
591 TFLOPS Multi-trillion Particles Simulation

on SuperMUC

Wolfgang Eckhardt1, Alexander Heinecke1,
Reinhold Bader2, Matthias Brehm2, Nicolay Hammer2, Herbert Huber2,
Hans-Georg Kleinhenz2, Jadran Vrabec3, Hans Hasse4, Martin Horsch4,

Martin Bernreuther5, Colin W. Glass5, Christoph Niethammer5,
Arndt Bode1,2, and Hans-Joachim Bungartz1,2

1 Technische Universität München, Boltzmannstr. 3, D-85748 Garching, Germany
2 Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften,

Boltzmannstr. 1, D-85748 Garching, Germany
3 University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany

4 Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern,
Erwin-Schrödinger-Str. 44, D-67663 Kaiserslautern, Germany

5 High Performance Computing Centre Stuttgart (HLRS), Nobelstr. 19, D-70569
Stuttgart, Germany

Abstract. Anticipating large-scale molecular dynamics simulations
(MD) in nano-fluidics, we conduct performance and scalability studies
of an optimized version of the code ls1 mardyn. We present our imple-
mentation requiring only 32 Bytes per molecule, which allows us to run
the, to our knowledge, largest MD simulation to date. Our optimizations
tailored to the Intel Sandy Bridge processor are explained, including
vectorization as well as shared-memory parallelization to make use of
Hyperthreading. Finally we present results for weak and strong scaling
experiments on up to 146016 Cores of SuperMUC at the Leibniz Super-
computing Centre, achieving a speed-up of 133k times which corresponds
to an absolute performance of 591.2 TFLOPS.

Keywords: molecular dynamics simulations, highly scalable simulation,
vectorization, Intel AVX, SuperMUC.

1 Introduction and Related Work

MD simulation has become a recognized tool in engineering and natural sciences,
complementing theory and experiment. Despite its development for over half a
century, scientists still quest for ever larger and longer simulation runs to cover
processes on greater length and time scales. Due to the massive parallelism MD
typically exhibits, it is a preeminent task for high-performance computing.

An application requiring large-scale simulations is the investigation of nucle-
ation processes, where the spontaneous emergence of a new phase is studied [8].
To enable such simulations, we optimized our program derived from the code ls1
mardyn. A description of ls1 mardyn focusing on use cases, software structure
and load balancing considerations can be found in [1]. Based on the further devel-
opment of the memory optimization described in [3], an extremely low memory

J.M. Kunkel, T. Ludwig, and H.W. Meuer (Eds.): ISC 2013, LNCS 7905, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 W. Eckhardt et al.

requirement of only 32 Bytes per molecule has been achieved, which allows us
to carry out the to our knowledge largest MD simulation to date on SuperMUC
at Leibniz Supercomputing Centre. In order to run these large-scale simulations
at satisfactory performance, we tuned the implementation of the molecular in-
teractions outlined in [2] to the Intel Sandy Bridge processor and added a newly
developed shared-memory parallelization to make use of Intel Hyperthreading.
Thereby, this contribution continues a series of publications on extreme-scale
MD. In 2000, Roth [18] performed a simulation of 5 · 109 molecules, the largest
simulation ever at that time. Kadau and Germann [4, 10] followed up, holding
the current world record with 1012 particles. These simulations demonstrated the
state of the art on the one hand, and showed the scalability and performance of
the respective codes. More recent examples include the simulation of blood flow
[15] as well as the force calculation of 3 · 1012 particles by Kabadshow in 2011
[9], however without calculating particle trajectories.

The remainder of the paper is organized as follows: this Section describes the
computational model of our simulation code. Section 2 describes the architecture
of SuperMUC, Section 3 details the implementation with respect to vectorization
and memory-efficiency, and Section 4 presents the results.

The fluid under consideration is modeled as a system of N discrete particles.
Only particles i and j separated by a distance rij that is smaller than a cut-
off radius rc interact pairwise through the truncated and shifted Lennard-Jones
potential [19], which is determined by the usual Lennard-Jones-12-6 potential
(LJ-12-6) ULJ (rij) with the potential parameters ε and σ:

ULJ (rij) = 4ε ·
((

σ

rij

)12

−
(

σ

rij

)6
)
.

The interactions with all neighbors results in a force Fi =
∑

j∈particles Fij(rij)
on each of the particles, which is evaluated only once per particle pair, due to
Newton’s law Fij = −Fji.

In MD, the most time-consuming step is the force

Fig. 1. Schematic of the
linked-cell algorithm (2D)

calculation. To efficiently search for neighboring par-
ticles, the linked-cell algorithm is employed in a sim-
ilar way as in [10]. The computational domain is
subdivided into cubic cells with an edge length rc.
Consequently, for a given particle, the distances to
all other particles contained in the same cell as well
as in the (in 3D) 26 adjacent cells have to be com-
puted. This results in a linear complexity of the
force calculation. The particles’ data are stored in
dynamic arrays, i.e. contiguous memory blocks, per
cell, to avoid additional memory for pointers. Thus,
the organization of the linked-cells data structure causes only small overhead.

In accordance with preceding large-scale simulations [4], single-precision vari-
ables are used for the calculation. For a particle we store only its position (3 · 4
Bytes), velocity (3 · 4 Bytes) and an identifier (8 Bytes), i.e. 32 Bytes in total.

591 TFLOPS Multi-trillion Particles Simulation on SuperMUC 3

The force vector does not need to be stored permanently, because the time in-
tegration of the equations of motion is carried out on the fly, as detailed in
Section 3.

To evaluate our implementation, single-center Lennard-Jones particles were
distributed on a regular grid according to a body-centered cubic lattice, with a
liquid-like number density of ρσ3 = 0.78, and the cut-off radius was specified to
be rc = 3.5σ. The time step length was set to 1 fs.

For the MPI parallelization, we employ a spatial domain decomposition scheme.
For n processes, the domain is divided in n equally-sized sub-domains, which are
assigned to one process each. Each sub-domain is surrounded by a layer of ghost
cells residing on neighboring processes, so the particles at the process boundaries
have to be exchanged at the beginning of each time step.

2 SuperMUC – The World’s Largest x86 Machine

2.1 System Topology

We optimized our MD code on the micro-architecture level for a specific pro-
cessor: the Intel Sandy Bridge EP driving SuperMUC operated at the Leibniz
Supercomputing Centre in Munich. This system features 147456 cores and is at
present the biggest x86 system worldwide with a theoretical double precision
peak performance of more than 3 PFLOPS, placed #6 on the current Top500
list. The system was assembled by IBM and features a highly efficient hot-water
cooling solution. In contrast to supercomputers offered by Cray, SGI or even
IBM’s own BlueGene, the machine is based on a high-performance commodity
network: a FDR-10 infiniband pruned tree topology by Mellanox. Each of the
18 leafs, or islands, consists of 512 nodes with 16 cores at 2.7 GHz clock speed
(turbo mode is disabled) sharing 32GB of main memory. Within one island, all
nodes can communicate at full FDR-10 data-rate. In case of inter-island commu-
nication, four nodes share one uplink to the spine switch. Since the machine is
operated diskless, a significant fraction of the nodes’ memory has to be reserved
for the operation environment.

2.2 Intel Sandy Bridge Architecture

After a bird’s eye view on the entire system, we now focus on its heart, the Intel
Sandy Bridge EP processor that was introduced in January 2012, featuring a
new vector instruction set called AVX. In order to execute code with high per-
formance and to increase the core’s instructions per clock, major changes to the
previous core micro-architecture code-named Nehalem have been applied. These
changes are highlighted by italic characters in Fig. 2. Since the vector-instruction
width has been doubled with AVX (AVX is available with two vector widths:
AVX128 and AVX256), also the load port’s (port 2) width needs to be doubled.
However, doubling a load port’s width would impose tremendous changes to the
entire chip architecture. In order to avoid this, Intel changed two ports by ad-
ditionally implementing in each port the other port’s functionality as shown for

4 W. Eckhardt et al.

Fig. 2. Intel Sandy Bridge, changes w.r.t. Intel Nehalem are highlighted with italic
characters: trace-cache for decoded instructions, AVX support and physical register
file

ports 2 and 3. Through this trick, the load bandwidth has been doubled from 16
Bytes to 32 Bytes per cycle at the price of reduced instruction level parallelism.
Changes to the ALUs are straightforward: ports 0, 1 and 5 were simply doubled,
and they provide classic SSE functionality for AVX instructions and extensions
for blend and mask operations. However, this bandwidth improvement still does
not allow for an efficient exploitation of AVX256 instructions as this would re-
quire a 64 Bytes per cycle load and 32 Bytes per cycle store bandwidth. This
increase will be implemented with the up-coming Haswell micro-architecture [14].
Due to 32 Bytes load bandwidth and the non-destructive AVX128 instruction
set, AVX128 codes can often yield the same performance as AVX256 on Sandy
Bridge but much better than SSE4.2 on an equally clocked Nehalem chip. This
can also be attributed to the fact that 16 Bytes load instructions have a three
times higher throughput (0.33 cycles) than 32 Bytes load instructions (here ports
2 and 3 have to be paired and cannot be used independently). According to ex-
periments we did with different applications and kernels using AVX256 on Sandy
Bridge, the full performance enhancement of 2× speed-up can be just exploited
for kernels which can be perfectly register-blocked, e.g. DGEMM [7]. If in con-
trast only a standard 1D-blocking is possible, roughly a 1.5-1.6 × speed-up can
be achieved in comparison to AVX128 [6].

Up to Nehalem, each unit had dedicated memory for storing register contents
for executing operations on them. A so-called out-of-order unit took care of the
correctness of the execution pipeline. With AVX, a register allocation in each
compute unit of the core would be too expensive in terms of transistors required,
therefore a so-called register file was implemented: Register contents are stored
in a central directory. Shadow registers and pointers allow for an efficient out-
of-order execution. Furthermore, a general performance enhancement was added

591 TFLOPS Multi-trillion Particles Simulation on SuperMUC 5

to the Sandy Bridge architecture: a cache for decoded instructions. This trace-
cache like cache boosts the performance of kernels with small loop bodies, such
as the force calculation in MD. Furthermore, the Sandy Bridge EP cores feature
Intel’s SMT implementation called Hyperthreading Technology which helps to
increase the core’s utilization in workload scenarios where the instruction mix is
not optimal or the application is suffering from high memory latencies.

3 Implementation

3.1 Vectorization of the Compute Kernel

Since our simulation code is written in C++ and therefore applies standard
object-oriented design principles with cells and particles being single entities, we
follow an approach of memory organization and vectorization, first sketched in
[2]. That work describes, by using a simple proxy application and not the entire
ls1 mardyn code base, how the LJ-12-6 force calculation inside a linked cell
algorithm can be vectorized on x86 processors. That prototype implementation
does not feature important statistical measurements such as virial pressure and
potential energy which we added in this work.

The object-oriented memory layout is cache-efficient by design because parti-
cles belonging to a cell are stored closely together. However, implementing par-
ticles in a cell as a so-called array of structures (AoS) forbids easy vectorization,
at least without gather and scatter operations (see [5]) which, unfortunately, are
not available on Intel Sandy Bridge. Only in simple cases (e.g., updates of one
member, etc.) this drawback does not matter, because prefetch logic inside the
hardware loads only cache-lines containing data which have to be modified.

(a) AoS to SoA conversion: In or-
der to allow for efficient vectoriza-
tion, corresponding elements have to
be stored for data streaming access.

(b) Kernel vectorization: The vectorization of
the LJ-12-6 force calucation is optimized by
duplicating one particle and streaming four
other particles.

Fig. 3. Optimizing LJ-12-6 force calculation by SoA storage scheme and vectorization

Implementing the LJ-12-6 force calculation on AoS-structures poses major
challenges: The upper part of Fig. 3a shows elements scattered across several
cache-lines. Taking into account that only a small portion of the members is
needed for the force calculation, a temporary structure of arrays (SoA) can be

6 W. Eckhardt et al.

constructed in order to address cache-line pollution and vectorization opportu-
nities, illustrated in the lower part of Fig. 3a. Figure 3b sketches the applied
vectorization of the LJ-12-6 calculations. In contrast to other methods which
vectorize across the spatial coordinates [11–13], the present approach can ex-
ploit vector-units of arbitrary length.

In this work, single-precision AVX128 instructions were employed. The calcu-
lation is performed on particle pairs, therefore we broadcast-load the required
data of one particle in the first register (a), the second register is filled by data
from four other particles (1, 2, 3 and 4). Dealing with four particle pairs at once,
we can theoretically reduce the number of operations by a factor of four. Since
the force calculation may be required for all, some or none of the pairs in the
vector register, we need to apply some pre- and post-processing performed by
regular logical operations: It has to be determined, if for any particle pair the
distance is smaller than rc (pre-processing), because only then the force calcula-
tion has to be executed. If the force calculation has been executed, the calculated
results need to be zeroed by a mask for all particle pairs whose distance is larger
than rc (post-processing). In order to ensure vectorization of the kernel we em-
ployed intrinsics. Due to the cut-off radius if-condition inside the inner-most
loop, current compilers (gcc and icc) deny to vectorize the loop structure iterat-
ing over particles in cell-pairs. For the chosen simulation scenario (cut-off radius
rc = 3.5σ) a speed-up of 3 × is possible on a single core by using the proposed
SoA-structure and vectorization.

With increasing vector length, this masking technique becomes the major
bottleneck. Here, it can easily happen that more elements are being masked
than elements which have to be computed. Therefore, moving to a wider vector-
instruction set may result in more instructions being executed. However, if the
vector-instruction set features gather and scatter instructions, this issue can be
overcome because only the particle pairs taking part in the interaction are pro-
cessed, which has been successfully demonstrated by Rapaport with the layered-
linked-cell algorithm [16, 17]. The first x86 processor which offers full gather/s-
catter support is the so-called Xeon Phi coprocessor. Enabling ls1 mardyn for
Xeon Phi is ongoing research.

A different issue inhibiting the most efficient usage of the Sandy Bridge core is
the lack of instruction level parallelism in the compute kernel. The evaluation of
distance, potential energy and force on the particles requires significantly more
multiplications than additions, thus the ADD unit cannot be fully utilized. Even
worse, the calculation of the power-12-term of the LJ-12-6 requires a sequence
of dependent multiplications. Therefore, the superscalarity of a Sandy Bridge
core can not be exploited optimally, a fact we address by using Hypterthreading
Technology as described below.

We restricted ourselves to AVX128 instructions for several reasons. In Sec-
tion 2.2 we described that Intel Sandy Bridge is not able to handle AVX256
instructions at full speed. This fact would also forbid to use Hyperthreading effi-
ciently as currently ports 2 and 3 inside the core can be used by different threads.
Switching to AVX256, these ports are operated in paired mode, available to just

591 TFLOPS Multi-trillion Particles Simulation on SuperMUC 7

one of both threads. Furthermore, we showed in the outlook of [2] that AVX256
instruction are only beneficial when increasing the cut-off radius. Last but not
least we want to ensure that ls1 mardyn runs best on various x86 platforms.
Besides Intel Sandy Bridge, AMD Interlagos plays an important role since this
chip is used as processor in most of Cray’s supercomputers. AMD Interlagos fea-
tures two 128bit FPUs shared between two integer units. Therefore an AVX128
code is essential for best performance on Interlagos. With the current code base
we only expect slight changes when moving to an Interlagos based machine.

3.2 Memory and Utilization Optimizations

In order to achieve the low memory requirement of only 32 Byte per molecule, we
refined the linked-cells algorithm with the sliding window that was introduced
in [3]. It is based on the observation that the access pattern of the cells can be
described by a sliding window, which moves through the domain. After a cell
has been searched for interacting particles for the first time in a time step, its
data will be required for several successive force calculations with particles in
neighboring cells. If the force calculation proceeds according to the cells’ index
as depicted in Fig. 4a, these data accesses happen within a short time period,
until the interactions with all neighbors have been computed. While the cells in
the window are accessed several times, they naturally move in and out of the
window in FIFO order.

(a) Sliding window (cells in bold black
frame) in 2D. Particles in cells in the
window will be accessed several times,
cells 2 through 23 are covered by the win-
dow in FIFO order. For the force calcula-
tion for the molecules in cell 13, cell 23 is
searched for interacting particles for the
first time in this iteration. The particles
in cell 2 are checked for the last time for
interactions.

(b) Extension of the sliding window for
multi-threading. By increasing the win-
dow by 5 cells, two threads can indepen-
dently work on three cells each: thread 1
works on cells 13, 14, 15; thread 2 works
on cells 16, 17, 18. To avoid that threads
work on same cells (e. g., thread 1 on the
cell pair 15–25, thread 2 on 16–25), a
barrier is required after each thread fin-
ished its first cell.

Fig. 4. Basic idea of the sliding window algorithm and extension for multi-threading

Particle data outside the the sliding window are stored in form of C++ objects
in AoS-manner, only with position, velocity and an identifier. Per cell, particle
objects are stored in dynamic arrays. When the sliding window is shifted further
and covers a new cell, the positions and velocities of the particles in that cell are

8 W. Eckhardt et al.

converted to SoA-representation. Additionally, arrays for the forces have to be
allocated. The force calculation is now performed on the particles as described
above. When a cell has been considered for the last time during an iteration, its
particles are converted back to AoS-layout. Therefore, the calculation of forces,
potential energy and virial pressure can be performed memory- and runtime-
efficiently on the SoA, while the remaining parts of the simulation code can be
kept unchanged according to their object-oriented layout. To avoid the overhead
of repeated memory (de-)allocations when particle data in a cell are converted,
we initially allocate dynamic arrays fitted to the maximum number of particles
per cell for each cell in the window, and reuse that memory. Since the sliding
window covers three layers of cells, these buffers consume a comparably small
amount of memory, while the vast majority of the particles is stored memory-
efficiently. At this point, it becomes apparent that the traversal order imposed by
the sliding window also supports cache reusage: when particle data are converted
to SoA-representation, that data are placed in the cache and will be reused
several times soon after.

In order to reduce the memory requirement to 32 Byte per particle and to
further improve the hardware utilization, this algorithm needs two further re-
visions: the time integration has to be performed on the fly, and opportunity
for multi-threading needs to be created. Since the forces are not stored with the
molecule objects, the time integration has to be performed during that conver-
sion, i. e., the particles’ new positions and velocities have to be calculated at that
moment. Nevertheless, the correct traversal of the particles is ensured, because
cells that have been converted are not required for the force calculation during
this time step any more and the update of the linked-cells data structure, i.e.
the assignment of particles to cells, takes place only between two time steps.

As stated above, the LJ-12-6 kernel is not well instruction-balanced, impeding
the use of the superscalarity of a Sandy Bridge core. In order to make use
of Hyperthreading Technology, we implemented a lightweight shared-memory
parallelization. By extending the size of the sliding window as shown in Fig.
4b, two threads can perform calculations concurrently on three independent
cells. Exploiting Newtons third law Fij = −Fji for the force calculation and
considering cell pairs only once, it must be avoided that threads work on directly
neighboring cells simultaneously. Therefore, a barrier, causing comparably little
overhead on a Hyperthreading core, is required after each thread has processed
the first of its three cells. This allows the execution of one MPI rank per core with
two (OpenMP-)threads to create sufficient instruction level parallelism, leading
to a 12% performance improvement.

4 Strong and Weak Scaling on SuperMUC

In order to evaluate the performance of the MD simulation code ls1 mardyn, we
executed different tests on SuperMUC. With respect to strong scaling behavior,
we ran a scenario with N = 4.8 · 109 particles, which perfectly fits onto 8 nodes;
18 GB per node are needed for particle data. Fig. 5 shows that a very good

591 TFLOPS Multi-trillion Particles Simulation on SuperMUC 9

Fig. 5. Weak and strong scaling for 2048 to 146016 cores with respect to speed-up and
GFLOPS on SuperMUC. Ideal scaling was achieved in case of weak scaling whereas as
a parallel efficiency of 42% was obtained in the strong scaling tests. We cut off the plot
at 2048 cores, here we obtained a parallel efficiency of 91.1% in case of strong scaling
(compared to 128 cores) and 98.6% in case of weak scaling (compared to one core).

scaling was achieved for up to 146016 cores using 292032 threads at a parallel
efficiency of 42 % comparing 128 to 146016 cores.

In this case, less than 20 MB (5.2 ·

Fig. 6. GFLOPS dependeding on particle
count and cut-off on 128 cores

105 particles) of main memory per node,
which fits basically into the proces-
sors’ caches, are used. This excellent
scaling behavior can be explained by
analyzing Fig. 6. Here we measured
achievable GFLOPS depending on the
number of particles simulated on 8 nodes.
Already for N = 3 · 108 particles (ap-
prox. 8% of the available memory) we
are able to hit the performance of roughly
550 GFLOPS which we also obtained
for N = 4.8 · 109.

It should be pointed out that the
performance only decreases slightly for
systems containing fewer particles (reducing the particle system size by a factor
of 100): for N = 107 (which corresponds to the strong scaling setting in case
of 146016 cores w.r.t. particles per node) we see a drop by 27% which only in-
creases to the mentioned 58% when moving from 128 to 146016 cores. We have

10 W. Eckhardt et al.

to note that the overall simulation time in this case was 1.5 s for 10 time steps,
thereof 0.43 s were communication time. Since 0.43 s are roughly 29% of 1.5 s, it
becomes clear that the biggest fractions of the 58% decrease are stemming from
low particle counts per process and relatively high communication costs.

Moreover, we performed a weak scaling analysis which is, to our knowledge,
the largest MD simulation to date. Due to MPI buffers on all nodes, we were not
able to keep the high number of particles per node (6.0 · 108) and were forced to
reduce it to 4.52·108. Particularly, buffers for eager communication turned out to
be the most limiting factor. Although we reduced them to a bare minimum (64
MB buffer space for each process), roughly 1 GB per node had to be reserved
as we use one MPI rank per core. By keeping Fig. 6 in mind, we know that
this slight reduction has no negative impact on the overall performance of our
simulation. In case of 146016 cores we were able to run a simulation of 4.125·1012
particles with one time step taking roughly 40 s. For this scenario, a speed-up
of 133183 × (compared to a single core) with an absolute performance of 591.2
TFLOPS was achieved, which corresponds to 9.4% peak performance efficiency.

These performance numbers can be easily improved by increasing simulation
parameters like the cut-off radius rc which results in a higher vector-register
utilization. However, preceding publications [18, 10, 4] used cut-off radii within
the interval 2.5σ < rc < 5.0σ. Therefore we restricted ourselves to rc = 3.5σ in
order to ensure fairness, please consult Fig. 6 for a performance comparison of
ls1 mardyn for different cutoff radii in this interval.

5 Conclusions

In this paper we showed that MD simulations can be scaled up to more than
140000 cores and a multi-trillion (4.125 · 1012) number of particles on modern
supercomputers. Due to the sliding window technique, only 32 Bytes are required
per particle, and with the help of a shared memory parallelization and a carefully
optimized force calculation kernel we achieved 591.2 TFLOPS, which is 9.4% of
the system’s theoretical peak performance.

We achieved not only perfect weak scaling, but also excellent strong scaling re-
sults together with a good performance of the kernel also for comparably small
particle numbers per core. These properties are essential for the investigation
of large inhomogeneous molecular systems. Such scenarios are characterized by
highly heterogeneous particle distributions, which requires a powerful load bal-
ancing method implementation. Therefore, we are working on the incorporation
of the load balancing from the original ls1 mardyn code.

As indicated during the force kernel’s discussion, the current kernel implemen-
tation suffers from not fully exploited vector-registers. Increasing the net-usage
of vector-registers is subject of ongoing research. The most promising instruction
set is currently provided by the Intel Xeon Phi coprocessor which features a full
blown gather/scatter implementation.

Beside tuning ls1 mardyn for better performance on emerging architectures,
energy efficiency with focus on the energy to solution ratio is an additional

591 TFLOPS Multi-trillion Particles Simulation on SuperMUC 11

research direction, especially when targeting MD scenarios with millions of time
steps. Since SuperMUC is capable of dynamic frequency scaling, it provides an
optimal testbed for such activities.

References

1. Buchholz, M., Bungartz, H.-J., Vrabec, J.: Software design for a highly paral-
lel molecular dynamics simulation framework in chemical engineering. Journal of
Computational Science 2(2), 124–129 (2011)

2. Eckhardt, W., Heinecke, A.: An efficient vectorization of linked-cell particle sim-
ulations. In: ACM International Conference on Computing Frontiers, Cagliari,
pp. 241–243 (May 2012)

3. Eckhardt, W., Neckel, T.: Memory-efficient implementation of a rigid-body molec-
ular dynamics simulation. In: Proceedings of the 11th International Symposium on
Parallel and Distributed Computing - ISPDC 2012, Munich, pp. 103–110. IEEE
(2012)

4. Germann, T.C., Kadau, K.: Trillion-atom molecular dynamics becomes a reality.
International Journal of Modern Physics C 19(09), 1315–1319 (2008)

5. Gou, C., Kuzmanov, G., Gaydadjiev, G.N.: SAMS multi-layout memory: providing
multiple views of data to boost SIMD performance. In: Proceedings of the 24th
ACM International Conference on Supercomputing, ICS 2010, pp. 179–188. ACM,
New York (2010)

6. Heinecke, A., Pflüger, D.: Emerging architectures enable to boost massively par-
allel data mining using adaptive sparse grids. International Journal of Parallel
Programming 41(3), 357–399 (2013)

7. Heinecke, A., Trinitis, C.: Cache-oblivious matrix algorithms in the age of multi-
and many-cores. Concurrency and Computation: Practice and Experience (2013);
accepted for publication

8. Horsch, M., Vrabec, J., Bernreuther, M., Grottel, S., Reina, G., Wix, A.,
Schaber, K., Hasse, H.: Homogeneous nucleation in supersaturated vapors of
methane, ethane, and carbon dioxide predicted by brute force molecular dynamics.
The Journal of Chemical Physics 128(16), 164510 (2008)

9. Kabadshow, I., Dachsel, H., Hammond, J.: Poster: Passing the three trillion particle
limit with an error-controlled fast multipole method. In: Proceedings of the 2011
Companion on High Performance Computing Networking, Storage and Analysis
Companion, SC 2011 Companion, pp. 73–74. ACM, New York (2011)

10. Kadau, K., Germann, T.C., Lomdahl, P.S.: Molecular dynamics comes of age: 320
billion atom simulation on bluegene/l. International Journal of Modern Physics
C 17(12), 1755–1761 (2006)

11. Lindahl, E., Hess, B., van der Spoel, D.: Gromacs 3.0: a package for molecular sim-
ulation and trajectory analysis. Journal of Molecular Modeling 7, 306–317 (2001)

12. Olivier, S., Prins, J., Derby, J., Vu, K.: Porting the gromacs molecular dynamics
code to the cell processor. In: IEEE International Parallel and Distributed Pro-
cessing Symposium, IPDPS 2007, pp. 1–8 (March 2007)

13. Peng, L., Kunaseth, M., Dursun, H., Nomura, K.-i., Wang, W., Kalia, R., Nakano,
A., Vashishta, P.: Exploiting hierarchical parallelisms for molecular dynamics sim-
ulation on multicore clusters. The Journal of Supercomputing 57, 20–33 (2011)

14. Piazza, T., Jiang, H., Hammarlund, P., Singhal, R.: Technology Insight: Intel(R)
Next Generation Microarchitecture Code Name Haswell (September 2012)

12 W. Eckhardt et al.

15. Rahimian, A., Lashuk, I., Veerapaneni, S., Chandramowlishwaran, A., Malhotra,
D., Moon, L., Sampath, R., Shringarpure, A., Vetter, J., Vuduc, R., Zorin, D.,
Biros, G.: Petascale direct numerical simulation of blood flow on 200k cores and
heterogeneous architectures. In: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2010, pp. 1–11. IEEE Computer Society, Washington, DC (2010)

16. Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University
Press (2004)

17. Rapaport, D.C.: Multibillion-atom molecular dynamics simulation: Design consid-
erations for vector-parallel processing. Computer Physics Communications 174(7),
521–529 (2006)

18. Roth, J., Gähler, F., Trebin, H.-R.: A molecular dynamics run with 5 180 116 000
particles. International Journal of Modern Physics C 11(02), 317–322 (2000)

19. Vrabec, J., Kedia, G.K., Fuchs, G., Hasse, H.: Comprehensive study of the vapour-
liquid coexistence of the truncated and shifted lennard-jones fluid including planar
and spherical interface properties. Molecular Physics 104(9), 1509–1527 (2006)

	591 TFLOPS Multi-trillion Particles Simulation on SuperMUC
	1 Introduction and Related Work
	2 SuperMUC – The World's Largest x86 Machine
	2.1 System Topology
	2.2 Intel Sandy Bridge Architecture

	3 Implementation
	3.1 Vectorization of the Compute Kernel
	3.2 Memory and Utilization Optimizations

	4 Strong and Weak Scaling on SuperMUC
	5 Conclusions
	References

