input parameters (and analytic contact angle) for two-
dimensional (a) droplets without and with surface contact and (b)
droplets placed on pedestal

parameter values (a) values (b)
γGL 1.000 1.000
γSL 1.000 [0.357,1.174]
γSG 1.000 1.000
Θ 90◦ [50◦,100◦]
κ 1.0 1.0

κ/hc 3.2 -
κ/hf 6.4 -
κ/hp - 12.8
M - 100.0
∆t - 0.005

nucleation. Considering a solution profile for a nucleating
droplet, they expand the free energy of their system to
second order and examine the change of the free energy
for a perturbation of the order parameter away from the
solution state. To do so, the authors investigate the eigen-
values and eigenvectors of the second order term of their
energy expansion (compare to Ksol). They derive a sin-
gle negative eigenvalue whose corresponding eigenvector
describes how the droplet will initially grow. While the
methodology of [36] is similar to the one presented in this
work, their application is quite different. In [36] the au-
thors use the investigation of eigenvalues and eigenvectors
in order to predict how a nucleating droplet will grow.
The present work uses the investigation of eigenvalues and
eigenvectors of the system matrix in order to determine
whether a state of a phase field model that fulfills the first
order optimality condition of the energy function is a true
solution or not. The application presented in this work is
not limited to droplets and can be used for other phase
field models as well.

3. Numerical examples

In the following three different two-dimensional scena-
rios are examined. First a droplet that is not in contact
with a surface and second a droplet that is in contact with
a solid surface is considered. Thereafter, an analysis of
two different configurations of a droplet on a pedestal is
presented. The procedure for all three examples is the
following:

1. relax the phase field towards the stationary solution
using (8)

2. compute the stationary solution using (10)

3. investigate the eigenvalues and eigenvectors of the
global tangent matrix Ksol using (25)

An equidistant mesh was used for each of the computa-
tions. Note that all input parameters for the numerical
computations are dimensionless. As the present work is
pursuing the investigation of the eigenvalues and the ei-
genvectors for different scenarios, this is no drawback.

3.1. Droplet without surface contact

The considered domain for the two-dimensional drop-
let without surface contact is a square area. The com-
putation is performed on a coarse mesh with the element
edge length hc and κ/hc = 3.2 as well as on a fine mesh
with the element edge length hf and κ/hf = 6.4. The
input parameters are given in Table 1(a). The minimum
energy configuration was directly computed without the
use of the evolution equation. After the computation of
the solution the eigenvalues and eigenvectors are calcula-
ted. Fig. 2 shows the eight eigenvalues with the smallest
absolute values for the computation with (a) the coarse
and (b) the fine mesh.

For each computation, the eigenvalues come in pairs of
similar size. The most substantial difference between the
eigenvalues of the computation with the coarse and the fine
mesh is found in the first two eigenvalues. For the refined
mesh, they are closer to zero by five orders of magnitude
without the other eigenvalues changing that significantly.
Since a translation of the droplet was not confined and
would not lead to an immediate energy change, it is obvi-
ous that the first two eigenvalues which are close to zero
belong to eigenvectors that describe a purely translational
movement of the droplet. Fig. 1 (i = 1, 2) underlines this
fact which is in accordance with [36]. The figure shows
contour plots of the sum vi + ϕ with vi being the eigen-
vector that belongs to the ith eigenvalue and ϕ being the
solution state of the discretized phase field. The white cir-
cles represent the ϕ = 0.5 isoline of the phase field. The
depicted contour plots belong to the computation with the
coarse mesh and do not show the entire domain. The co-
arse mesh is close to being too coarse to resolve the tran-
sition region between the gas and the liquid phase. Howe-
ver, since a scaling of the resulting eigenvectors does not
scale the drop deformation, the coarse computation was
chosen for the contour plots as it emphasizes the droplet
movement or deformation. Nonetheless, the computation
with the finer mesh emphasizes the fact that there is no
energy change for a purely translational movement of the
droplet.

The contour plots for i = 3 and i = 4 show the first-
degree droplet deformations. The second-degree droplet
deformations are addressed by the contour plots for i = 5
and i = 6. Note that a rise of the degree of deforma-
tion which is equivalent to an increase of the frequencies
in the shape change along the perimeter of the droplet is
accompanied by a rise of the eigenvalues. Furthermore,
the deformations that belong to the same degree of defor-
mation and do only differ by a rotation of the deformation
correspond to eigenvalues of almost equal size. The fact
that all these deformations belong to positive eigenvalues
indicates that a droplet that is deformed in such a way will
restore its circular shape in order to minimize the energy.

3.2. Droplet with surface contact

The second scenario represents a variation of the first
example. Without changing the input parameters, the

5



Figure 1: Contour plots of vi + ϕ for two-dimensional droplet without surface contact for the first six eigenvectors, coarse mesh

1 2 3 4 5 6 7 8
0.00

0.20

0.40

0.60

-1
.7

e
-0

4

-1
.7

e
-0

4

6
.7

e
-0

2

7
.0

e
-0

2

1
.8

e
-0

1

1
.8

e
-0

1 3
.3

e
-0

1

3
.3

e
-0

1(a) Eigenvalues (coarse mesh)

1 2 3 4 5 6 7 8
0.00

0.05

0.10

0.15

-8
.0

e
-0

9

-8
.0

e
-0

9

1
.7

e
-0

2

1
.8

e
-0

2

4
.6

e
-0

2

4
.6

e
-0

2 8
.6

e
-0

2

8
.6

e
-0

2

(b) Eigenvalues (fine mesh)

Figure 2: First eight eigenvalues (sorted by smallest absolute values)
of two-dimensional droplet without surface contact, (a) coarse mesh,
(b) fine mesh

droplet is placed on a solid surface. The input parame-
ters are therefore also given in Table 1(a). Fig. 4 shows
the eight eigenvalues with the smallest absolute values for
the computation with (a) the coarse and (b) the fine mesh.

It is evident that the eigenvalues do not come in pairs
of similar size as it was the case for the droplet without
surface contact. The most substantial difference between
the computation with the coarse and with the fine mesh is
only found in the first eigenvalue. Nevertheless, the mag-
nitudes of the differences between the eigenvalues of the
computation with the coarse and the computation with
the fine mesh are the same as it was the case for the drop-
let without surface contact. Fig. 3 explains these results.
As before, the figure shows contour plots of the sum vi+ϕ

for the computation with the coarse mesh with the white
line representing the ϕ = 0.5 isoline of the phase field.
The plots do not show the entire domain. As expected the
first eigenvalue belongs to a horizontal translation of the
droplet. As the solid surface is confining a free translatio-
nal movement in vertical direction such a movement is not
found within the first eight eigenvalues.

The first-degree and second-degree droplet deformati-
ons are shown by the contour plots for i = 2 and i = 3.
Unlike in the scenario of the droplet without surface con-
tact there is no rotated deformation of the same degree.
This can also be explained by the contact with the solid
surface. Comparing the eigenvalues of the corresponding
deformations of the droplet without and the droplet with
surface contact reveals that they are of similar size. This
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Figure 3: Contour plots of vi + ϕ for two-dimensional droplet with surface contact for the first six eigenvectors, coarse mesh
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Figure 4: First eight eigenvalues (sorted by smallest absolute values)
of two-dimensional droplet with surface contact, (a) coarse mesh, (b)
fine mesh

holds true for the computation with the coarse mesh as
well as for the computation with the fine mesh. Again, a
rise of the degree of droplet deformation is accompanied
by a rise of the corresponding eigenvalues. This becomes
even more evident when looking at the contour plots for
i = 4, 5, 6. The eigenvectors define shapes of droplets that
are similar to those of vibrating droplets, see for exam-
ple [37].

3.3. Droplet on pedestal

The next scenario under consideration is a droplet
placed on a pedestal. As Fig. 5(a+b) show, there exist
at least two different solution configurations depending on
how the computation is initialized. The configuration in
which the droplet is placed on the edge of the pedestal,
cf. Fig. 5(a), was realized by using an initialization with a
droplet that is centered directly on the edge of the pede-
stal and therefore corresponding to the stationary solution
(Fig. 5(a)). The configuration in which the droplet is pla-
ced on top of the pedestal, cf. Fig. 5(b), was realized by
initializing the computation with a droplet that is located
a little off-center thus breaking the symmetry and causing
the droplet to travel on top of the pedestal during the
phase field evolution. The plots do not show the entire
domain and the input parameters are given in Table 1(b).
Fig. 6 shows a comparison of the energy F for the drop-
let on the edge and the droplet on top of the pedestal
for different contact angles Θ. For all considered contact
angles Θ, the droplet on the edge of the pedestal has a hig-
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Figure 5: Two possible solutions for two-dimensional droplet placed on a pedestal (black area): (a) computation initialized with droplet
centered directly on the edge of pedestal, (b) computation initialized with droplet located a little off-center. (c) Contour plot of v1 + ϕ for
two-dimensional droplet on the edge of a pedestal (Θ = 90◦)

Figure 6: Energy of two-dimensional droplets on the edge and on
top of a pedestal for different contact angles Θ
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Figure 7: First eight eigenvalues (sorted by smallest absolute values)
of two-dimensional droplets (a) on the edge and (b) on top of a
pedestal (Θ = 90◦)

her energy than the droplet on top of the pedestal. From
this it is clear that the configuration with the droplet on
the edge of the pedestal cannot represent a global energy
minimum. The question that arises from this fact is whet-
her it represents a local minimum, a saddle point, or a
maximum. Or phrased differently, whether it is a metas-
table or unstable configuration. The computation of the
eigenvalues of the two configurations for Θ = 90◦ reveals
the results shown in Fig. 7. The first eigenvalue of the
droplet on the edge of the pedestal is negative (Fig. 7(a)).
Fig 5(c) shows a contour plot of the sum v1 + ϕ. Again,
the white line is the ϕ = 0.5 isoline of the phase field.
It becomes clear that the negative eigenvalue belongs to
a droplet movement away from the center of the edge of
the pedestal. This implies that the configuration with the
droplet on the edge of the pedestal is not stable. Conside-
ring how the computation was initialized the configuration
with the drop on the edge of the pedestal is not strictly
unphysical. However, the negative eigenvalue states that
this configuration can only be reached in an undisturbed
environment, which by itself would represent an too ideal
assumption. Even the smallest imperfection of the drop-
let would cause it to move away from the edge. This fact
would not have been revealed by the phase field model
without the presented post-processing of eigenvalues and
eigenvectors. Although a very fine mesh was used (element
edge length hp and κ/hp = 12.8), the first eigenvalue of
the droplet on top of the pedestal (Fig. 7(b)) is further
away from zero (five orders of magnitude) as it was the
case for the droplet without surface contact (Fig. 2(b)).
This can be caused by a weak confinement of the trans-
lational movement and can be explained by the fact that
the droplet is still influenced by the two edges to its right
and left (Fig. 5(b)). Therefore, the droplet is traveling to
the center of the upper surface of the pedestal although
the computation was initialized with a droplet located a
just bit off-center from the edge of the pedestal.
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4. Conclusion

It was shown that, in the case of phase field computati-
ons regarding droplets, the investigation of the eigenvalues
and the eigenvectors of the system matrix leads to a bet-
ter understanding of the energy changes for simple droplet
deformations and can furthermore be a useful tool in or-
der to determine the stability of a solution. Whenever a
solution is obtained by the first order optimality condi-
tion of an energy functional δF = 0 (as is usually the case
for phase field simulations) one might compute minimum
energy configurations but cannot directly rule out the pos-
sibility of obtaining a saddle point or a maximum of the
energy functional. In all these cases, the presented investi-
gation of eigenvalues and eigenvectors could be applied in
order to investigate the character of the obtained solution.
Especially by visualizing the impact of the eigenvectors on
the phase field variable it is not only possible to determine
whether a saddle point or maximum instead of a minimum
of the energy functional was found but also in which di-
rection the phase field would need to evolve in order to
move away from that saddle point or maximum. This sug-
gests to use the presented post-processing not only for the
present droplet case but also for other phase field models.

Acknowledgments

This research was funded by the German Research Foun-
dation (DFG) within the CRC 926 ”Microscale Morpho-
logy of Component Surfaces”.

[1] I. Bellemans, N. Moelans, K. Verbeken, Phase field modelling
of the attachment of metallic droplets to solid particles in li-
quid slags: Influence of interfacial energies and slag supersatu-
ration, Computational Materials Science 108 (2015) 348–357.
doi:10.1016/j.commatsci.2015.03.019.

[2] J. S. Kim, Phase-Field Models for Multi-Component Fluid
Flows, Communications in Computational Physics 12 (2012)
613–661. doi:10.4208/cicp.301110.040811a.

[3] M. Ben Said, M. Selzer, B. Nestler, D. Braun, C. Greiner,
H. Garcke, A phase-field approach for wetting phenomena of
multiphase droplets on solid surfaces, Langmuir 30 (14) (2014)
4033–4039. doi:10.1021/la500312q.

[4] B. Nestler, F. Wendler, M. Selzer, B. Stinner, H. Garcke,
Phase-field model for multiphase systems with preserved vo-
lume fractions, Physical Review E 78 (1) (2008) 011604.
doi:10.1103/PhysRevE.78.011604.

[5] H. Garcke, B. Nestler, B. Stoth, A MultiPhase Field Concept:
Numerical Simulations of Moving Phase Boundaries and Mul-
tiple Junctions, SIAM Journal on Applied Mathematics 60 (1)
(1999) 295–315. doi:10.1137/S0036139998334895.

[6] H. Garcke, B. Nestler, B. Stinner, F. Wendler, ALLEN–CAHN
SYSTEMS WITH VOLUME CONSTRAINTS, Mathematical
Models and Methods in Applied Sciences 18 (8) (2008) 1347–
1381. doi:10.1142/S0218202508003066.

[7] X. Yang, J. J. Feng, C. Liu, J. Shen, Numerical simulations of jet
pinching-off and drop formation using an energetic variational
phase-field method, Journal of Computational Physics 218 (1)
(2006) 417–428. doi:10.1016/j.jcp.2006.02.021.

[8] M. Berghoff, M. Selzer, B. Nestler, Phase-Field Simula-
tions at the Atomic Scale in Comparison to Molecular
Dynamics, Scientific World Journal 2013 (4) (2013) 1–8.
doi:10.1155/2013/564272.

[9] J. Bragard, A. Karma, Y. H. Lee, M. Plapp, Linking Phase-
Field and Atomistic Simulations to Model Dendritic Solidifica-
tion in Highly Undercooled Melts, Interface Science 10 (2/3)
(2002) 121–136. doi:10.1023/A:1015815928191.

[10] B. Nestler, M. Selzer, D. Danilov, Phase-field simulations
of nuclei and early stage solidification microstructures, Jour-
nal of Physics: Condensed Matter 21 (46) (2009) 464107.
doi:10.1088/0953-8984/21/46/464107.

[11] G. Tegze, T. Pusztai, G. Toth, L. Granasy, A. Svandal, T. Bu-
anes, T. Kuznetsova, B. Kvamme, Multiscale approach to CO2
hydrate formation in aqueous solution: phase field theory and
molecular dynamics. Nucleation and growth, Journal of Chemi-
cal Physics 124 (23) (2006) 234710. doi:10.1063/1.2207138.

[12] S. Becker, H. M. Urbassek, M. Horsch, H. Hasse, Contact angle
of sessile drops in Lennard-Jones systems, Langmuir 30 (45)
(2014) 13606–13614. doi:10.1021/la503974z.

[13] M. Brinkmann, J. Kierfeld, R. Lipowsky, Stability of liquid
channels or filaments in the presence of line tension, Jour-
nal of Physics: Condensed Matter 17 (15) (2005) 2349–2364.
doi:10.1088/0953-8984/17/15/008.

[14] M. Brinkmann, R. Lipowsky, Wetting morphologies on substra-
tes with striped surface domains, Journal of Applied Physics
92 (8) (2002) 4296–4306. doi:10.1063/1.1506003.

[15] R. Rosso, E. G. Virga, Local stability for a general wetting
functional, Journal of Physics A 37 (13) (2004) 3989–4015.
doi:10.1088/0305-4470/37/13/006.

[16] P. Blecua, M. Brinkmann, R. Lipowsky, J. Kierfeld, Morpholo-
gical transitions of liquid droplets on circular surface domains,
Langmuir 25 (23) (2009) 13493–13502. doi:10.1021/la901990z.

[17] F. Dorfler, M. Rauscher, S. Dietrich, Stability of thin liquid
films and sessile droplets under confinement, Physical Review
E 88 (1) (2013) 012402. doi:10.1103/PhysRevE.88.012402.

[18] S. Mechkov, G. Oshanin, M. Rauscher, M. Brinkmann, A. M.
Cazabat, S. Dietrich, Contact line stability of ridges and drops,
Europhysics Letters 80 (6) (2007) 66002. doi:10.1209/0295-
5075/80/66002.

[19] K. Kargupta, R. Konnur, A. Sharma, Instability and Pat-
tern Formation in Thin Liquid Films on Chemically Hete-
rogeneous Substrates, Langmuir 16 (26) (2000) 10243–10253.
doi:10.1021/la000759o.

[20] U. Thiele, L. Brusch, M. Bestehorn, M. Bar, Modelling thin-film
dewetting on structured substrates and templates: bifurcation
analysis and numerical simulations, European Physical Journal
E 11 (3) (2003) 255–271. doi:10.1140/epje/i2003-10019-5.

[21] C. Honisch, T.-S. Lin, A. Heuer, U. Thiele, S. V. Gurevich,
Instabilities of Layers of Deposited Molecules on Chemically
Stripe Patterned Substrates: Ridges versus Drops, Langmuir
31 (38) (2015) 10618–10631. doi:10.1021/acs.langmuir.5b02407.

[22] A. Checco, B. M. Ocko, M. Tasinkevych, S. Dietrich, Sta-
bility of thin wetting films on chemically nanostructured
surfaces, Physical Review Letters 109 (16) (2012) 166101.
doi:10.1103/PhysRevLett.109.166101.

[23] D. Schrade, R. Müller, D. Gross, On the physical interpreta-
tion of material parameters in phase field models for ferroelec-
trics, Archive of Applied Mechanics 83 (10) (2013) 1393–1413.
doi:10.1007/s00419-013-0754-5.

[24] P. Yue, C. Zhou, J. J. Feng, Sharp-interface limit of the Cahn–
Hilliard model for moving contact lines, Journal of Fluid Me-
chanics 645 (2010) 279. doi:10.1017/S0022112009992679.

[25] D. N. Sibley, A. Nold, S. Kalliadasis, Unifying binary fluid
diffuse-interface models in the sharp-interface limit, Journal of
Fluid Mechanics 736 (2013) 5–43. doi:10.1017/jfm.2013.521.

[26] H. Brenner, Interfacial Transport Processes and Rheology,
Elsevier Science, Burlington, 1991.
URL http://gbv.eblib.com/patron/FullRecord.aspx?p=1838180

[27] X. Xu, X. Wang, Derivation of the Wenzel and Cassie Equati-
ons from a Phase Field Model for Two Phase Flow on Rough
Surface, SIAM Journal on Applied Mathematics 70 (8) (2010)
2929–2941. doi:10.1137/090775828.

[28] N. Moelans, B. Blanpain, P. Wollants, An introduction to
phase-field modeling of microstructure evolution, Calphad

9



32 (2) (2008) 268–294. doi:10.1016/j.calphad.2007.11.003.
[29] D. Anders, K. Weinberg, Numerical simulation of diffusion

induced phase separation and coarsening in binary alloys,
Computational Materials Science 50 (4) (2011) 1359–1364.
doi:10.1016/j.commatsci.2010.03.030.

[30] G. N. Wells, E. Kuhl, K. Garikipati, A discontinuous
Galerkin method for the Cahn–Hilliard equation, Jour-
nal of Computational Physics 218 (2) (2006) 860–877.
doi:10.1016/j.jcp.2006.03.010.

[31] A. Rajagopal, P. Fischer, E. Kuhl, P. Steinmann, Natural ele-
ment analysis of the Cahn–Hilliard phase-field model, Compu-
tational Mechanics 46 (3) (2010) 471–493. doi:10.1007/s00466-
010-0490-4.

[32] D. Anders, K. Weinberg, A variational approach to the
decomposition of unstable viscous fluids and its consistent
numerical approximation, ZAMM 91 (8) (2011) 609–629.
doi:10.1002/zamm.201000121.

[33] J. W. Cahn, S. M. Allen, A MICROSCOPIC THEORY FOR
DOMAIN WALL MOTION AND ITS EXPERIMENTAL VE-
RIFICATION IN Fe-Al ALLOY DOMAIN GROWTH KINE-
TICS, Journal de Physique Colloques 38 (C7) (1977) C7 51–
C7 54. doi:10.1051/jphyscol:1977709.

[34] K. M. Schweigler, M. Ben Said, S. Seifritz, M. Selzer, B. Nestler,
Experimental and numerical investigation of drop evaporation
depending on the shape of the liquid/gas interface, Internati-
onal Journal of Heat and Mass Transfer 105 (2017) 655–663.
doi:10.1016/j.ijheatmasstransfer.2016.10.033.

[35] F. Diewald, C. Kuhn, R. Blauwhoff, M. Heier, S. Becker,
S. Werth, M. Horsch, H. Hasse, R. Müller, Simulation of Sur-
face Wetting by Droplets Using a Phase Field Model, PAMM
16 (1) (2016) 519–520. doi:10.1002/pamm.201610248.

[36] C. Unger, W. Klein, Nucleation theory near the classi-
cal spinodal, Physical Review B 29 (5) (1984) 2698–2708.
doi:10.1103/PhysRevB.29.2698.

[37] L. Dong, A. Chaudhury, M. K. Chaudhury, Lateral vibra-
tion of a water drop and its motion on a vibrating sur-
face, European Physical Journal E 21 (3) (2006) 231–242.
doi:10.1140/epje/i2006-10063-7.

10


