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Abstract

A new version release (2.0) of the molecular simulation tool ms2 [S. Deublein, B. Eckl, J. Stoll, S. V.

Lishchuk, G. Guevara-Carrion, C. W. Glass, T. Merker, M. Bernreuther, H. Hasse, J. Vrabec, Comput. Phys.

Commun. 182 (2011) 2350] is presented. Version 2.0 features a hybrid parallelization based on MPI and

OpenMP for molecular dynamics simulation to achieve higher scalability. Furthermore, the formalism by Lustig

[R. Lustig, Mol. Phys. 110 (2012) 3041] is implemented, allowing for a systematic sampling of free energy

derivatives in a single simulation run. Moreover, the Green-Kubo formalism is extended for the sampling of

the electric conductivity and the residence time. To remove the restriction on electro-neutral molecules, Ewald

summation is implemented to consider the long range interactions. Finally, the sampling of the radial distribution

function is added.
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Memory: ms2 runs on single cores with 512 MB RAM. The memory demand rises with increasing number of

cores used per node and increasing number of molecules.

Distribution format: tar.gz

Keywords: Molecular simulation, molecular dynamics, Monte-Carlo, grand equilibrium method, vapor-liquid

equilibrium, transport properties, parallel algorithms

Programming language used: Fortran90

External: Message passing interface (MPI).

Classification: 7.7, 7.9, 12

Parallelized: Yes. Message Passing Interface (MPI) protocol and OpenMP.

Scalability: Scalability up to 2’000 cores for molecular dynamics, depending on the simulation scenario, and

more for Monte-Carlo simulations.

Nature of problem: Calculation of application oriented thermodynamic properties for rigid molecules: vapor-

liquid equilibria of pure fluids and multi-component mixtures, thermal and caloric data as well as transport

properties.

Method of solution: Molecular dynamics, Monte-Carlo, various classical ensembles, grand equilibrium method,

Green-Kubo formalism, Lustig formalism

Restrictions: None. The system size is user-defined. Typical problems addressed by ms2 can be solved by

simulating systems containing typically 1’000 – 4’000 molecules.

Unusual Features: Auxiliary feature tools are available for creating input files, analyzing simulation results and

visualizing molecular trajectories.

Additional comments: Sample makefiles for multiple operation platforms are provided.

Documentation: Documentation is provided with the installation package and is available at

http://www.ms-2.de.

Typical running time: The running time of ms2 depends on the specified problem, the system size and the

number of processes used in the simulation. E.g. running four processes on a ”Nehalem” processor, simulations

calculating vapor-liquid equilibrium data take between two and 12 hours, calculating transport properties between

six and 24 hours.
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2. Introduction

Molecular modeling and simulation is a technology central to many areas of research in academia and in-

dustry. With the advance of computing power, the scope of application scenarios for molecular simulation is

widening, both in terms of complexity of a given simulation and in terms of high throughput. Nowadays, e.g.

the predictive simulation of entire phase equilibrium diagrams has become feasible. However, in order to rely on

simulation results, the methodology needs to be sound and the implementation must be thoroughly verified on the

basis of experimental data. In the previous release [1], we have introduced the molecular simulation tool ms2.

Results from ms2 have been thoroughly verified and the implementation was found to be robust and efficient.

As described in section 3, in Version 2.0 of the simulation tool ms2 the existing molecular dynamics (MD)

MPI parallelization was hybridized with OpenMP, leading to an improved scalability. Furthermore, the new

release offers a wider scope of accessible properties. In particular, ms2 was extended to calculate free energy

derivatives in a systematic manner, cf. section 4. This augments the range of obtainable data significantly and, as

was demonstrated in [2], it allows to develop competitive fundamental equations of state from a combination of

experimental VLE data and molecular simulation results. Lastly, besides being now capable of simulating ionic

substances, the time and memory demand for calculating transport properties has been reduced significantly

(section 5).

ms2 is freely available as source code for academic users at www.ms-2.de.

3. Hybrid MPI & OpenMP Parallelization

The molecular simulation tool ms2 focuses on thermodynamic properties of homogeneous fluids. Therefore,

systems investigated with ms2 typically contain of the order of 103 molecules. While for Monte-Carlo simula-

tions a perfect scaling behavior up to large numbers of cores can be trivially achieved, MD domain decomposition

– the de facto standard for highly scalable MD – is not feasible for such system sizes, because the cut-off radius

is in the same range as half the edge length of the simulation volume. This excludes domain decomposition and

limits the scalability of the MPI parallelization. The new release of ms2 features an OpenMP parallelization,

which is hybridized with MPI. At the point where MPI communication becomes a bottleneck, a single process

still has enough load to distribute to multiple threads, improving scalability.

Three parts of ms2 were parallelized with OpenMP: the interaction partner search, the energy and the force

calculations. All OpenMP parallel regions rely on loop parallelism, as the compute intensive parts of the al-

gorithm all feature a loop over the molecules. In the force calculation, race conditions need to be considered,

because every calculated force is written to both interacting molecules. Introducing atomic updates or critical

sections leads to massive overheads. The most efficient way proved to be updating those molecules directly, over

which the loop iterates, reducing forces on their interaction partners onto temporary force vectors and summing

up after the entire force calculations are done. The same holds true for torques.

In Figure 1 the speed-up of hybrid MPI/OpenMP vs. pure MPI is plotted for 2’048 cores, varying the number

of threads per MPI process and the number of molecules in the simulation volume. As can be seen, using 2-4
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threads per MPI process delivers a speed-up of around 20% for 2’048 cores.

Figure 1: Speed-up of hybrid MPI/OpenMP vs. pure MPI for 2’048 cores, varying number of threads per MPI process and 8’192 Mol. (solid
circle), 4’096 Mol. (empty circle), 2’048 Mol. (solid triangle), 1’024 Mol. (empty triangle)

4. Free Energy Derivatives

ms2 Version 2.0 features evaluating free energy derivatives in a systematic manner, thus greatly extending

the thermodynamic data that can be sampled from one simulation run. The approach is based on the fact that

the fundamental equation of state contains the complete thermodynamic property information about a system

and it can be expressed with various thermodynamic potentials [3], e.g. internal energy E(N,V, S), enthalpy

H(N, p, S), Helmholtz energy F (N,V, T ) or Gibbs energy G(N, p, T ), with number of particles N , volume V ,

pressure p, temperature T and entropy S. These representations are equivalent in the sense that any other thermo-

dynamic property is essentially a combination of derivatives of the chosen form with respect to its independent

variables. The form F/T (N,V, 1/T ), known as the Massieu function, is preferred in molecular simulations due

to practical purposes[4, 5]. The statistical mechanical formalism of Lustig allows for the simultaneous sampling

of any Ar
mn in a single NV T ensemble simulation for a given state point [4, 5, 6, 7], where

∂m+n(F/(RT ))

∂βm∂ρn
βmρn ≡ Amn = Ai

mn +Ar
mn , (1)

R is the gas constant, β ≡ 1/T and ρ ≡ N/V . Amn can be separated into an ideal part Ai
mn and a residual

part Ar
mn [8]. The calculation of the residual part is the target of molecular simulation and the derivatives Ar

10,
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Ar
01, Ar

20, Ar
11, Ar

02, Ar
30, Ar

21 and Ar
12 were implemented in ms2 for NV T ensemble simulations. The ideal

part can be obtained by independent methods, e.g. from spectroscopic data or ab initio calculations. However, it

can be shown that for any Amn = Ai
mn + Ar

mn, where n > 0, the ideal part is either zero or a constant number

defined by the density of the system, thus it is known by default [5]. Note that the calculation ofAr
00 still requires

additional concepts such as thermodynamic integration or particle insertion methods and it is not generalized.

From the first five derivatives A10, A01, A20, A11, A02 basically every currently measurable thermodynamic

property can be expressed (see the supplementary material for the list of properties). A detailed description of

the implementation is given in the supplementary material, here, only an overview is given.

The calculation of the derivatives up to the order of n = 2 requires the explicit mathematical expression of

∂U/∂V and ∂2U/∂V 2 with respect to the applied molecular interaction pair potential and has to be determined

analytically beforehand [4, 5]. The general formula for ∂nU/∂V n can be found in Ref. [7]. For common

molecular interaction pair potentials, like the Lennard-Jones potential [9, 10], describing repulsive and disper-

sive interactions, or Coulomb’s law, describing electrostatic interactions between point charges, the analytical

formulas for ∂U/∂V and ∂2U/∂V 2 can be obtained straightforwardly.

As molecular simulation is currently limited to operate with considerably fewer particles than real systems, the

effect of the small system size is counter-balanced with a contribution to U and ∂nU/∂V n called long range cor-

rection (LRC) [9, 10]. The mathematical form of the LRC depends on the applied molecular interaction potential

as well as on the cut-off method (site-site or center of mass cut-off mode). For the Lennard-Jones potential,

the LRC scheme was well described in the literature for both the site-site [4, 11] and the center of mass cut-off

mode [7, 12]. The reaction field method [13] was the default choice in the preceding version for the LRC of

electrostatic interactions modelled by considering charge distributions on molecules. The usual implementation

of the reaction field method combines the explicit and the LRC part in a single pair potential [13, 14] from which

∂nU/∂V n (including also the LRC contribution) is directly obtainable. However, practical applications show

that the electrostatic LRC of ∂U/∂V and ∂2U/∂V 2 can be neglected for systems for which the reaction field

method is an appropriate choice. E.g., the contribution of the electrostatic LRC for a liquid system (T = 298 K

and ρ = 45.86 mol/l) consisting of 200 water and 50 methanol molecules with a very short cut-off radius of 20%

of the edge length of the simulation volume is still << 1% for both ∂U/∂V and ∂2U/∂V 2.

The supplementary material also contains detailed elaborations on the LRC.

5. Algorithmic Developments

Transport Property Calculations. In ms2, transport properties are determined via equilibrium MD simulations

by means of the Green-Kubo formalism [15]. This formalism offers a direct relationship between transport

coefficient and the time integral of the autocorrelation function of the corresponding fluxes. In the present

release, these fluxes may be evaluated every n-th time step of the MD simulation. Hence an extended time step

is defined for the calculation of the autocorrelation functions and their integrals, which is n times longer than the

MD time step. As a consequence, the memory demand of the autocorrelation functions and their time integrals is

reduced by a factor of n and the file size of the restart files, which contain the actual state of the autocorrelation
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functions and time integrals at the end of the simulation, become accordingly smaller. In addition, the overall

computing time of the MD simulation is reduced significantly.

The number n is user-defined: For n < 6, no influence of n on the different transport coefficients or the statistical

uncertainty was observed.

Ewald Summation. Ewald summation was implemented for the calculation of electrostatic interactions between

point charges. It extends the applicability of ms2 to thermodynamic properties of e.g. ions in solutions.

In Ewald summation, the electrostatic interactions according to Coulomb’s law are divided into two contri-

butions: short-range and long-range. The short-range term includes all charge-charge interactions at distances

smaller than the cut-off radius rc. This contribution is determined explicitly assuming pairwise additivity of the

interactions. The remaining contribution is calculated in Fourier space and only the final value is transformed

back into real space. This allows for an efficient calculation of the long-range interactions between the charges.

Eq. (2) defines the total charge-charge interactions

ucoul =
1

4πε0

∑
n

′
∑
i

∑
j

NC,i∑
l=1

NC,j∑
m=l+1

qlqm
erfc(κ|rlm + n|)
|rlm + n|︸ ︷︷ ︸

Short−range contribution

+
1

ε0V

∑
k>0

1

k2
e−

k2

4κ2

|∑
i

NC,i∑
l=1

|ql cos(k · rl)|2 + |
∑
j

NC,j∑
m=1

|qm sin(k · rm)|2


︸ ︷︷ ︸
Reciprocal term

− 1

4πε0

∑
i=1

NC∑
l=1

NC∑
m=l+1

qlqm
erf(κ|rlm|)
|rlm|︸ ︷︷ ︸

Intramolecular self−energy

− κ

4π1.5ε0

∑
i

NC∑
l=1

q2l︸ ︷︷ ︸
Point self−energy

,

(2)

where κ is the real-space partition parameter, rlm the distance between the two charges ql and qm, k the reciprocal

lattice vector and k its modulus.

The algorithm is well described in literature [9, 16].

6. Property Calculations

Radial Distribution Function. The radial distribution function (RDF) g(r) is a measure for the microscopic

structure of matter. It is defined by the local number density around a given position within a molecule ρL(r) in

relation to the overall number density ρ = N/V

g(r) =
ρL(r)

ρ
=

1

ρ

dN(r)

dV
=

1

4πr2ρ

dN(r)

dr
. (3)

Therein, dN(r) is the differential number of molecules in a spherical shell volume element dV , which has the

width dr and is located at the distance r from the regarded position. g(r) can be evaluated for every molecule of

a given species.
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In the new release of ms2, RDF can be calculated during MD simulation runs for pure components and

mixtures on the fly. It is sampled between all LJ sites, which are defined by the potential model *.pm files. In

order to evaluate RDFs for arbitrary positions, dummy LJ sites with the parameters σ = ε = 0 can be introduced.

Electric conductivity. The evaluation of the electric conductivity σ was implemented in ms2, being a measure

for the flow of ions in solution. The Green-Kubo formalism [15] offers a direct relationship between σ and the

time-autocorrelation function of the flux of the electric current j(t)

σ =
1

3V kBT

∫ ∞
0

〈
j(t) · j(0)

〉
dt , (4)

where V is the volume. The electric current flux is defined by the charge qk of ion k and its velocity vector vk

according to

j(t) =

Nj∑
k=1

qk · vk(t) , (5)

where Nj is the number of molecules of component j in solution. Note that all ions in the solution have to

be considered, but not the electro-neutral molecules. For better statistics, σ is determined over all independent

spatial elements of j(t). The electric current time-autocorrelation function may be decomposed into the sum [17]

〈
j(t) · j(0)

〉
=

NIon∑
k=1

〈
q2k · vk(t) · vk(0)

〉
+

NIon∑
k=1

NIon∑
n=1
n6=k

〈
qkqn · vk(t) · vn(0)

〉
= Z(t) + ∆(t) , (6)

where Z(t) is an autocorrelation function and ∆(t) is a crosscorrelation that quantifies the deviation from the

ideal Nernst-Einstein behavior [17].

The first term Z(t) describes the mobility of the ions due to their self-diffusion in solution. Mathematically,

it is simply the sum of the self-diffusion coefficients of all ion types in solution weighted by their charges. The

second term ∆(t) describes the correlated motion of the ions in solution. E.g., the correlated motion of ion pairs

of opposite charges in solution lowers the electric conductivity (∆(t) < 0), while the correlated motion of ion

pairs with the same charge enlarge σ (∆(t) > 0).

Residence time. The residence time τj defines the average time span that a molecule of component j remains

within a given distance rij around a specific molecule i. It is given by the autocorrelation function

τj =
1

nij

∫ ∞
t=0

nij∑
k=1

Θk(t)Θk(0)dt , (7)

where t is the time and Θ is the Heaviside function, which yields unity, if the two molecules are within the

given distance, and zero if not. Following the proposal of Impey et al. [18], the residence time explicitly allows

for short time periods, during which the distance between the two molecules exceeds rij . Also, the hydration

number nij can be evaluated on the fly
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nij = 4πρj

∫ rmin

0

r2gij(r)dr , (8)

where ρj is the number density of component j and rmin is the distance up to which the hydration number is

calculated.
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