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This work presents the investigation of fluid transport through nanoporous materials through a novel, highly1

efficient Non-Equilibrium Molecular Dynamics (NEMD) methodology. The method allows for a distinction be-2

tween diffusive and viscous contributions of the mass transport. Both pore and fluid particle interactions are3

represented by coarse-grained molecular models, in order to present a proof-of-concept and to retain compu-4

tational efficiency in the simulations. A steady flow was induced by applying an external field to only a small5

region of the fluid. The external field constitutes a potential difference, mimicking a chemical potential gradi-6

ent, which in turn triggers a diffusive flux through the membrane pores. The heat dissipated by the viscous7

flow is released by a Gaussian thermostat applied to the wall particles. The method is effective in studying8

planar Poiseuille flow in a slit pore as well as more natural, complex wall geometries. The dependence of the9

diffusive flux on the external field sheds light on the transport diffusivities and allows a direct calculation of10

effective diffusivities. The application of the method is demonstrated in two different test cases, namely the11

mass transport through a slit pore and the calculation of the effective self-diffusion through this system.12

Keywords: non-equilibrium molecular dynamics; diffusion; Lennard-Jones potential; slit pore;13

1 Introduction

Numerous types of nanoporous media found their way into membrane modules and chemical14

reactors for industrial use, among them zeolite structures and metal-organic frameworks. There is15

an abundance of applications for effective models in chemical and process engineering, as much as16

there is an anticipation of significant advances in progressive technologies, such as nanofiltration,17

gas separation, water purification, desalination, energy generation, fuel cell technology and many18

more.19

Due to the complexity, the potentially high number of species involved, and discontinuities20

on the nanoscale, a rigorous thermodynamic treatment of microscopic mass transport continues21

to be a challenge in chemical engineering. For instance, the Hagen-Poiseuille equation allows22

an estimation of the required pressure to invoke a specific flux through the cylindrical pore [1].23

However, mass transport through nanoporous media is governed by characteristics on the molec-24

ular level. It has been found that a classical treatment of fluid dynamics, namely the continuum25

Navier-Stokes equations, break down on the nanoscale [2]. Models of increasing complexity are26
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being devised in an attempt to account for these phenomena [3]. The models fail to incorporate a27

full molecular character and a complete molecular treatment is still in development. As the access28

to powerful computational resources spreads, molecular simulation plays an increasingly impor-29

tant role in this development. Computer experiments help explore the limits of classical models30

and discoveries can sometimes be predicted by simulation and thereupon proven experimentally31

[4–7].32

The aim of this work is to explore a novel approach to simulate mass transport in porous33

materials. After a brief evaluation of existing simulation techniques in the following section,34

enhancements of a suitable approach are proposed in section 3. The benefit of the approach is its35

simplicity, efficiency and its applicability to a wide range of conditions and systems. The method36

can be used to analyze the mobility of confined fluids, yielding a direct route to diffusivities.37

The methodology is applied to a model system and the results are presented in section 4.38

2 Diffusion: Theory and Simulation39

Mass transfer can principally attributed to two different mechanism: macroscopic transport via40

convection and microscopic transport from diffusion. In pores on the scale of a few nanometers in41

diameter, diffusion is the primary mechanism behind mass transport. Convective contributions42

can be considered small. There are several different theories to describe mass transport through43

diffusion. At the outset, the treatment with a clearly defined background in statistical mechanics44

will be introduced. Subsequently, a phenomenological approach, which is the basis for several45

simulation approaches, is presented. These simulation approaches are described alongside.46

2.1 Self-diffusion and collective diffusion47

In a bulk system of a pure substance at equilibrium, the self-diffusion is defined as a measure of48

the mobility of a single tagged particle in a bulk of otherwise identical particles. The correspond-49

ing transport property is the self-diffusion coefficient Ds [5, 8, 9]. Since random thermal motion50

of the particles is the source for self-diffusion, it highly depends on temperature and density51

of the system. The calculation of Ds within a molecular ensemble can be performed using the52

Einstein’s relation or equivalently by using the Green-Kubo relations in terms of the velocity53

auto-correlation function (VACF):54

Ds =
1

2d
lim
t→∞

d

dt

〈
1

Nf

Nf∑
i=1

|ri(t)− ri(0)|2
〉

=
1

d

∞∫
0

〈
1

Nf

Nf∑
i=1

vi(t) · vi(0)

〉
dt , (1)

where ri(t) and vi(t) are the position and velocity of particle i at time t, respectively, Nf is55

the number of particles, and d is the dimensionality of the system. In Eq. 1, the terms in the56

angular brackets denote an ensemble average, either of the particle’s mean-square displacement57

(MSD) for the first expression on the right-hand-side, or of the VACF for the second expression.58

In a dense fluid, the MSD increases linearly with time due to frequent collisions of the particles59

[10]. After accounting for the dimensionality of the system, this linear relationship is the self-60

diffusivity, describing the mobility of the particles. The VACF, which has a strong foundation61

on statistical mechanics [11], originates from a generalized expression for transport properties.62

The diffusion of a single tagged particle in a mixture of two different species is called tracer63

diffusion. The distinction is due to the fact that a tagged particle in a mixture will not only inter-64

act with particles of the same species but also with particles of a different species, implying that65

composition has an influence on the outcome. Apart from temperature and density, confinement66

can also have an influence on a substance’s self-diffusivity by restricting its mobility.67
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In a mixture, the motion of one species is also correlated to the motion of the other species.68

Thus, the mobility of a particle becomes a collective property and the computation requires to69

take the velocity correlation function (VCF) of the entire system into account. Accordingly, the70

integration over this VCF yields the collective diffusivity Dc [12]:71

Dc =
1

d

∞∫
0

〈
1

Nf

Nf∑
j=1

vj(t) ·
Nf∑
i=1

vi(0)

〉
dt . (2)

It shall be noted that in eq. 2, there is an additional summation compared to Eq. 2, but the72

velocity auto-correlation function is still part of this summation. Therefore, the self-diffusivity73

and a cross contribution Dξ constitute the collective diffusivity and Dc = Dc + Dξ. For low74

density fluids, Dξ is negligible and the collective diffusivity approaches the self-diffusivity [13].75

2.1.1 Equilibrium Molecular Dynamics Simulations76

Equilibrium Molecular Dynamics (EMD) simulations have been performed to analyze self-77

diffusivities of liquids since early 1980s [14]. It is the most traditional approach as the trajectories78

of the particles can be directly taken from the simulations and used in Eq. 1 and 2. Equilibrium79

MD methods are a common route to the self-diffusivity of a substance because simulation results80

can be compared to experimental measurements from pulsed-field gradient nuclear magnetic res-81

onance and neutron scattering measurements [5]. Moreover, the calculation of self-diffusivities82

by EMD is convenient because the auto-correlation functions, or the mean-square displacement83

for that matter, converges very quickly, due to the possibility of averaging over all particles.84

In terms of the collective diffusivity, the correlation between a particle’s velocity with all other85

particle velocities has to be determined and the correlations function converges very slowly [9].86

Several extremely long simulations need to be performed to obtain viable results. To simulate col-87

lective diffusivities from EMD is very computationally expensive and therefore non-equilibrium88

approaches as a direct route to simulate transport phenomena have been pursued. A synopsis of89

these are given in section 2.2.1.90

2.2 Transport diffusion91

Transport diffusion occurs when a system is not at equilibrium and gradients in concentration,92

pressure or temperature cause a net mass flux. Similar to the self-diffusion, the magnitude of the93

diffusive flux, JD, is governed by the mobility of the substance. In the presence of concentration94

gradients, i.e. under non-equilibrium conditions, the mass transport in the continuous system is95

commonly described by Fick’s first law [15]:96

JD = −Dt(ρ)∇ρ , (3)

where ρ denotes the fluid density and Dt is the coefficient of transport diffusion (also called97

Fickian diffusivity). In general, Ds and Dt are inherently different. For an infinitely diluted98

mixture of low density gases, the value for Dt, describing the transport diffusion of the solute,99

approaches the tracer diffusivity Ds [16]. Due to its simple formulation, the Fickian approach is100

wide-spread in engineering. However, the formulation breaks down for certain non-ideal cases.101

For instance, at the interface of two separate phases in equilibrium, a considerable gradient in102

concentration will not induce a net flux. In response, the perception of a gradient in chemical103

potential being the fundamental driving force of mass transport was conceived.104

JD = −L(ρ)∇µ (4)
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Here, the diffusive flux is related to a chemical potential gradient via a phenomenological105

transport coefficient L, called Onsager coefficient [17]. It is worth noting that mass transport106

in porous media deals with the porous material being stationary and a net flux occurs only for107

the confined fluid. When dealing with a pure confined fluid, the transport equations simplify108

significantly. Moreover, with a single component flowing through the porous structure, a density109

gradient must coincide with a pressure gradient. The aforementioned distinction between convec-110

tive and diffusive contributions is necessary in the description of mass transport since convective111

flux, JC, stems from macroscopic motion while the diffusive flux happens on a microscopic scale112

and occurs due to the random thermal motion of the molecules. Under the assumption that113

a convective mass flux is only provoked by a gradient in pressure [18], one-dimensional mass114

transport can be described by:115

J total = JD + JC = −L
(
∂µ

∂x

)
− κc

(
∂p

∂x

)
, (5)

where µ and p denote the chemical potential and pressure, respectively. κc denotes the linear116

phenomenological transport coefficients for convective mass transport. For a cylindrical pore on117

the macroscale, κc is a function of the pore radius R and the fluid viscosity η and density ρ, that118

is κc = ρR2/8η [12]. For a pore of only a few molecular diameter in width, this expression is not119

applicable, however. In a single-component system at constant temperature (m = 1, dT = 0), the120

Gibbs-Duhem equation yields a direct relationship between the system’s natural thermodynamic121

variables, namely the chemical potential and the pressure, as it reduces to dµ = dp/ρ. This122

expression can be used to simplify Eq. 5, and one obtains:123

J total = − [L+ κcρ]

(
∂µ

∂x

)
. (6)

Given this expression, it is straightforward to redraft the Fickian approach into an equivalent124

Onsager expression by relating a gradient in chemical potential and density gradient via the125

thermodynamic correction factor Γ, also called Darken factor [9]:126

Γ ≡ 1

kBT

(
∂µ

∂ ln ρ

)
T

. (7)

When the chemical potential of a substance expressed in terms of the definition of fugacity f ,127

µ/µ0 = kBT ln f , the thermodynamic factor can be expressed as Γ = (ln f/ ln ρ)
T
. For a low128

density gas, the Darken factor approaches unity and therefore the transport diffusion coefficient129

approaches the self-diffusivity. This becomes evident when considering an ideal gas, for which130

dµ = kBT ln ρ. It is convenient to express the flux equation in terms of a gradient in density and131

therefore Eq. 7 can be used in Eq. 6, which yields:132

J total = − (D0 + kBTκc) Γ︸ ︷︷ ︸
effective diffusivity Deff

(
∂ρ

∂x

)
. (8)

whileD0 is being defined asD0 ≡ kBTL/ρ. Equation 8 is of central importance for the application133

of the simulation approach in this study. In the limit of a vanishing difference in pressure, one134

can argue that the convective component of the mass transport, κc, is negligible. In this case,135

the effective diffusivity approaches the transport diffusivity and Deff = D0Γ = Dt. The aim of136

this study is to explore the possibilities to use molecular simulation for these limiting cases.137
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Similarly considering the chemical potential gradient as the driving force behind diffusion,138

the Maxwell-Stefan 1 description of diffusive mass transport for two-component bulk diffusion139

(under the assumption that the porous medium acts as a bulk component) can be expressed as:140

−∇µ1 =
kBT

 DMS
x2(u1 − u2) , (9)

where  DMS denotes the Maxwell-Stefan diffusivity and ui(i = 1, 2) are the average velocities of141

the fluid (i = 1) and the porous material (i = 2). The resistence to mix is influenced by the142

composition of the ”mixture” and a frictional drag, expressed by the drag coefficient kBT/ DMS.143

Since the definition of x2 is not meaningful for diffusion of a single species through narrow pores,144

the influence of composition, and also geometrical factors such as tortuousity and porosity shall145

be included in the drag coefficient, i.e.  Deff. The expression can therefore be simplified, noting146

that the porous material is stationary, u2 = 0:147

−∇µ1 =
kBT

 Deff
u1 . (10)

Therefore, extending to an expression of mass transport and dropping the subscripts for com-148

ponents, the expression is similar to Eq. 3 and Eq. 4:149

Jtotal = ρu = − ρ

kBT
 Deff∇µ . (11)

Furthermore, this appraoch allows a connection between the various transport coefficients:150

Dt = L
kBT

ρ
Γ = D0Γ =  DeffΓ (12)

2.2.1 Non-equilibrium simulation techniques151

Since diffusion is a process that is invoked by a departure from equilibrium, a multitude152

of different approaches has been devised, of which the majority drive the system of interest153

away from equilibrium. These approaches frequently mimic a real experiment in order to link154

observation from simulation with phenomenological transport properties. Transient methods are155

a telling example for this notion. The Gradient Relaxation Molecular Dynamics (GRMD) method156

was introduced by Maginn et al. [9] to study mass transport in zeolites. The approach determines157

the diffusivity by monitoring the time-dependent recurrence of a non-equilibrium system to a158

state of equilibrium. More specifically, a step profile in the density of a fluid in zeolite cages was159

imposed and used as a starting point for a transient MD simulation. Diffusive mass transport160

causes the density profile to smoothly flatten out to a state of uniform density. The time evolution161

of the density profile is analysed and yields the diffusion coefficient. In another related approach,162

Salih [19] considered a simulation box of an equilibrated fluid in contact through a capillary with163

1

Note (will not be submitted): the ”Dusty Gas” approach deals with Maxwell-Stefan diffusion in pores and it yields (Kr-
ishna,1997):

x′1
RT

∇µ′1

∣∣∣∣
T,p

−
1

c′tRT

[(
c1v1 − ω′1

)
∇p′ − ω′1c2F2

]
=
x′2N1

c′t  D′12

Long story short, it’s a very complicated and elaborate approach with plenty of assumptions for the species, most notably
that the porous material is distributed equally in our system, which is obviously not the case for the slit pore.
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a vacuum space. The expansion in monitored and the time evolution in density is related to the164

analytical solution to obtain the diffusion coefficient. Surely, many similar computer experiments165

of this transient nature could be envisioned to calculate the diffusivity. The principal difficulty166

of this methodology, however, lies in determining whether the simulation occurs in the linear167

response regime as well as in limitations of the statistical reliability.168

Another subcategory of the non-equilibrium techniques are methods to simulate a non-169

equilibrium system in a steady state. Heffelfinger and Swol proposed the Dual Control Volume170

Grand Canonical Molecular Dynamics (DCV-GCMD) method [20] in an attempt to directly sim-171

ulate diffusive flux triggered by a gradient in chemical potential and in the absence of a pressure172

gradient. To this end, an elongated simulation box is divided into three relevant compartments.173

Reservoir compartments are located at the right and left end of the system and the flow region174

is located in the center, between the two reservoirs. Each reservoir is kept at a constant chemi-175

cal potential by inserting and deleting particles from the reservoir. In one implementation, the176

simulated fluid is composed of two species that only differ in colour. By keeping high and low177

chemical potential regions for the two species on opposite sites of the simulation box, the overall178

system is kept at constant density. In other instances [18], a single component fluid is simulated179

and imposing a difference in chemical potential leads to one reservoir being at a higher pres-180

sure than the other, which in turn makes a net flux occur in the flow region. The DCV-GCMD181

method has the advantage that it is evident whether a simulation happens in the linear response182

regime or not. While the steady state nature of the simulation allows for an improved accumula-183

tion of statistics, the combination of stochastic and deterministic elements poses a challenge for184

two reasons [21]. First, inserted particles must be assigned a velocity that matches the average185

streaming velocity, which in turn is not known a priori. Second, the insertion and deletion of186

particles alters the dynamics of the molecules and the number of insertion or deletion events has187

an influence on the mass transport.188

Last but not least, the External Field Non-Equilibrium MD (EF-NEMD) method has been189

one of the first methods introduced [14], although wide spread use of this method was hindered190

by limitations in computational power as the systems studied usually need to be relatively large191

to yield reliable results. The approach itself is very straight forward. An equilibrated molecular192

dynamics sample is taken out of equilibrium with an external force field acting on all or part193

of the fluid particles. The external field invokes additional acceleration into a specific direction,194

invoking a macroscopic flux in the same direction. For a small perturbation, it is common to195

regard this external force field equivalent to a chemical potential or a pressure gradient. It can be196

compared to gravity homogeneously acting on all particles of the sample. However, the external197

field is an extension to the Hamiltonian of the ensemble [22], and thus, it has an effect on the198

interaction between particles. The effect might not be negligible in some cases, in particular,199

when considering the interaction between fluid and wall particles. Moreover, some reservation to200

the EF-NEMD method are targeted towards the fact that it has not been formally demonstrated201

under what conditions the equivalence of external field and chemical potential gradient is justified202

and when the assumption breaks down [21]. Nonetheless, more recent publications indicate that203

the method yields good results and shows greater potential for an extension to more complex204

systems [17].205

In light of this background, the objective of the following sections is to present a novel imple-206

mentation of the EF-NEMD approach and evaluate it in the context of the theoretical framework207

presented in the beginning of this section. It is intended to make the methodology more appli-208

cable to study transport phenomenon in porous structures.209

3 Non-Equilibrium Molecular Dynamics Simulations210

For the investigation of diffusion on the nanoscale, it is necessary to model the substances on211

a molecular level. Molecular Dynamics simulation is the method of choice for the computation212

of dynamic properties on the nanoscale because it has decisive advantages over Monte Carlo213
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Figure 1. Schematic representation of the slit pore geometry. Blue spheres represent the particles of a porous solid. Gray
spheres are fluid particles. Periodic boundary conditions are applied in all directions. A close-up of the slit pore channel and
the definition of the pore width are also shown. The volume accessible to the fluid is schematically depicted by the dotted
line. The y direction (in plane) is not shown.

methods [6], particularly for complex molecules and liquid-like densities. A realistic production214

of the molecular trajectories is quintessential to the calculation of transport properties.215

The Molecular Dynamics scheme is enhanced by the application of an external force in order216

to drive the system away from equilibrium and to a steady-state. As it was outlined in section 2,217

the application of an external force has numerous advantages over the other commonly applied218

methods. Above all, it generally improves over other methods in efficiency, i.e. computational219

effort, for systems of comparable sizes [21]. Moreover, the method is purely deterministic, mean-220

ing that the molecular trajectories are not influenced by any stochastic elements that could alter221

the system’s dynamics, such as the random insertion of particles. Thus, there is no obstacle to222

apply the approach to a plenitude of applications, for example to complex geometries of the223

porous material or to chain-like molecules such as polymers.224

The novel aspect of this NEMD implementation is the fact that the external field is only applied225

to the particles which are in a thin slab at the boundary of the simulation box. Consequentially,226

the dynamics of the particles are only altered in a small section of the simulation box and the227

main interaction between fluid and pore structure is not affected by the external perturbation.228

However, due to the fact that the external field acts on only a small region of the simulation box,229

the density in the pore is not uniform. The implications and results are thoroughly discussed in230

section 4. The following section will elucidate the specifics of the simulation method.231

3.1 System setup and force fields232

A slit pore is a simple geometrical structure lending itself for the study of fluid dynamics and mass233

transport phenomena due to its clearly laid out characteristics. At a steady state, a Poiseuille-234

like flow develops in a slit pore when a fluid is forced through the pore. The slit pore geometry235

has been subject of considerable interest in the molecular modeling community [23–25]. Thus,236

the porous material is arranged as a slit pore in this study.237

The definition of the geometry used in this work is shown in Fig. 3.1. The wall is constructed238

using a hexagonal closed packing lattice. The particles are tethered to their lattice positions239

using a spring of the form:240

U latt
i = ks(ri − r0

i )
2 , (13)

where ks is the spring constant, ri is the position of the particle i in the wall with respect to its241

lattice position, r0
i .242

For modeling the fluid, in turn, a single-center Lennard-Jones (LJ) potential was used. More243



August 16, 2011 17:3 Molecular Simulation main˙article

8

(a) Small realization of the narrow pore system with a
pore width of H∗ = 1.5σ and a pore length of ∆Lx =
9.3σ.

(b) Large realization of the narrow pore system with a
pore width of H∗ = 1.5σ and a pore length of ∆Lx =
18.3σ.

(c) Small realization of the wide pore system with a pore
width of H∗ = 4.0σ and a system height of Lz = 13.1σ.

(d) Large realization of the wide pore system with a pore
width of H∗ = 4.0σ and a system height of Lz = 26.1σ.

Figure 2. Snapshots of the four different model systems for the narrow and wide pore that were investigated in this study.
Details about the setup of each system are given in Table 3.1

specifically, the fluid-fluid interactions are given by the LJ cut and shifted potential [26],244

ULJ
ij (rij) =

4εij

[(
σij

rij

)12
−
(
σij

rij

)6
−
(
σij

rcij

)12
+
(
σij

rcij

)6
]

rij < rc
ij ,

0 rij ≥ rc
ij

(14)

where σij and εij are the size and energy parameters of the LJ potential, rij is the distance245

between particles i and j, and rc
ij is the distance at which the potential between particles i and246

j is truncated. σ is commonly referred to as the molecular diameter. The cut-off distance of the247

Lennard-Jones potential was chosen to be 2.5σ. For the solid-solid and fluid-solid interactions a248

purely repulsive potential, the Weeks-Chandler-Andersen (WCA) potential, was used [27]. The249

WCA potential is a cut and shifted Lennard-Jones potential with a cut-off radius rc
ij = 21/6.250

Two different values for the pore width were realized in order to shed light on the influence of251

various combinations of system parameters. Namely, a narrow pore with a pore width H∗ = 1.5σ252

and a wide pore with H∗ = 4.0σ, as shown in Figure 2. A brief discussion on defining the pore253

width is given below. For each of the two pore sizes, a smaller system and a larger system was254

under investigation. While the system of the narrow pore was stretched along the length of the255

slit pore in the x direction, the system of the wide pore was enlarged perpendicular to the pore256

in the z direction by adding more layers of wall molecules. The details of the systems’ geometry257

are given in Table 3.1.258

The mass transport through the slit pore is studied using non-equilibrium molecular dynamics.259

The fluid flow is induced applying a gravity-like external field of the form fex = −migx̂, where260

mi is the mass of particle i, g is the magnitude of the external field, and x̂ is the unit vector261

along the x direction, i.e. in the direction of the flow. This external field is only applied in an262

small region of the system (see the shaded region in Fig. 3.1) in order to induce the flow with the263

minimal perturbation to the system. The field acts in negative x direction at the left boundary264

of the simulation box and the thin slab in which it is applied is three molecular diameters265

thick. Periodic boundaries apply in all three dimensions, meaning that a particle that exits the266
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Table 1. Different pore geometries and the respective number of particles in each

simulation setup. The volume accessible to the fluid is estimated by subtracting a

box-shaped sections for the wall structure (see section 3.2 for details). Porosity is

meant as a measure on how much wall surface the fluid faces.

Pore size H∗ [σ] 1.504 1.504 4.004 4.004

Dimensions of the simulation box [σ]

Simulation box length Lx 40.000 80.000 40.000 40.000
Simulation box depth Ly 8.736 8.736 8.736 8.736
Simulation box height Lz 13.113 13.113 10.371 26.096

Number of wall molecules 1200 2400 600 2400
Number of fluid molecules 1490 2958 1412 2982
Est. volume accessible to fluid [σ3] 2695.9 5506.1 2589.5 5529.5
Corresponding density [1/σ3] 0.553 0.537 0.545 0.539
Porosity H∗/Lz 0.115 0.115 0.386 0.153

simulation box at one end is re-inserted at the opposite boundary [28].267

3.2 Definition of the pore geometry268

Simulations for two different pore widths are under consideration. The narrow system exhibits a269

pore width of 1.5σ, while a pore width of 4 molecular diameters was chosen for the wider system.270

The slit pore lies symmetrically in the center of the simulation box. The pore has a length of271

9.3 and 18.3 molecular diameters for the three short and the long systems, respectively. For272

soft-sphere molecules, such as the LJ fluid and the WCA wall, the pore width and length cannot273

be defined unambiguously. For the following discussion, the pore width shall be defined as the274

distance between the center of mass of the inner-most wall layer less 2 molecular diameters as275

outlined in Fig. 3.1. This would be the width that the hard-sphere fluid could access within the276

pore. An unambiguous definition of the pore width is not possible and other definitions can be277

found in the literature [24], but for a densely packed pore material and a dense fluid within, the278

definition chosen in this case seems more appropriate. With greater surface roughness, i.e. more279

spacing between the lattice positions of the wall molecules, and thus more volume accessible280

inside the pore, it might be necessary to find a different definition of the pore width. Naturally,281

these effects also have an effect on the overall volume accessible to the fluid. From the entire282

simulation box volume, the volume of the pore material and the inaccessible volume must be283

subtracted. The values given for the volume accessible to the fluid in Table 3.1 are close estimates284

for the actual accessible volume, because smooth edges of the pore wall were not explicitly taken285

into account.286

3.3 Molecular simulation details287

Since the external field does a certain amount of work on the system which later must be288

dissipated as heat, the temperature of the system must be controlled by a thermostat. A Gaussian289

thermostat, i.e. an isokinetic thermostat, is applied only to the particles belonging to the wall.290

Thus, the heat generated in the fluid is removed from the system via the wall structure by291

the interaction between the wall and the fluid. This leaves the motion of the fluid molecules292

unaltered.293

The equations of motion for the particles in the wall are given by:294

dri(t)

dt
= vi(t),

dvi(t)

dt
=

fi(t)

mi
− χ(t)vi(t), (15)
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subject to the constraint:295

dT (t)

dt
=

d

dt

(
1

kBNdof

Nw∑
i=1

mivi(t) · vi(t)

)
= 0 , (16)

where vi(t) and fi(t) denote the velocity and total force of particles i, respectively, kB is the296

Boltzmann’s constant, Nw is the total number of particles of the wall, and Ndof is the number297

of degrees of freedom. The parameter χ(t) in Eq. 15 is a friction coefficient that guarantees298

a constant kinetic temperature, T . The equations of motion are integrated using the leap-frog299

algorithm [29]. The fluid particles are not subject to any thermostat and the equations of motion300

that govern their dynamics are the same as in Eq. 15 setting χ(t) = 0 at every time step. To301

achieve an increase in computational efficiency, a Verlet list of closest neighbors is employed302

when calculating the forces for each time step [22]. The list sphere radius was chosen to be 1.0σ.303

In this work, thermodynamic and structural properties are expressed in reduced variables for304

temperature, density, and time. The quantities are defined as T ∗ = kBT/ε, ρ
∗ = Nfσ

3/V and305

t∗ = t
√

(mε/σ2). The LJ parameters and m, which represents the molecular weight, can be used306

to express all other units of interest.307

The central observable when investigating mass transport phenomena is the molecular flux.308

The flux in x direction can be directly measured by counting the number of molecules crossing309

the x = 0 plane in a certain amount of time in relation to the accessible area in the xy plane310

Ayz,311

Ji =
N+
i −N

−
i

trunAyz
, (17)

where Ji denotes the molar flux of species i, N+
i and N−i denote the amount of molecules of312

species i which have passed the plane in the time trun in positive and negative x direction,313

respectively.314

Each system setup was equilibrated for 400 000 time steps with no external forces applied.315

Then, with the external field applied, simulations ran for 2.5 million time steps after an equili-316

bration period of 250000 time steps. All simulations were performed at T ∗ = 1.5 and the time317

step was chosen to be t∗ = 0.01, both given in reduced units. In order to avoid phase separa-318

tion within the system, the temperature was chosen to be at a super-critical value, T ∗ = 1.5.319

The fluid densities are close to 0.5. The actual density of each system is not uniform and an320

average density can only be estimated from the number of molecules over the volume accessible321

to the fluid. The values for this estimate average density are given in Table 3.1. Several runs322

were performed for each state point to give a measure for the error to be expected from the323

simulations.324

4 Results and Discussion325

The dynamics of the mass transport greatly depend on the magnitude of the external field326

applied to the system. The response to the external field is also influenced by the architecture of327

the simulation. The impact of the perturbation on the mechanical and thermal equilibrium and328

the results for the different systems shown in Figure 2 are given and discussed in the following329

section. In particular, the density distribution, the kinetic temperature and the average particle330

velocities were investigated closely and the respective measures, which characterise a systems331

mass transport properties, such as effective diffusivities, were calculated. Finally, a discussion332

on simulating counter diffusion follows.333



August 16, 2011 17:3 Molecular Simulation main˙article

11

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-20 -15 -10 -5  0  5  10  15  20

ρ
 [
1
/σ

3
]

x [σ]

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-20 -15 -10 -5  0  5  10  15  20

ρ
 [
1
/σ

3
]

x [σ]

(b)

Figure 3. Selected density profiles along the length of the simulation box, i.e. in x direction. On the left, (a), it is fex = 0.2 ε
σ

.

The figure on the right (b) shows fex = 0.5 ε
σ

. Solid red lines represent the profile for the small realization of the narrow
pore. Blue and green lines depict the small and large realization of the wide pore, respectively.

4.1 Unidirectional mass transport334

Due to the application of the external field, the density is not uniform in the entire system.335

The external force, acting in the negative x direction, builds up a pressurized bulk on the right336

of the porous structure, provoking an increase in density in the right bulk region. The fluid is337

squeezed into the porous structure and a planar Poiseuille-like flow develops in the slit-pore.338

While the density in the bulk region is uniform for a moderate perturbation, a linear density339

gradient develops within the pore. In order to quantify the differences in density, the density340

distribution along the length of the pore was measured. To this end, the simulation box was341

divided into thin slabs. For each slab, the average amount of molecules was measured during the342

simulation and a density profile along the x direction, the direction of flow, could be obtained.343

Moreover, to assess the heat transport within the system, the kinetic temperature was measured344

in the same fashion.345

Density profiles of three exemplary cases in terms of system geometry are shown in Fig. 3 for346

fex = 0.2 and 0.5ε
σ

. Density profiles for all other conditions can be taken from the supplementary347

material.348

It can be seen in Fig. 3 that the density profile inside the pore shows a regular undulation349

pattern. These undulations can be attributed to the uneven topology of the pore surface. The350

issue is related to the fact that it is not possible to define an unambiguous pore size, mentioned351

in section 3.2. Since the slit pore is a structured wall consisting of soft spheres, the surface352

of the slit pore is not flat but has a smooth and wavy surface. The fluid has more space to353

expand where there are dents in pore surface. What is more, the wall molecules are not still.354

They rather vibrate about their lattice positions. The roughness of the pore surface was not355

explicitly taken into account when the density profile was calculated. Luckily, this feature356

does not hinder the analysis of the simulations since average values along the pore are considered.357

358

With a pore width of H∗ = 4.0σ, the structure of the confined fluid within the pore is different359

from a narrow pore [24], which can be seen in Fig. 4. Two dense layers develop similar to the360

narrow pore. In the center of the pore, the fluid has considerably more space and resembles a361

bulk fluid, which implies that the fluid exhibits a higher mobility.362

With the slit pore being in direct contact with the bulk fluid, two particular phenomena must363

be kept in mind. The transition from bulk to confined fluid leads to certain entrance and exit364

effects. Particularly in the high-density bulk phase, a layering in front of the pore takes place.365

The layering is similar to the layering taking place inside the slit pore and is due to the repulsive366

nature of the pore. These phenomena will have an effect on the mass transport. Naturally,367

the smaller systems are more prone to these effects. The ratio of surface area to accessible fluid368
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Figure 4. Density profile within the pore showing the structure of the fluid. The solid red line depicts the profile for the
narrow pore while the dashed green lines shows the wide pore’s profile.
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Figure 5. Influence of the external force field on the molar flux (a) and the density gradient (b). It is ∆ρ/∆x = (ρright −
ρleft)/∆Lx. Circles and squares represent the small and large realization of the narrow pore, triangles and diamonds the
small and large realization of the wide pore, respectively. The straight dashed lines are a guide to the eye for a linear
function.

volume is higher than for the small pores. For both pore sizes, we more than double the accessible369

volume for the bigger systems but only increase the surface area by roughly 60%.370

Measuring the density in the bulk regions is an uncomplicated task as the available volume371

in these regions is correctly defined. However, the density within the pore is subject to the372

complications in defining the pore width. Furthermore, at the entrance and exit of the pore, the373

available volume changes in a continuous fashion, going from bulk to confinement. This point374

transition was not explicitly taken into account in the density profiles, as it creates the spikes375

in the profiles. The spikes are located at the entrance and exit of the slit pore. The average376

density in the bulk sections was taken from the simulations from which the difference in density377

could be calculated. Figure 3(a) shows that a weak external force invokes a linear response in378

the density distribution. The bulk densities are constant and the density gradient inside the pore379

is linear. The density gradient and the difference in bulk densities increase with the magnitude380

of the external field. As depicted in Fig. 3(b), the response is non-linear for larger magnitudes381

of external force field, depending on the system setup. The gradient inside the pore deviates382

from a linear gradient and for the large system, even the bulk density is not uniform. A similar383

conclusion can be derived from Figure 5(b). While the molar flux is linearly correlated to the384

external field, the increase in ∆ρ/∆x shows a growing deviation for high magnitudes of the force385

field.386

For the small realization of the wide pore, the deviation of ∆ρ/∆x from a linear response is387

most prominent (triangles in Fig. 5(b)). It is obvious that the fluid faces less resistance from the388

porous structure compared to the other realizations because the ratio of the void area to the389
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Figure 6. Average streaming velocity profile for the wide pore at two different porosities. Solid lines depict the system at
low porosity (i.e. large realization in Fig. 2(d)) while dashed lines represent the results of the high porosity system (i.e.
small realization in Fig. 2(c)). The profile for fex = 0.05, 0.3 and 0.5 ε

σ
are plotted.

total area is much smaller than in the other cases. Porosity is given as a measure to evaluate this390

aspect and the values for each system’s porosity are given in Table 3.1. By enlarging the system391

and adding porous structure in the z direction, the porosity is greatly reduced and larger bulk392

subsystem is created. As a consequence, the fluid cannot cross through the pore as easily.393

The same effect can also be observed when looking at the average particle velocity in the394

flow direction. This reduction of porosity reduces the streaming velocity of the fluid in the bulk395

sections while the streaming velocity in the pore stays constant. As shown in Fig. 6, the bulk396

streaming velocity is more than halved by reducing the porosity from 0.386 to 0.153. Velocity397

profiles of the other system realizations can be found in the supplementary material.398

Figure 7 shows the profile of the temperature in the system. It can be seen that heat transfer399

is strongly influenced by the system setup and the external forces applied. Since the system is400

observed in a steady state, there is an equilibrium between the energy added as a consequence401

of the action of the external force and the heat removed from the walls by the thermostat. The402

temperature profile in Figure 7 shows that the system is close to thermal equilibrium for a weak403

external field but far from it at an external forces of 0.5ε
σ

. The profile also shows that heat is404

removed more easily from the small system and that the temperature increases considerably405

more for the large system at the same magnitude of fex. The temperature profile of the small406

realization of the wide pore (green lines in Fig. 7) indicates that it is increasingly important to407

monitor the fluid temperature when the porous structure makes up a small part of the system.408

Note that the thermostat is applied only at the walls, thus by adding porous material to the409

system, the heat transport can be facilitated. In opposition to this, strong external forces lead410

to a steady-state which is far from thermal equilibrium, as shown in Fig. 7(b). The heat transfer411

of the system can certainly be influenced by the interaction between fluid and wall particles.412

It seems logical that the motion of the wall molecules, and thus the spring constant ks of the413

restoring force, must also have an influence. This however is not subject of this study and should414

be investigated in future research.415

4.1.1 Effective diffusivities416

The simulations yield a difference in density as well as the flux triggered by this density417

gradient. Equation 8 establishes the relationship between the flux and a gradient in density via418

the effective diffusion coefficient. With the bulk densities available from the simulations, the419

densities gradient can be expressed as:420

(
∆ρ

∆x

)
=

(
ρright − ρleft

∆Lx

)
, (18)
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Figure 7. Selected temperature profiles along the length of the simulation box, i.e. in x direction. As for the density profiles
in Fig. 3, (a) shows fex = 0.2 ε

σ
and (b) shows fex = 0.5 ε

σ
. Solid red lines represent the small realization of the narrow pore,

while blue and green lines depict the small and large realization of the wide pore, respectively.
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Figure 8. Effective diffusivities for the narrow and wide pore. As for Fig. 5, circles (small realization) and squares (large
realization) denote the narrow pore system, triangles (small realization) and diamonds (large realization) denote the wide
pore system. The dashed lines are a quadratic fit to the simulation results. Errors are estimated by running several runs for
the same point. In most cases, the error bars are smaller than the symbols, though.

where ∆Lx is the length of the respective pore. Hence, the transport equation can be expressed421

as follows:422

Jx ≈ −Deff

(
∆ρ

∆x

)
. (19)

The dependence of Deff on the external force is plotted in Fig. 8. The figure shows that the423

effective diffusivity is not independent of the external field applied. As is expected, Deff increases424

with the magnitude of the external field. Also, the results for the larger and the smaller system425

deviate from each other; as entrance effects play a larger role for the smaller system, a lower426

effective diffusion coefficient for the small system is expected. The figure also indicates that the427

coefficient approaches the same value as the external force approaches zero. Naturally, the error428

in the simulation increases as the observables also get closer to zero and are subject to larger429

fluctuations.430

For the case that is under scrutiny here, the mass transport is not purely induced by a difference431

in chemical potential but also has a convective component to it. With an increasing density432

gradient, and therefore also an increasing pressure difference between the two bulk sections, this433

convective component also increases. The increase of the average fluid velocity vx points to this434

as well. Thus, it can be argued that this convective component vanishes in the limit of fex → 0,435
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Figure 9. Counter diffusion in the narrow pore, H∗ = 1.5σ.

and in this limit the effective diffusivity approaches the transport diffusivity Dt.436

4.2 Counter diffusion437

With the force applied in one specific direction, the fluid acquires momentum in the same438

direction and when reaching the steady state, a unidirectional flow develops in the system.439

What is more, the slit pore poses a resistance to the flow and creates a build up in density440

on one side. The system is therefore brought out of mechanical equilibrium and the mass flux441

measured has a certain convective contribution. To circumvent this issue, the homogeneous442

fluid can be artificially divided into equal parts of two species of different colour that otherwise443

have no distinction. Moreover, another force field is applied to the system on the opposite444

side of the simulation box and acting in the opposite direction, but only on one particular445

coloured species, while the other force field acts on the second species. The flow of one species is446

therefore countered by a flow of the other species. Pressure and density in the system can thus447

be maintained uniform and with the heat being rapidly removed from the system, it is also at448

a constant temperature. The only gradient in this system is a concentration gradient of the two449

species. The opposing force field distinguishes between the two species and separates them at450

the boundary. The mechanism ”Avendaño demon” can be compared to a Maxwell demon that451

is able to reduces the entropy of the system [30]. Similar approaches to separate the colour-452

distinguished species involve the insertion and deletion of particles, such as the DCV-GCMD453

method [20], or a stochastic enhancement of the periodic boundary conditions under which some454

molecules would be reflected from the boundary according to a certain probability [31]. Counter-455

diffusion simulations for the small systems of the narrow and wide pore were simulated. The456

same systems as they are shown in Figure 2, and for each pore width, a system with a pore457

only, i.e. an infinite slit pore with no connecting bulk phases, were simulated. Fig. 9 depicts458

the density distribution along the x axis in a narrow slit pore with and without a bulk fluid459

region adjacent to the pore. It shows that the total density in the system is uniform except for460

the section where the opposing forces have been applied, where a slight increase in density is461

recorded. It stems from the opposing external fields that push the molecules into each other and462

provokes a slightly higher pressure, and therefore also a rise in density. In the central part of463

the simulation, the density is uniform and it can be concluded that the simulation is very close464

to a state of mechanical equilibrium. The distribution of the two colour-distinguished species of465

the fluid can also be taken from Fig. 9. The density gradients show a perfectly linear behaviour466

and the slope can be calculated from the profiles by fitting a linear function to the density467

distribution. The density gradient within the pore is more prominent than the gradient in the468

bulk sections, especially for the narrow pore.469

The two species have opposing gradients of the same magnitude, which can be taken from470
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Table 2. Colour-counter NEMD results for the narrow pore as well as self-

diffusivity for the confined fluid calculated from EMD. The number in the paran-

theses denotes the uncertainty in the last digit.

Pore width H∗ = 1.5 without bulk section, Average density ρ = 0.56

fex J1 J2
dρ1
dx

dρ2
dx

D1 D2

0.2 -0.0015(4) 0.0021(3) 0.00444 -0.00429 0.34(9) 0.50(9)
0.3 -0.0029(3) 0.0025(2) 0.00636 -0.00642 0.45(4) 0.39(3)
0.4 -0.0036(3) 0.0036(5) 0.00837 -0.00835 0.43(2) 0.43(6)

H∗ = 1.5, with bulk section Lx = 40σ, Average density ρ = 0.57

0.2 -0.0018(6) 0.0021(6) 0.00411 -0.00428 0.5(2) 0.5(1)
0.3 -0.0030(3) 0.0031(5) 0.00580 -0.00586 0.53(6) 0.52(8)
0.4 -0.0041(5) 0.0041(6) 0.00781 -0.00775 0.52(6) 0.53(7)

Self-diffusivity in the xy plane from EMD at ρ = 0.57 Ds,xy = 0.508

Table 4.2 for the narrow pore and from Table 4.2 for the wide pore. The approach gives a similar471

picture to the density gradient in the DCV-GCMD approach [20], with a similar counter diffusion472

of colour-distinguished species of an otherwise homogeneous Lennard-Jones fluid. Along with the473

density gradients, the flux for each species is given in the same table for three different external474

field strengths. Based on this information, the diffusivity of the system can be calculated similar475

to the way it was calculated for the pressure-induced diffusion,476

Ji = −Di
dρi
dx

. (20)

For the systems discussed in the previous section, the molecular flux happens predominantly in477

one direction only, due to the presence of a pressure difference, and the diffusion coefficient had478

a certain convective contribution to it. With the mechanical equilibrium restored by opposing479

forces acting each on the colour-distinguished species, the flux for each species is opposed to the480

other species’ flux and these counter fluxes hinder the diffusion of each species mutually. The481

magnitude of the external force has an effect on the magnitude of the flux and the slope of the482

density gradient. It has no effect on the diffusion coefficients calculated with Eq. 20, though.483

Table 4.2 and 4.2 suggest that a higher force field is beneficial in this case, as the uncertainties for484

the calculation of the diffusion coefficient Di decrease with a stronger force field. The resulting485

mass transport is an order of magnitude lower than in the case of unidirectional mass transport.486

Thus, the resulting mass transport coefficient is also an order of magnitude lower than the487

previously described effective diffusivity. In this special case, the diffusion coefficient Di, which488

is inherently different from the effective diffusion coefficient Deff , was defined to account for this489

aspect. With only one type of fluid-fluid interaction present, a comparison to the self-diffusion490

coefficient is in order. The results for the self-diffusion coefficient of the confined fluid were491

independently calculated using EMD and are given in Table 4.2 and 4.2. It is important to note492

that the self-diffusion coefficients were calculated for the mobility in the xy plane, because the493

fluid is confined in the z direction and therefore the flux was only measured in the x direction.494

The results are of same order of magnitude, but the self-diffusion coefficient indicates a slightly495

higher mobility of the particles than the results of the counter-diffusion simulations would sug-496

gest. It shall also be noted that the system with a bulk fluid compared to the pore-only system497

exhibit a higher diffusivity. For a reliable conclusion on the results of the counter diffusion simu-498

lation, it would be necessary to engage in further research, even though the results largely agree499

with the conclusions made in previous research on diffusivities from NEMD simulations [20].500

In particular, an analysis of the density dependence of Di would be necessary to conclude the501

nature of the diffusion coefficient.502
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Table 3. Colour-counter NEMD results for the wide pore as well as self-diffusivity

for the confined fluid calculated from EMD. The number in the parentheses denotes

the uncertainty in the last digit.

Pore width H∗ = 4.0 without bulk section, Average density ρ = 0.63

fex j1 j2
dρ1
dx

dρ2
dx

D1 D2

0.2 -0.0012(3) 0.0013(3) 0.00336 -0.00344 0.37(9) 0.37(9)
0.3 -0.0020(2) 0.0018(2) 0.00489 -0.00494 0.40(3) 0.35(3)
0.4 -0.0025(3) 0.0023(3) 0.00657 -0.00669 0.39(4) 0.39(4)

H∗ = 4.0, with bulk section Lx = 40σ, Average density ρ = 0.55

0.2 -0.0018(6) 0.0021(6) 0.00411 -0.00428 0.5(2) 0.5(1)
0.3 -0.0030(3) 0.0031(5) 0.00580 -0.00586 0.53(6) 0.52(8)
0.4 -0.0041(5) 0.0041(6) 0.00781 -0.00775 0.52(6) 0.53(7)

Self-diffusivity in the xy plane from EMD at ρ = 0.638 Ds,xy = 0.308

5 Conclusion503

With molecular simulation becoming a genuine alternative to classical modeling, the simulation504

of mass transport on the nanoscale calls for highly efficient and versatile simulation methods.505

In this study, a novel approach of a NEMD simulation scheme was presented. Its core features506

adhere to several practical principles and through a combination of several advantages over ex-507

isting methods, the approach appears to be superior by circumventing previously encountered508

difficulties. Namely, the approach is purely deterministic. Therefore, the methodology is not509

prone to any undesired effects due to the combination of stochastic and deterministic elements.510

Moreover, the particle dynamics are unaltered in the critical transport region because the ar-511

tificial perturbation is only applied in a thin slab of the simulation box. The perturbation on512

the system can be arbitrarily small, enabling steady-state simulations very close to equilibrium513

conditions. Also, only the molecules making up the porous material are subject to a Gaussian514

thermostat and ensure that heat from dissipation is removed from the system.515

It shall be noted that the approach is not limited to simple systems, albeit demonstrated on516

an idealized model in this study. Existing codes for molecular simulation can easily be enhanced517

to incorporate the approach and it can be used to simulate elaborate models of industrial fluids518

or very complex geometries of the porous structures. Promising development can be envisioned519

in this respect. Also, there is potential in further investigating the system’s response in terms520

of its pressure profile. Naturally, the approach can be refined to compute additional transport521

properties such as momentum transport, i.e. fluid viscosity or heat transport. Such a refinement522

would allow further validation of the calculated properties. Above all, it will be necessary to523

apply the methodology to more realistic systems by using interaction potentials of real fluids524

and explore the modeling of complex porous materials.525
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