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Abstract We are outlining our most recent findings, covering: 1) A comparison of
a micro- and macroscopic solution of a two-phase Riemann problem obtained from
molecular dynamics simulations and finite volume schemes; 2) A novel equation
of state for the bulk viscosity of liquid noble gases based on a multi-mode relax-
ation ansatz; 3) A detailed analysis of the evaporation process of simple fluids; 4)
Diffusion coefficients of quaternary liquid mixtures obtained with the Green-Kubo
formalism; 5) An analysis of the solid/fluid phase transition for the face centered
cubic (fcc) lattice; 6) The relative permittivity of mixtures of water and acetone;
7) An assessment of the reliability and reproducibility of molecular simulation re-
sults; 8) Techniques for the data management in simulation workflows, including
annotations of simulation outcomes with appropriate metadata standardized by an
ontology.
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1 Two-phase shock tube scenario

Large scale molecular dynamics (MD) simulations of a two-phase shock tube sce-
nario were conducted. These simulations were intended to serve as a benchmark for
macroscopic solutions obtained from computational fluid dynamics (CFD) simula-
tions employing finite volume (FV) schemes. Two macroscopic approaches were
considered: the homogeneous equilibrium method (HEM) and the sharp interface
method. Both are implemented in the discontinuous Galerkin spectral element
method (DGSEM) framework FLEXI [24].

In contrast to the scenario in Ref. [25] that considered two supercritical states,
known as the classical Riemann problem, the present scenario consisted of a liquid
and a vapor phase, connected through a planar interface. The thermodynamic states
of the liquid and vapor phases were specified such that they were out of equilibrium
and hence phase transition occurred. This scenario is known as two-phase Riemann
problem. While the classical Riemann problem is fully understood, the two-phase
Riemann problem has implications for the system of equations that cannot be solved
in a straightforward manner.

As in Ref. [25], the Lennard-Jones Truncated and Shifted (LJTS) fluid was as-
sumed for two reasons: it is computationally cheap in MD simulations and an accu-
rate equation of state (EOS) [21] is available for the macroscopic solution.

The initial configurations of the MD simulations were prepared in two steps, cf.
Fig. 1. First, a vapor-liquid equilibrium (VLE) was maintained at a temperature of
T = 0.9. The liquid phase was extracted and brought into contact with a vapor phase
at a lower temperature T = 0.8 and a lower density in a symmetric setup. Three cases
were considered with varying the density of the vapor phase ρv, i.e. specifying 50%,
70% and 90% of the saturated density at a temperature of T = 0.8. The system di-
mensions, specified in particle diameters σ , were defined as follows: The extent of
the vapor phase Lv = 1500 was chosen to be wide enough so that the shock wave ex-
erted from the liquid phase, which is a consequence of the global non-equilibrium,
could be observed for a sufficiently long time period before it reached the periodic
boundary. The specified width of the liquid phase Ll = 200 was a compromise be-
tween being sufficiently wide such that the opposite vapor-liquid interfaces do not
interfere with each other, because of rapid state changes due to evaporation, and
being small enough to keep the computational cost on an acceptable level. To check
whether the specified width of Ll is appropriate, an exemplary simulation was re-
peated with a doubled width Ll = 400. From that, almost identical results were
obtained.

The cross-sectional area had an extent of 106σ2 so that the sampling of the
rapidly changing profiles, i.e. temperature, density and hydrodynamic velocity,
employing a classical binning scheme with a high spatial and temporal resolu-
tion yielded an excellent statistical quality. Because of the large number of up to
N ≈ 3 · 108 particles, all simulations were carried out with the massively parallel
code ls1 mardyn [42]. This code is being continuously improved and was recently
optimized with respect to its node-level performance and parallel efficiency [56].
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Fig. 1: Snapshots of the prepared molecular systems, rendered with the cross-
platform visualization prototyping framework MegaMol [18] and the Intel OSPRAY
plugin. a) Final configuration of the vapor-liquid equilibrium simulation from which
the liquid phase was extracted to build the test case scenarios. b) One of the test case
scenarios with a vapor phase (green) diluted to 70% of the saturated vapor density
at the temperature T = 0.8. c) Close-up look at the interface.

Results for the case with 50% of the saturated vapor density are shown in Fig. 2.
While the HEM approach is not able to reproduce the results of the MD simulation,
the sharp interface approach showed a very good agreement with the MD data in
the homogeneous bulk phases, except for the vicinity of the interface. It reproduced
the propagation speed of the shock wave and the characteristic shapes of all profiles.
Even the magnitudes of plateaus of the profiles were quantitatively matched.

Fig. 2: Results for the case with a vapor density of 50% of its saturation value. The
plots show profiles of density, velocity and temperature at t = 200 obtained from the
sharp interface method, HEM and MD.
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2 Bulk viscosity of liquid noble gases

Stokes’ hypothesis postulates that any form-invariant changes of a fluid’s local vol-
ume, i.e. compression or dilatation, are not associated with the dissipation of linear
momentum, which is synonymous with a vanishing bulk viscosity µb = 0. Despite
theoretical and experimental evidence to the contrary, the hypothesis is still widely
applied throughout all branches of fluid mechanics. The bulk viscosity of liquid no-
ble gases was studied here on the basis of a multi-mode relaxation ansatz and an
equation of state is proposed [9]. The relaxation ansatz is based on a large data set
that was generated by dedicated atomistic simulations, resulting in an EOS exposing
the bulk viscosity as a two-parametric power function of density, with the parame-
ters being functions of temperature. The noble gases’ atomistic description rests on
the Lennard-Jones potential.

The Green-Kubo formalism relates the bulk viscosity to time-autocorrelation
functions (ACF) that were sampled in the microcanonical (NVE) ensemble, utilizing
the fully open source program ms2 [44]. To reduce finite size effects and to gain bet-
ter statistics, ensembles containing N = 4096 particles were placed in cubic volumes
with periodic boundary conditions. To resolve the small-scale pressure fluctuations,
a small integrator time step was used and each autocorrelation function was sampled
over a substantial time period. Relatively large ensemble sizes in combination with
long simulation times are computationally demanding and thus require modern HPC
architectures. The bulk viscosity can be determined microscopically by ACF of local
small-scale, transient pressure fluctuations that are intrinsic in any fluid under equi-
librium. These pressure fluctuations have been observed to relax in different modes.
Each mode decays exponentially over time, following a Kohlrausch-Williams-Watt
function. For liquid noble gases, three superimposing relaxation modes were found
to be present, leading to the relaxation model

BR(t) =C f exp
(
−
( t

δ f

)β f
)
+Cm exp

(
−
( t

δm

)βm)
+Cs exp

(
−
( t

δs

)βs)
. (1)

The first term describes the fast, and the subsequent terms the intermediate and slow
modes, respectively. The weighting factors are constraint, i.e. C f +Cm+Cs = 1, and
the Kohlrausch parameters δi,βi are a measure of relaxation time scale and dis-
tortion from the exponential function. The model’s eight independent parameters
C f ,Cm,δ f ,δm,δs,β f ,βm,βs were determined by fitting the relaxation model BR to
the data sampled by MD. Each mode’s average relaxation time τi is defined as in-
tegral mean value of its respective relaxation model contribution BR,i. As originally
proposed by Maxwell, the bulk viscosity µb is proportional to the cumulative aver-
aged relaxation time

µb = Kr

3

∑
i=1

lim
t→∞

∫ t

0
dt (BR,i) , (2)

with the proportionality constant Kr being the fluid’s relaxation modulus. The sam-
pled ACF partitions into three segments, with each segment being dominated by a
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different mode, cf. Fig. 3a. In contrast to the sampled ACF that is plagued by noise,
the employed relaxation model’s time integral properly converges to a definite value,
thus allowing to determine µb unambiguously, cf. Fig. 3b.

Applying the relaxation ansatz to all sampled state points generates a large
dataset from which the EOS emerges as a two-parametric power function with both
parameters showing a conspicuous saturation behavior over temperature. After pass-
ing a temperature threshold, the bulk viscosity is found to vary significantly over
density, a behavior that resembles the frequency response of a one pole low-pass
filter.
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Fig. 3: (a) Comparison of a sampled ACF with the relaxation model including all
three modes. While the gray line constitutes the sampled ACF, the solid black line
represents the relaxation model and its fast (dashed), intermediate (short-dashed)
and slow (dashed-dotted) modes, respectively. (b) Comparison of the integrated
sampled autocorrelation function with the relaxation model. Due to noise contri-
butions to the slow mode of the sampled autocorrelation function, the bulk viscosity
is difficult to determine precisely by molecular dynamics simulation (gray line). In
contrast, the employed relaxation model (solid black line) converges towards an un-
ambiguous value at finite times. The dashed, short-dashed and dotted-dashed lines
represent the fast, intermediate and slow modes, respectively.

3 Evaporation of simple fluids

Evaporation phenomena play a crucial role in process engineering and in many other
fields, but they are not yet fully understood. In order to gain further knowledge about
these basic phenomena, MD simulations were conducted building upon Ref. [23].
The simple and computationally efficient LJTS potential was applied to describe
the interactions between the particles. A parallelepiped was employed as simulation
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volume, consisting of one liquid and one vapor phase, respectively. A net evapo-
ration flux was constrained by establishing a vaccuum boundary condition in the
vapor. Particles reaching this vaccuum region were deleted. In order to maintain
a constant number of particles N in the simulation domain, new particles had to be
added. This was achieved by a method proposed in Ref. [22]. Numerous simulations
were conducted for a range of temperatures of the bulk liquid as well as varying dis-
tances between the bulk liquid and the interface.
The systems under investigation contained between 1.3 and 8.3 ·106 particles. The
utilized MD software was ls1 mardyn [42], which is designed for massive paral-
lelization so that up to 7.8 ·103 cores could be used for one simulation.
It was found that the evaporation flux setting in led to a decrease of the interface
temperature Ti. Since the particle flux jp depends on Ti, a decreasing temperature
induces a drop of jp itself. Upon progress of simulation, the interface temperature
and the particle flux converge towards a limit, cf. Fig. 4. Their value depends on the
bulk liquid temperature among others. For all conducted simulations, the respective
stationary values can be expressed by the dashed line in Fig. 4.
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Fig. 4: Particle flux jp over the interface temperature Ti over the course of one sim-
ulation. Throughout the simulation run, Ti declined until stationarity was reached.
The particle flux first increased up to a maximum, then decreased, until it finally
converged to a stationary value. The dashed line marks the fit through the respective
stationary values of all simulations.

4 Diffusion in quaternary liquid mixtures

Most mass transfer processes occurring in nature and in technical applications in-
volve liquid solutions with more than three components. Rate-based methods em-
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ployed for modeling, design and control of separation unit operations in chemical
engineering, such as distillation, rely on mass and energy transfer models which
require reliable information on diffusion coefficient data for the regarded mixtures.
Therefore, there is a significant interest in the improvement of experimental method-
ologies and the development of reliable methods for the prediction of mutual diffu-
sion coefficients of liquid multicomponent mixtures.

Fick’s law for diffusion in a quaternary mixture requires nine different diffusion
coefficients that depend on temperature, pressure, composition and the regarded
frame of reference. The presence of six cross diffusion coefficients makes inter-
pretation and data processing in experimental work a challenging task which often
leads to large experimental uncertainties. Despite the continuous improvement and
development of experimental techniques during the last decades, the availability
of diffusion coefficients of mixtures containing four components is still very poor.
Thus, the growing need of accurate diffusion data for basic research and engineering
applications cannot be satisfied by experimental measurements alone.

Most predictive equations for multicomponent diffusion of liquids rely on ex-
tensions of the Darken relation [3] and are therefore only truly valid for ideal mix-
tures. The underlying physical phenomena in non-ideal mixtures are still not well
understood and the lack of data impedes the development and verification of new
predictive equations. In this context, MD offers an alternative path not only to assess
multicomponent diffusion coefficients, but also to gain insight into the underlying
microscopic behavior.

Recently, the ability of MD to predict the Fick diffusion coefficient matrix of a
quaternary liquid mixture has been demonstrated for water + methanol + ethanol +
2-propanol [19]. However, because of the lack of experimental data, only consis-
tency test could be performed for the predicted diffusion data. Here, the Fick diffu-
sion coefficient matrix of the mixture cyclohexane + toluene + acetone + methanol,
which was recently studied with Raman spectroscopy [43], was successfully pre-
dicted solely with molecular simulation techniques.

In the framework of the generalized form of Fick’s law, the molar flux of com-
ponent i in a mixture of four components is written as a linear combination of con-
centration gradients ∇c j [10]

Ji =−
3

∑
j=1

Di j∇c j , (i = 1,2,3) , (3)

where Dii are the main diffusion coefficients that relate the molar flux of component
i to its own concentration gradient and Di j are the cross diffusion coefficients that
relate the molar flux of component i to the concentration gradient of component j.
The Fick approach involves three independent diffusion fluxes and a 3×3 diffusion
coefficient matrix, which is generally not symmetric, i.e. Di j ̸= D ji. Further, the
numerical values of Di j depend both on the reference frame for velocity (molar-,
mass- or volume-averaged) and on the order of the components.

The main shortcoming of Fick’s law is the fact that concentration gradients are
not the true thermodynamic driving forces for diffusion, which are rather given by
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chemical potential gradients. Maxwell-Stefan theory follows this path, assuming
that chemical potential gradients ∇µi are balanced by friction forces between the
components that are proportional to their mutual velocity [55]. The Maxwell-Stefan
diffusion coefficient Ði j plays the role of an inverse friction coefficient between
components i and j [55] and its matrix is symmetric so that it has only six indepen-
dent elements. Maxwell-Stefan diffusion coefficients are associated with chemical
potential gradients and thus cannot directly be measured in the laboratory. However,
they are accessible with equilibrium MD techniques, i.e. the Green-Kubo formalism
or the Einstein approach.

This work employs the Green-Kubo formalism based on the net velocity auto-
correlation function to obtain n×n phenomenological coefficients [37]

Li j =
1

3N

∫ ∞

0
dt

⟨ Ni

∑
k=1

vi,k(0) ·
Nj

∑
l=1

vj,l(t)
⟩
, (4)

in a mixture of n components. Here, N is the total number of molecules, Ni is the
number of molecules of component i and vi,k(t) denotes the center of mass velocity
vector of the k-th molecule of component i at time t.

Starting from the phenomenological coefficients Li j, the elements of a (n−1)×
(n−1) matrix ∆∆∆ can be defined as [37]

∆∆∆ i j = (1− xi)

(
Li j

x j
− Lin

xn

)
− xi

n

∑
k=1̸=i

(
Lk j

x j
− Lkn

xn

)
, (5)

where xi is the molar fraction of component i. Its inverse matrix B = ∆∆∆−1 is related
to the Maxwell-Stefan diffusion coefficients Ði j.

On the other hand, experimental methods yield the Fick diffusion coefficients.
Thus, to compare the predictions by molecular simulation with experimental values,
a relation between Fick and Maxwell-Stefan diffusion coefficients is required [55]

D = ∆∆∆ ·ΓΓΓ , (6)

in which all three symbols represent 3×3 matrices and the elements of ∆∆∆ are given
in Eq. (5). ΓΓΓ is the thermodynamic factor matrix

Γi j = δi j + xi
∂ lnγi

∂x j

∣∣∣∣
T,p,xk,k ̸= j=1...3

. (7)

Therein, δi j is the Kronecker delta function and γi the activity coefficient of com-
ponent i. Here, the thermodynamic factor matrix was estimated from information
on the microscopic structure given by radial distribution functions gi j(r) based on
Kirkwood-Buff theory. In the grand canonical (µV T ) ensemble Kirkwood-Buff in-
tegrals Gi j are defined by [33]

Gi j = 4π
∫ ∞

0
(gi j(r)−1)r2dr. (8)
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Because the canonical (NV T ) ensemble was employed, possible convergence is-
sues [41] were corrected with the method by Krüger et al. [38]. Moreover, correc-
tions of the radial distribution functions are required. Therefore, Kirkwood-Buff
integrals were calculated based on the methodology proposed by Ganguly and van
der Vegt [16]. Extrapolation to the thermodynamic limit was not necessary because
of the rather large ensemble size N = 8000.

Predictive equilibrium MD simulations of diffusion coefficients and the thermo-
dynamic factor of the quaternary mixture cyclohexane (1) + toluene (2) + acetone
(3) + methanol (4) were carried out at 298.15 K and 0.1 MPa for one composition
that was studied experimentally [43], i.e. x1 = x2 = x3 = 0.05 mol mol−1. A cubic
simulation volume of containing 8000 molecules with a cut-off radius of 24.5Å
was employed for this purpose. The resulting phenomenological coefficients Li j
were averaged from more than 105 correlation functions with a length of 20 ps.
These coefficients were employed together with the thermodynamic factor matrix
to calculate the Fick diffusion coefficient matrix in the molar frame of reference. In
order to compare simulation results with the experimental data, the Fick diffusion
coefficient matrix was transformed into the volume-averaged frame [55].

A comparison between present simulation results and experimental data is given
in Fig. 5. The simulation results for all elements of the diffusion matrix agree with
the experimental data within the reported uncertainties.
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Fig. 5: Main (left) and cross (right) elements of the Fick diffusion coefficient matrix
of the mixture cyclohexane (1) + toluene (2) + acetone (3) + methanol (4) at 298.15
K and 0.1 MPa. Present simulation results (black bullets) are compared with the
experimental data [43] estimated from three and twelve experiments (blue crosses).
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5 Solid/fluid phase transition and strong scaling of ms2

In a recent study [40], the solid/fluid (S/F) phase transition was analyzed for the face
centered cubic (fcc) lattice utilizing ms2 [44]. The LJ potential was applied in MD
simulations such that the solid was heated at constant volume up to its phase transi-
tion. The Z method [5] was applied to determine the limit of superheating (LS) and
the melting point (MP). For this purpose, total energy u (potential + kinetic energy)
and temperature T were evaluated, cf. Fig. 6a. First, the fcc lattice remains for a spe-
cific total energy range in the metastable solid state, which is limited by uLS when
the solid melts. Beyond this range (u reaches values slightly above uLS), the temper-
ature drops to its melting temperature Tm since kinetic energy supplies the internal
energy of fusion. At the S/F transition, the total energy usolid(v,TLS) = u f luid(v,Tm)
holds with the maximum TLS and minimum temperature Tm when constant volume
is maintained [40].
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Fig. 6: (a) Z method sampled by MD simulations using ms2; pink: N = 500; green:
N = 1372; red: N = 10976; blue: N = 108000 atoms; vertical lines indicate the
temperature drop from the LS to the MP. (b) Strong scaling efficiency of MD simu-
lations with ms2 for a fcc LJ solid measured on CRAY XC40 (Hazel Hen) with hy-
brid MPI + OpenMP parallelization (each MPI process had two OpenMP threads);
black: N = 64,000 with a cutoff of rc = 6σ ; red: N = 64,000 with rc = 29σ ; blue:
N = 120,000 with rc = 36σ .

The melting process is strongly dependent on the system’s structure and dynam-
ics, particularly when a perfect fcc lattice without defects is considered. Thus, finite
size effects were hypothesized and supported by a recent study [40]. Fig. 6a clearly
shows a substantial system size dependence of TLS and Tm. Moreover, this behavior
reinforces how well molecular simulations are able to tackle physical phenomena
from a theoretical point of view, where experiments are challenging or even impos-
sible because of extreme conditions.
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In this context, the strong scaling efficiency of ms2 was analyzed for its hybrid
MPI + OpenMP parallelization. Combining MPI and OpenMP, the memory demand
of ms2 was optimized such that simulations with a larger particle number N can
be achieved. In Fig. 6b, the vertical axis shows the computing power (nodes) times
computing time per computing intensity (problem size), thus, horizontal lines would
show a strong scaling efficiency of 100 %. From Fig. 6b, it becomes clear that ms2 is
close to optimal strong scaling. However, the computing intensity of traversing the
particle matrix is proportional to N2, but intermolecular interactions are calculated
for particles that are in the cutoff sphere only. As a result, the scaling of ms2 should
be in between N to N2. Fig. 6b indicates that almost doubling the number of particles
(120000/64000 = 1.875) in ms2 leads to an increase of computational cost of a
factor around 1.91 if the number of nodes was chosen appropriately so that the
overhead is small (comparison of red and blue symbols for 800 nodes).

6 Relative permittivity of mixtures

The relative permittivity of a fluid ε , also known as the dielectric constant, indicates
how that fluid weakens an external electric field compared to vacuum. While exper-
imental data on the relative permittivity are available for many pure fluids (at least
under ambient conditions), measurements of the relative permittivity for mixtures
have rarely been reported. However, such information is important for chemical en-
gineering, e.g. for electrolyte solutions with mixed solvents or solutions of weak
electrolytes [35].

On the molecular scale, the relative permittivity is directly related to the mutual
orientation of the molecular dipoles via Kirkwood’s theory [32]. Thus, the rela-
tive permittivity can be sampled straightforwardly with molecular simulations in
the canonical (NV T ) ensemble via

ε −1 =
4π

3kBTV
(⟨MMM2⟩−⟨MMM⟩2), (9)

where kB is Boltzmann’s constant, T the temperature, V the volume and MMM the
total dipole moment of the simulation volume that is obtained by summing up all
molecular dipole moment vectors

MMM =
N

∑
i=1

µµµ i. (10)

Hence, molecular simulations are an ideal tool to study the relative permittivity
of mixtures. It has recently been shown that with existing molecular models for
mixtures of molecular fluids [34] and electrolyte solutions [45], at least qualita-
tive agreement with experimental data can be obtained. To further demonstrate the
power of this predictive approach also in a quantitative manner, MD simulations
of the relative permittivity of the mixture acetone + water were carried out with
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the molecular simulation tool ms2 [44], using the TIP4P/ε water model [15] and
the acetone model by Windmann et al. [58]. These models are known to yield the
pure component permittivities excellently. The Lorentz-Berthelot combining rules
were applied so that the simulation results for the mixture are strictly predictive.
First, the mixture density was obtained with isothermal-isobaric (N pT ) runs and
then the relative permittivity was sampled with NV T simulations. The results in
Fig. 7 demonstrate that a good prediction of the mixture permittivity was obtained.
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Fig. 7: Relative permittivity of mixtures of water and acetone as a function of the
acetone mass fraction at two different temperatures and 1 bar. Crosses show the
experimental data by Åkerlöf [1], open circles denote present simulation results.
Simulation uncertainties are within symbol size, dotted lines are guides to the eye.

7 Reliability and reproducibility of simulation data

Molecular simulations have become a well established alternative to laboratory ex-
periments for predicting thermophysical properties of fluids [50, 51, 53]. Evidently,
the reliability and reproducibility of such predictions is of fundamental importance.

To sample thermophysical properties of a given molecular model, computer ex-
periments can be carried out. In general, the simulation result of a given observ-
able xsim will not agree with the true model value xmod [20]. Like in laboratory
experiments, errors can also occur in computer experiments [46] that can cause
deviations between the true value xmod and the value observed in simulation xsim

[20, 46]. Both stochastic and systematic errors may in general occur in computer
experiments. While techniques to assess statistical errors are well established for
computer simulations [2, 13, 14], it is more difficult to deal with systematic errors,
which have a significant influence on the reliability of the results. Systematic er-
rors may be a consequence of erroneous algorithms, user errors, differences due to
different simulation methods, finite size effects, erroneous evaluation of long-range
interactions, insufficient equilibration or production periods, compilers, paralleliza-
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tion, hardware architecture etc. [46]. As in laboratory experiments, round Robin
studies can be made for quantifying systematic errors, in which the same simulation
task is carried out by different groups with different programs.

The detection and assessment of outliers in large datasets is a standard task in
the field of data science, but has to the best of our knowledge not yet been applied
to thermophysical property data obtained by molecular simulation. The assessment
of experimental thermophysical property data is a well-established field in chemical
engineering [11], especially for phase equilibrium data [30, 31].

The accuracy with which properties of a simple (Lennard-Jones) model fluid can
currently be determined by molecular simulation was assessed. The Lennard-Jones
potential is often used as a starting point for the development of many force fields for
complex molecules [52]. It is often taken as a benchmark for the validation of simu-
lation codes and the test of new simulation techniques. Accordingly, a large number
of computer experiment data are available for this fluid. Molecular simulations were
performed both for homogeneous state points and for the vapor-liquid equilibrium
to complement the data in regions that were only sparsely investigated in the litera-
ture. This database (cf. Fig. 8) allows for a systematic data evaluation and determi-
nation of outliers. In total, about 35,000 data points were evaluated [54]. The VLE
properties: vapor pressure, saturated densities, enthalpy of vaporization and surface
tension were investigated; for homogeneous state points, the investigated properties
were: pressure, thermal expansion coefficient, isothermal compressibility, thermal
pressure coefficient, internal energy, isochoric heat capacity, isobaric heat capacity,
Grüneisen parameter, Joule-Thomson coefficient, speed of sound, Helmholtz energy
and chemical potential.
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Fig. 8: Overview of about 1000 state points that were studied with the Lustig for-
malism [39] by different authors. Circles: Thol et al. [57]; triangles: Köster et al.
[36]; squares: this work. Data for the Helmholtz energy and its density and inverse
temperature derivatives up to second-order were available for the stable state points.
For the metastable state points, the derivatives were available up to first-order.
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Different consistency tests were applied to assess the accuracy and precision and
thereby the reliability of the data. The data on homogeneous states were evaluated
point-wise using data from their respective vicinity and EOS. Approximately 10%
of all homogeneous bulk data were identified as gross outliers. VLE data were as-
sessed by tests based on the compressibility factor, the Clausius-Clapeyron equa-
tion and by an outlier test. First, consistency tests were used to identify unreliable
datasets. In a subsequent step, the mutual agreement of the remaining datasets was
evaluated. Seven particularly reliable VLE data sets were identified. The mutual
agreement of these data sets is approximately ±1% for vapor pressure, ±0.2% for
saturated liquid density, ±1% for saturated vapor density and ±0.75% for enthalpy
of vaporization – excluding the extended critical region. In most cases, the results
from different datasets were found to differ by more than the combined statistical
uncertainty of the individual data. Hence, the magnitude of systematic errors often
exceeds that from stochastic errors.

8 Data management

While it is generally always advisable to follow good practices of data manage-
ment when dealing with research data, this becomes even more expedient in cases
where the data have been obtained by accessing dedicated facilities, as it is the
case in scientific high-performance computing: Simulation results without annota-
tion become dark data, making their meaning and purpose unintelligible to oth-
ers, in particular, to automated processing on repositories and computing environ-
ments [47]. HPC and other facilities are not employed adequately if they are used to
generate dark data. Obversely, annotating the simulation outcome with appropriate
metadata enhances its value to the community and ensures that data become and
remain FAIR, i.e., findable, accessible, interoperable, and reusable, permitting their
preservation far beyond the immediate circumstances that motivated their creation
originally [6, 7, 48].

Data infrastructures, such as repositories, digital marketplaces or modelling and
simulation environments, often follow a multi-tier design with an explicit logical
or semantic layer, as illustrated by Fig. 9. In these cases, the underlying semantic
technology, which may include non-relational databases, mechanisms for checking
constraints, or handling digital objects, requires mechanisms for knowledge repre-
sentation. This technical requirement is the main underlying cause of the increasing
pressure on scientific communities to develop standardized schema metadata def-
initions or ontologies. Such metadata standards are known as semantic assets; an
agreement on semantic assets establishes semantic interoperability.

In materials modelling, understood here as roughly comprising the fields of com-
putational molecular engineering (CME) for soft matter [29] and integrated compu-
tational materials engineering (ICME) for solid materials [49], a major community-
governed effort towards metadata standardization is conducted by the European Ma-
terials Modelling Council (EMMC), specifically the EMMC focus areas on digital-
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Fig. 9: Role of semantic technology within interoperable data infrastructures, illus-
trated for the case of a typical multi-tier architecture.

ization and interoperability, supported by a series of projects funded from the Hori-
zon 2020 research and innovation programme, including VIMMP [28]. This ap-
proach, which is implemented by the present data management concept, is based on
a system of ontologies that permits the characterization of CME/ICME data prove-
nance at multiple levels of abstraction:

To facilitate technical-level reproducibility, metadata documenting all boundary
conditions, technical parameters of the employed software and circumstances re-
lated to workflow execution need to be provided, including details on the hardware
architecture and the mode of parallelization. Semantic assets that can be used for
this purpose include the VIMMP ontologies MACRO, OSMO, VISO and VOV [28]
in combination with the PaaSPort ontology [4]. Documenting a workflow manually
in this way, at full detail, is not recommended except in the case of very straight-
forward scenarios; the complete viability of such an approach would require the
automated annotation by an integration of ontologies with workflow management
systems [29].

In a logical representation of a simulation workflow, details of the technical im-
plementation are left out of consideration; instead, the workflow is described in
terms of the involved use cases, models, solvers and processors, which are defined
by their function rather than by their practical realization. This approach was intro-
duced by the EMMC through the development of the MODA (Model Data) work-
flow description standard [8]; this is an adequate level of annotation for most pur-
poses, as it permits documenting the provenance of simulation results as well as the
intended use cases in a similar way as it is usually done in a scientific journal article.
However, metadata provided in this way are machine-processable and standardized
by an ontology – in the present case, by the Ontology for Simulation, Modelling,
and Optimization (OSMO), i.e., the ontology version of MODA [29]. Logical data
transfer (LDT) notation is a graph-based visualization of such workflow descrip-
tions, which was also developed on the basis of a similar notation from MODA. The
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LDT graph corresponding to the scenario from Section 1 is shown in Fig. 10; this
graph corresponds to a workflow description in terms of OSMO and to a collection
of digital objects that can be ingested into (and extracted from) an interoperable data
infrastructure, e.g., in JSON or JSON-LD format, cf. Fig. 9.
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Fig. 10: Logical data transfer (LDT) provenance documentation for simulations by
Hitz et al. [26] addressing the Riemann problem use case from Section 1. The LDT
notation was presented in detail in previous work [29].

For a high-level representation of CME/ICME scenarios, a conceptualization of
modelling and simulation workflows as semioses is developed on the basis of the
European Materials and Modelling Ontology (EMMO) [12, 17]. As a top-level on-
tology, the main purpose of the EMMO consists in establishing the foundations for
a coherent architecture of semantic assets at the highest possible degree of abstrac-
tion. Due to the nature of this work, technical and philosophical requirements need
to be reconciled; the present stage of these developments is discussed in a recent
report [27].
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