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Abstract

Fluid phase equilibria involving nano-dispersed phases, where at least one of

the coexisting phases is confined to a small volume, are investigated by molec-

ular dynamics simulation. Complementing previous studies on nanoscopic

droplets, simulation volumes containing a nanoscopic gas bubble surrounded

by a subsaturated liquid phase under tension, i.e. at negative pressure, are

conducted in the canonical ensemble. The boundary conditions are chosen

such that the phase equilibrium at the curved interface is thermodynamically

stable. Two distinct size-dependent effects of opposite sign are found for the

density of the gas in the centre of the bubble. The curvature dependence of

the surface tension is considered, employing an approach based directly on

the average radial density profiles.
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1. Introduction1

Dispersed phases are ubiquitous both in nature and technological applica-2

tions. Their character poses a particular challenge to thermodynamic ap-3

proaches which attempt to reduce the complexity of a system to a few macro-4

scopic degrees of freedom. Even in the most bulk-like central region of a5

nanoscopic bubble or droplet, thermodynamic properties may deviate sub-6

stantially from the bulk phase under corresponding conditions. Interfacial7

properties may dominate, and the heterogeneity of the dispersion further8

complicates its thermodynamic description.9

Phenomenological thermodynamics was applied to fluid interfaces by Gibbs10

[1], whose approach ultimately succeeded due to the rigour with which it uni-11

fies the macroscopic and microscopic points of view. In particular, it reduces12

the phase boundary, which is continuous on the molecular level, to a strictly13

two-dimensional dividing surface separating two bulk phases. The devia-14

tion between the actual system and the theoretical system, consisting of the15

two bulk phases only, serves as a definition of interfacial excess quantities to16

which phenomenological thermodynamic reasoning can be applied.17

This reduction facilitates discussing and analysing systems which contain18

a nano-dispersed phase, but it does so at a prize. The task of representing19

physically complex behaviour is shifted to the interfacial excess quantities.20

Such quantities, and particularly the surface tension and the adsorption, have21

to account for all the aspects which distinguish, for instance, the bulk metal22

from a metal nanoparticle, or the bulk vapour from a gas bubble that contains23

a few molecules only. This explains why such fundamental and apparently24

simple issues such as the dependence of the surface tension of small gas25
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bubbles and liquid droplets on their radius are still not fully settled, despite26

having been on the agenda of scientific discussions for decades.27

Furthermore, for the development of molecular equations of state [2–4],28

which mostly aim at describing the bulk phases, it is important to under-29

stand how precisely the intermolecular interactions affect the association of30

molecules to small nanoclusters, since the underlying thermodynamic pertur-31

bation theory [5, 6] is based on a statistical-mechanical cluster expansion [7].32

In addition, a reliable description of natural phenomena such as atmospheric33

nucleation, as well as engineering problems such as nucleate pool boiling,34

spray cooling, or nucleation in expanding gases as it is ubiquitous in tur-35

bines, can only be obtained on the basis of quantitatively accurate models36

for the thermodynamic properties of the respective dispersed fluid phases, i.e.37

nanoscopic gas bubbles and liquid droplets. For such studies, both static and38

dynamic properties have to be captured, concerning physical objects which39

can fluctuate significantly in their size and shape or even disappear in the40

blink of an eye.41

It is therefore attractive to apply molecular simulation to study these42

problems, supplementing experimental results where they are available, and43

replacing them where suitable experiments have not yet been devised. Molec-44

ular dynamics (MD) simulation is capable of elucidating the properties of45

nano-dispersed phases in equilibrium [8–10] as well as dynamic phenomena46

including nucleation [10, 11], aggregation [12], coalescence [13], growth [14],47

and dynamic wetting [15], among many others [16, 17], at molecular resolu-48

tion. Even complex scenarios, such as gold clusters with an organic protection49

layer, are well accessible to MD simulation [18]. In a simulation, boundary50
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conditions can be imposed which would be hard or impossible to guarantee51

in an experimental setting. For instance, transport processes can be sampled52

in a well-defined steady state by non-equilibrium MD simulation, including53

the coupled heat and mass transfer occurring at interfaces [16] and during54

nucleation in a supersaturated vapour [11]. The critical nucleus of a nucle-55

ation process, which corresponds to a free energy maximum and is therefore56

thermodynamically unstable, can be investigated in detail by equilibrium57

simulation of a small system in the canonical ensemble [10].58

As a massively-parallel high performance computing application, MD sim-59

ulation scales well both in theory and in practice. Up to trillions of interac-60

tion sites can be simulated [19], so that a single modelling approach can be61

employed from the nanometre up to the micrometre length scale. As such,62

molecular simulation is a useful tool for investigating the size dependence of63

interfacial effects. MD simulations of the surface tension of curved vapour-64

liquid interfaces, comparing it with that of the planar phase boundary, were65

already conducted in the 1970s [8]. Many of the subsequent contributions to66

this problem, in particular more recently, have been guided by the analysis67

of molecular simulation results [9, 10, 20–27].68

The present work illustrates the contribution that molecular modelling69

and simulation can make to the discussion of nano-dispersed phases, with70

a focus on MD simulation of a gas bubble in equilibrium with a liquid at71

negative pressure. This case is both of fundamental scientific interest and72

technically important, e.g. for cavitation. In Section 2, a brief survey is given73

on the relevant aspects of the theory of vapour-liquid interfaces, including the74

dependence of the surface tension on curvature and its relation to the excess75
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equimolar radius; for an introduction to dispersed phase thermodynamics76

from a more general point of view, the interested reader is referred to the77

books by Hill [28], Kashchiev [29], Rowlinson and Widom [30], as well as78

Vehkamäki [31]. Section 3 introduces the employed molecular simulation79

methods. Simulation results, consistently finding the excess equimolar radius80

to be positive, are presented in Section 4. A possible interpretation of the81

present results is suggested in Section 5, relating it to previous work and82

leading to the conclusion which is given in Section 6.83

2. Thermodynamics of dispersed phases84

2.1. Vapour-liquid surface tension85

The tension of a planar fluid interface can be defined in different ways, fol-86

lowing a thermodynamic or a mechanical approach. Thermodynamically,87

the surface tension γ can be expressed by the partial derivative of the free88

energy A over the surface area F at constant number of molecules N (of all89

components), volume V , and temperature T :90

γ =

(

∂A

∂F

)

N,V,T

. (1)

The surface free energy can then be obtained by integration91

AF =

∫ F

0

γ dF, (2)

over a process during which the interface is created.92

By molecular simulation, the thermodynamic surface tension can be com-93

puted from the test area method [32], while grand canonical Monte Carlo94

simulation can be employed to obtain AF from the excess Landau free en-95

ergy corresponding to the respective density [20, 33].96
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Neglecting size effects on γ, the surface free energy can be approximated97

by AF ≈ γF . While such a simplification is justified for macroscopic systems,98

it may violate the thermodynamics of small systems [28], where, in general,99

significant finite size effects can be present even for planar phase boundaries100

[34, 35].101

For a mechanical definition, the surface tension is treated as causing a102

force fτ acting in tangential direction (with respect to the interface), i.e. a103

tendency of the interface to contract. The mechanical surface tension104

γ =
fτ
l

(3)

relates the magnitude of this force to the length of the contact line l between105

the interface and the surface of another mechanical object, e.g. a confining106

wall, on which the force fτ acts.107

In a cuboid box with the extension V = lx × ly × lz, which contains a108

planar interface normal to the z axis, the interface and the two faces of the109

box which are normal to the x axis have contact lines with an elongation of110

ly, cf. Fig. 1. Each of these faces (normal to x) has an area of Fyz = ly × lz.111

The tangential force fτ = fx = γly thus constitutes a negative (contracting)112

contribution to the pressure, acting in tangential direction, i.e. in x-direction113

here.114

The surface tension can thus be obtained from the deviation between the115

tangential and normal eigenvalues pτ and pν of the pressure tensor:116

pτ − pν = −
γly
Fyz

= −
γ

lz
. (4)

In the example discussed above, the tangential pressure pτ = px = py acts117

in the x- and y-directions parallel to the interface, while the normal pressure118
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acts in z-direction perpendicular to the interface. It is well known that for119

planar fluid phase boundaries, the thermodynamic and mechanical definitions120

of γ coincide [36]. In molecular simulation, where the pressure tensor is121

computed from the virial, an approach referred to as the virial route relies122

on Eq. (4) to obtain the surface tension [9, 37].123

2.2. Curved vapour-liquid interfaces124

At the curved interface of a bubble or a droplet, the mechanical equilibrium125

condition is characterized by the Laplace equation126

∆p = p′ − p′′ =
2γ

R
, (5)

where p′ and p′′ denote the pressure in the liquid and the vapour phase,127

respectively. The radius R for which this relation holds is called the Laplace128

radius or the radius of the surface of tension. The interface tends to contract,129

compressing the dispersed phase which is situated inside, and the surface130

tension γ couples this compressing effect with its cause, the curvature of the131

interface. By convention, the radius R is positive in case of a droplet (with132

p′ > p′′) and negative in case of a bubble (with p′ < p′′).133

It is worth recalling that within the thermodynamic approach of Gibbs134

[1], the position of the formal dividing surface is arbitrary at first. Thus, a135

further condition, such as Eq. (5), is needed to define a radius. The values of136

p′ and p′′ do not necessarily agree with the actual mechanical pressures on the137

two sides of the interface. They are obtained by combining the mechanical138

equilibrium condition, Eq. (5), with the chemical and thermal equilibrium139

conditions, i.e. equal chemical potential µi
′ = µi

′′ for all components i and140
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equal temperature T ′ = T ′′. The relation between the values of µi, p, and T141

is given by the equation of state for the bulk phases.142

For the case of a pure fluid below the critical temperature, a µ−p diagram143

[38] visualizes the impact of curvature, by means of a vapour-liquid equilib-144

rium condition with a pressure difference between both phases, as expressed145

by Eq. (5), on other thermodynamic properties such as the density of the146

coexisting fluid phases and the chemical potential, cf. Fig. 2. The residual147

chemical potential µres is defined by the deviation of the chemical potential µ148

from its ideal temperature-dependent (i.e. density-independent) contribution149

µid, reduced by temperature [39]150

µres(ρ, T ) =
µ(ρ, T )− µid(T )

T
. (6)

At low densities it can be approximated by µres ≈ ln ρ, so that the vapour151

parts of the three isotherms shown in Fig. 2 coincide roughly. Its derivative152

with respect to pressure at constant temperature is given by153

(

µres

p

)

T

=
1

ρT
. (7)

Hence, proceeding (at increasing ρ) from stable vapour to metastable vapour,154

to the unstable part of the isotherm, the metastable and finally the stable155

liquid, the slope of the curves in the µ − p diagram decreases successively.156

In Fig. 2 it can be seen how ∆p = p′ − p′′ > 0, corresponding to a droplet,157

induces a vapour-liquid equilibrium at a supersaturated chemical potential158

with µ > µsat, where µsat is the chemical potential for the equilibrium at a159

planar interface. Obversely, in case of a bubble, the pressure is higher in the160

gas phase, i.e. ∆p < 0, so that the coexisting phases become subsaturated161

(µ < µsat).162
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While the thermodynamic and the mechanical approaches to defining the163

surface tension, see Eqs. (1) and (3), respectively, are strictly equivalent for164

planar fluid interfaces, cf. Section 2.1, this is not the case for solid systems,165

where the pressure tensor in the bulk is not necessarily isotropic [40]. Also166

for nano-dispersed fluid phases, where an isotropic bulk-like region may be167

completely absent, thermodynamic and mechanical definitions of γ deviate168

from each other [26, 27]: Mechanical approaches following the virial route169

have found the surface tension of nanodroplets to be significantly smaller170

than that of the planar vapour-liquid interface [9, 41], whereas the thermo-171

dynamic routes, i.e. the test area method [23] and grand canonical Monte172

Carlo simulation [22], do not confirm this and find such an effect to be much173

weaker or even of opposite sign.174

An explanation of this disagreement between mechanical and thermo-175

dynamic expressions for the surface tension is possibly to be found in the176

observation of Percus et al. [42] that in general, the Landau free energy de-177

viates from the volume integral over the local pressure for inhomogeneous178

fluid systems. In any case, it is clear that the quantity which is relevant179

to the Gibbs approach is the thermodynamic surface tension and not the180

mechanical one.181

Properties related to the smallest clusters, i.e. dimers, trimers, etc., which182

are always present in a stable vapour, can in principle be determined by183

an exact statistical-mechanical approach based on the cluster expansions of184

Mayer [7], Born and Fuchs [43]. As mentioned above, the modern molec-185

ular equations of state from the SAFT [2] and BACKONE [3] families are186

based on this approach. With some effort (which would involve developing a187
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suitable concept of association), a molecular equation of state could possibly188

be employed to compute quantities such as the monomer fraction as well189

as higher-order cluster properties. In the literature, it has already been at-190

tempted to extrapolate from the dimer fraction in a stable vapour, obtained191

from the second virial coefficient, to the number of larger liquid nuclei formed192

in a supersaturated vapour [44, 45].193

While it is relatively uncommon to extrapolate from small clusters to194

larger ones, an obverse approach which extrapolates from small (or zero) to195

high curvature, is very widespread. The characteristic length scale for the196

dependence of the surface tension on the radius is the Tolman length197

δ = Rρ − R, (8)

introduced by Tolman [46, 47] who applied the theoretical framework of198

Gibbs [1] to the adsorption Γ , i.e. the excess density, at the spherical sur-199

face corresponding to the Laplace radius R. The Tolman length expresses200

the deviation of the equimolar radius Rρ, which corresponds to the spherical201

dividing surface with zero adsorption, from the Laplace radius R. It deter-202

mines the dependence of the surface tension on curvature according to the203

thermodynamically exact, non-truncated version of the Tolman equation [47]204

1

γ

dγ

dR
=

[2δ/R2] [1 + (δ/R) + (δ2/3R2)]

1 + [2δ/R] [1 + (δ/R) + (δ2/3R2)]
, (9)

which, by straightforward algebraic manipulation, transforms to [26]205

d lnR

d ln γ
= 1 +

1

2

(

δ

R
+

[

δ

R

]2

+
1

3

[

δ

R

]3
)−1

. (10)

Although Tolman [47] conjectured δ to be positive and its dependence on the206

radius to be of secondary importance, Eq. (10) is valid for any magnitude and207
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dependence on R of the Tolman length. However, its common interpretation208

as an expansion in terms of 1/R, i.e.209

γ

γ‖
=

1

1 + 2δ‖R−1 + . . .
, (11)

has more recently come under criticism for a variety of reasons [20, 25],210

discussed here in Sections 5 and 6. In any case, Eq. (11) has the advantage211

of being based directly on the Tolman length δ‖ and the surface tension γ‖ of212

the planar vapour-liquid interface which can be investigated experimentally213

in a stable state, as opposed to nano-dispersed phases where this is in most214

cases practically impossible.215

The Laplace radius R has the disadvantage of being defined by the surface216

tension of the curved interface, which is thermodynamically well-defined, but217

hard to determine. In consequence, it is often impossible to tell how many218

molecules are inside a bubble or a droplet with the Laplace radius R (which219

would be precisely known if an equimolar radius was specified), or which220

chemical potential and pressure difference correspond to a particular value221

of R. Hence, considering that the dependence of the surface tension on222

curvature is under dispute at present, Eq. (5) contains two unknowns and223

the Laplace radius is ill-defined at first.224

For this reason, direct routes to the Tolman length have been proposed225

which effectively eliminate the Laplace radius [48–51]. The approach of Nij-226

meijer et al. [48] as well as van Giessen and Blokhuis [50] can be formulated227

in terms of the equimolar surface tension, defined here by228

γρ =
Rρ(p

′ − p′′)

2
=

γRρ

R
, (12)

and its relation to the equimolar curvature 1/Rρ. In the planar limit, i.e.229
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1/Rρ → 0, the equimolar surface tension approaches the surface tension of230

the planar vapour-liquid interface231

lim
1/Rρ→0

γρ =

(

lim
1/Rρ→0

γ

)

·

(

lim
1/Rρ→0

Rρ

R

)

= γ‖. (13)

An analogous relation holds for the derivative of the surface tension with232

respect to curvature [26, 48]233

lim
1/Rρ→0

(

∂γρ
∂(1/Rρ)

)

T

= lim
1/Rρ→0

(

∂γ

∂(1/R)

)

T

= −2δ‖γ‖, (14)

relating it to the Tolman length in the planar limit.234

If the surface tension of the planar interface, rather than the actual surface235

tension of the curved interface, is inserted into the Laplace equation236

∆p = p′ − p′′ =
2γ‖
Rκ

, (15)

a direct route to δ can be also be expressed in terms of the capillarity radius237

Rκ, defined by Eq. (15). In this reformulation of Tolman’s theory, Eqs. (8) –238

(11) transform to [26]239

η = Rρ − Rκ, (16)

d ln γ

d ln(γ‖/Rκ)
=

2

3

(

1−

[

γ‖(1 + ηR−
κ )

γ

]3
)

, (17)

γ

γ‖
= 1 + 2

η‖
Rκ

− 2

(

η‖
Rκ

)2

+ . . . , (18)

wherein η is referred to as the excess equimolar radius. It should be noted240

that in the planar limit, the Tolman length and the excess equimolar radius241

are of the same magnitude, but of opposite sign [26]242

δ‖ = −η‖, (19)
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despite their similar definition.243

In previous work following the approach described above, only the case of244

a liquid droplet surrounded by gas has been considered [26]. In the present245

work, it is applied to MD simulation results for simulation volumes containing246

a gas bubble surrounded by a subsaturated liquid phase, cf. Section 4. For247

such systems, equimolar radii Rρ and capillarity radii Rκ are determined here248

from average radial density profiles, and the equimolar surface tension γρ is249

computed.250

3. Molecular simulation methodology251

3.1. Simulation software and molecular model252

The present work applies MD simulation to the problems outlined above. For253

this purpose, we employed the program ls1 mardyn [52], i.e. ‘large systems254

1st by molecular dynamics’. Eckhardt et al. [19] have recently observed255

that ls1 mardyn scales well in its parallelized mode, delivering an almost256

ideal speedup on modern supercomputer architectures and even achieving a257

world record in system size for molecular simulation, with N > 4 × 1012.258

The scenarios considered here are smaller by far, but partly require a long259

simulation time, so that an efficient simulation code was a prerequisite for260

carrying out the present study as well.261

Since the theoretical state of the art leaves many qualitative problems262

open for an investigation on the molecular level, the Lennard-Jones truncated-263

shifted (LJTS) pair potential was selected as the molecular model under264

consideration here. In reduced units, i.e. setting the Lennard-Jones size and265

energy parameters σ = 1 and ǫ = 1 (as well as the Boltzmann constant266
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k = 1) to unity, it is given by267

u(r) =







4 [(r−12 − r−6)− (r−12

c
− r−6

c
)] , r < rc,

0, r ≥ rc,
(20)

where r is the distance between two molecules and rc = 2.5 is the cutoff268

radius. Since the LJTS pair potential is a quantitatively precise model for269

methane and several noble gases, including their vapour-liquid surface tension270

[9], the present results also can be given a realistic interpretation.271

This choice of molecular model was also driven by the fact that vapour-272

liquid interfacial properties of the LJTS fluid have been addressed in previous273

work from several groups [9, 24, 41, 48, 50], employing different methods274

which can thus be compared directly. The truncated-shifted cutoff, cf. Eq.275

(20), is continuous in terms of the potential, but not with respect to the276

force which has a discontinuity at r = rc. The intermolecular interaction is277

thereby strictly limited to radii smaller than rc, avoiding the complex issue278

of long-range cutoff corrections in inhomogeneous systems [35, 53, 54].279

3.2. Influence of curvature on vapour-liquid equilibria280

Extending previous work on the excess equimolar radius of liquid droplets281

[26], a series of MD simulations was conducted for volumes containing a LJTS282

gas bubble in equilibrium with a subsaturated liquid. The simulations were283

carried out in the canonical ensemble with a periodic boundary condition.284

The initial conditions were chosen such that one single bubble existed in285

the centre of the simulation box. The size of that bubble was controlled by286

choosing the number of molecules and the simulation volume appropriately.287

As pointed out by Fisher and Wortis [55] as well as Reguera et al. [56],288
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such equilibria can be thermodynamically stable, even if the phase (here, the289

liquid) which surrounds the dispersed phase (here, the gas bubble) would290

be metastable in a corresponding homogeneous state. In such a case, the291

simulation volume has to be relatively small – the precise conditions depend292

on the equation of state of the fluid – for configurations containing a single293

gas bubble.294

The present MD simulations are therefore concerned with the scenario295

where a single gas bubble is surrounded by a subsaturated liquid phase, un-296

der equilibrium conditions for the pure LJTS fluid. To evaluate the equations297

of motion numerically, a Verlet leapfrog integrator was used, with an inte-298

gration time step of 0.003 in reduced units. The total momentum of the299

system was neutralized every 16 000 time steps, by subtracting equal frac-300

tions of it from all molecules, and the system of coordinates was continuously301

shifted, following the random motion of the bubble to keep its centre in the302

origin. The temperature was specified to be T = 0.75, i.e. about 70 % of303

the critical temperature [9], and controlled by a velocity rescaling thermo-304

stat (also known as an isokinetic thermostat). A novel shading approach for305

the visualization of point-based datasets, which makes it easier to analyze306

the morphology of an interface on the molecular level [57], was applied to307

individual configurations, cf. Fig. 3.308

The number of molecules N and the simulation volume V = l × l × l309

were varied as indicated in Table 1. An equilibration was conducted for at310

least 400 000 time steps. Subsequently, density profiles were determined by311

binning over several averaging intervals of at least 200 000 time steps until312

the profiles of were found to converge. In one of the cases (with N = 20313
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514 and V = 29 791), bubble configurations were found to alternate with314

homogeneous subsaturated liquid configurations, cf. Fig. 4. This simulation315

was also evaluated, however, taking only such density profiles into account316

where a bubble was actually present.317

From these density profiles, cf. Figs. 4 and 5, all quantities were deter-318

mined which are relevant to the theoretical approach introduced in previous319

work [26] and discussed in Section 2.2. For this purpose, an extrapolated320

liquid density ρ′∞ was determined from the limit to which the expression [26]321

ρcorr(r) = ρ′∞ − a′ exp (b′ − c′r) , (21)

adjusted to the outer part of the density profile ρ(r), in terms of the distance322

r from the centre of the bubble, converges at r → ∞. Standard deviations323

on the basis of different density profiles, collected from the same simulation324

during successive time intervals, were calculated to estimate the simulation325

error. An analogous term [26]326

ρcorr(r) = ρ′′−∞ + a′′ exp (b′′ + c′′r) , (22)

was adjusted to the inner part of the density profile. The criterion327

∫ Rρ

0

dr r2
[

ρ(r)− ρ′′−∞

]

+

∫ l/2

Rρ

dr r2 [ρ(r)− ρ′∞] (23)

was then applied to the density profile, i.e. to the actual profile ρ(r), not the328

correlation, to obtain the equimolar radius Rρ [26].329

However, in contrast with the method previously established for the sim-330

ulation of liquid drops [26], the pressure p′′ inside the gas bubble, and thereby331

the capillarity radius332

Rκ =
2γ‖

p′ − p′′
, (24)
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was not determined here from the density profile on the vapour side. Instead,333

exploiting the fact that the liquid phase can very accurately be sampled334

here, the extrapolated density ρ′∞ of the subsaturated liquid surrounding the335

bubble was considered. It should be recalled that the values of p′ and p′′336

which the theory requires are not the actual mechanical pressures outside337

and inside, but those of the respective subsaturated bulk phases at the same338

chemical potential (cf. the discussion in Section 2.2).339

Therefore, the pressure of the vapour phase was determined here, accord-340

ingly, from the thermal and chemical equilibrium condition by means of an341

empirical fifth order virial equation of state [58]. For the subsequent discus-342

sion, however, this methodical issue is of minor importance: The pressure343

difference ∆p, which yields the capillarity radius as defined by Eq. (15), is344

dominated by the contribution from the liquid phase, which was considered345

here by the same extrapolation method as previously published [26]. The346

surface tension of the planar vapour-liquid interface, which is needed to eval-347

uate Eq. (15), was taken from Vrabec et al. [9]. The employed equation of348

state has been shown to agree with molecular simulation results on pressure,349

volume, and temperature for the LJTS fluid with a high degree of accuracy,350

particularly concerning metastable supersaturated vapours and subsaturated351

liquids [58].352

In a second series of simulations, the qualitative influence of curvature353

was considered. For this purpose, canonical ensemble MD simulations were354

carried out for a bubble (surrounded by a subsaturated liquid), a droplet (sur-355

rounded by a supersaturated vapour), and a system consisting of a vapour356

and a liquid slab separated by planar interfaces. For these systems, the chem-357
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ical potential was computed by applying the Widom test particle method358

[59] with N test insertions and deletions every 16 time steps, where N is359

the number of particles in the system. To compensate for the additional360

computational effort, the averaging interval for constructing the profiles was361

reduced to 10 000 time steps here.362

The simulation conditions were chosen here such that the radii of the363

droplet and the bubble were about 8.5, while the thickness of the vapour and364

the liquid slab was about 12.5, complementing previous simulation results365

[60]. The subsaturation (for bubbles) or supersaturation (for droplets) was366

determined from the deviation367

∆µ = µ− µsat (25)

between the chemical potential in the system with the curved interface and368

the value µsat computed at the planar interface. On this basis, p′ as well as p′′369

for the second series of simulations were calculated from the virial equation370

for the LJTS fluid [58].371

4. Simulation results372

The density profiles of gas bubbles in equilibrium with subsaturated liquid373

phases, which were obtained by MD simulation in the canonical ensemble, are374

shown in Fig. 5. The density in the centre of the bubble should be expected375

to approach the saturated vapour density, i.e. ρ′′(T = 0.75) = 0.0124 [9], in376

the limit of an infinitely large bubble (R → −∞), which corresponds to the377

transition to a planar interface. The present simulation results confirm this,378

cf. Tab. 1 and the results for Rρ = −28 shown therein. Moreover, deviations379
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of the vapour density from its value at saturation over a planar interface ρ′′
sat

380

are observed for small bubbles, cf. Fig. 6. This deviation is caused by two381

qualitatively distinct effects:382

1. For relatively large bubbles (−∞ < Rρ < −9), the density in the centre383

decreases as the size of the bubble becomes smaller. The minimal gas384

density observed in the present series of simulations, which is signifi-385

cantly below 0.01, is found in the centre of the bubble with Rρ = −8.7.386

2. For even smaller bubbles (−9 < Rρ < 0), the density in the centre387

increases again. In the smallest case considered here, i.e. Rρ = −5.6,388

the gas phase is found to be much denser than that which coexists with389

the liquid at a planar interface, cf. Fig. 5.390

In Tab. 1, numerical results are shown that were obtained from these sim-391

ulations by following the approach outlined in Section 3.2, based on liquid392

densities extracted from the present density profiles.393

To assess the viability of the approach [26], the maximal density ρ′
max

, i.e.394

the density reached at the outer end of the simulation box, is compared with395

the extrapolated liquid density ρ′∞ in Tab. 1. In case of a very small volume396

available for the liquid, there could be a significant deviation between these397

two densities due to the absence of a sufficiently bulk-like region in the liquid398

phase. For the present series of simulations, however, the extrapolated and399

maximal densities are virtually identical, even for the smallest bubbles.400

To illustrate the influence of the interfacial curvature, the density of the401

liquid surrounding the bubbles is contrasted in Fig. 7 with the saturated bulk402

liquid density, as given by the correlation of Vrabec et al. [9]. This correlation403

has a standard deviation of δρ′
corr

= 0.0001 from the outcome of six Grand404
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Equilibrium simulations in the temperature range 0.67 ≤ T ≤ 0.82 with a405

simulation uncertainty of δρ′
sim

≤ 0.0002 [9]. The bubble density of the bulk406

LJTS fluid at T = 0.75 is thereby given as ρ′
sat

= 0.7594± 0.0003.407

The density of the liquid phase surrounding the gas bubble was found to408

be significantly subsaturated, since the deviation between ρ′
sat

and ρ′∞ is over409

four times larger than the accumulated error for both quantities in all cases.410

In particular, as shown in Fig. 7, smaller bubbles consistently correspond to411

smaller liquid densities here, in agreement with capillary theory. The excess412

equimolar radius η = Rρ−Rκ was found to be positive, indicating a deviation413

from the capillarity approximation where, to first order in 1/R, the surface414

tension of a droplet is larger and the surface tension of a bubble is smaller415

than that of the planar vapour-liquid interface.416

Results for the chemical potential of bubbles, planar slabs, and droplets,417

cf. Tab. 2, corroborate the thermodynamic approach to the analysis of curved418

interfaces outlined in Section 2.2. The chemical potential of droplets (and the419

vapour surrounding them) was consistently found to be higher than the value420

at saturation over a planar interface. Obversely, nanoscopic gas bubbles and421

the liquid phase surrounding them are subsaturated, and the deviation from422

µsat increases as the dispersed phase becomes smaller.423

5. Discussion424

As pointed out above, it is one of the observations from the present simula-425

tions of curved vapour-liquid interfaces that a nanobubble with a diameter426

larger than 5 nm, roughly corresponding to |R| > 6 for the LJTS fluid [9],427

has a smaller density than the bulk vapour at the dew line (see Fig. 5). This428

20



is the behaviour which should be expected from capillary theory, based on429

Gibbs’ thermodynamic interpretation of the Laplace equation. It was also430

confirmed that the subsaturated density corresponds to a subsaturated chem-431

ical potential (µ < µsat), cf. Tab. 2, in agreement with the thermodynamic432

discussion of the curvature influence on fluid phase coexistence (see Fig. 2).433

On the other hand, the vapour density in the centre of the bubble was434

found to increase again for even smaller bubbles, eventually exceeding the435

dew density. This is not paralleled by an increase, but rather by a further436

decrease of the liquid density, cf. Fig. 7, which suggests that in terms of the437

chemical potential, these extremely small bubbles are subsaturated as well.438

This implies that among the two effects present for the gas density, only439

one affects the surrounding liquid as well, suggesting the following interpre-440

tation: Both phases, vapour and liquid, tend to become subsaturated due441

to interfacial curvature, cf. Fig. 2. The density in the centre of the bubble,442

however, experiences an additional obverse influence due to a size-dependent443

phenomenon which is distinct from curvature.444

The density profiles, cf. Fig. 5, suggest that the density of the gas phase445

is increased not due to curvature, which tends to reduce µ and thereby also446

ρ′′, but because there is not enough space available in radial direction for447

the density profile to converge to the bulk density that would correspond to448

the respective value of µ. Therefore, this second effect should be ascribed to449

the extremely small diameter of the nanobubbles. In the present simulations,450

however, no analogous effect is found in the liquid phase. This may be related451

to the fact that the liquid has a much higher density, so that a perturbation452

which is significant for ρ′′ may well appear to be negligible in comparison453
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with ρ′.454

This parallels the recent discovery, by Malijevský and Jackson [27], of two455

distinct size-dependent effects concerning the surface tension of nanodroplets:456

The Tolman length δ was found to be negative, causing the surface tension457

to increase over its planar value. The leading term, which dominates this458

effect for relatively large radii, is proportional to 1/R. Extremely small459

droplets, however, exhibit a reduced surface tension. From an empirical460

correlation, Malijevský and Jackson [27] found this contribution to γ, which461

acts obversely to Tolman’s curvature effect, to be proportional to 1/R3.462

In a subsequent study of Werth et al. [35], the surface tension of thin463

planar liquid slabs with a thickness of s was found to be reduced, with respect464

to the macroscopic vapour-liquid surface tension, by a term proportional to465

1/s3. Furthermore, density profiles revealed the density in the centre of these466

nanoslabs to deviate from the density of the saturated bulk liquid by a term467

proportional to 1/s3 as well, suggesting that the two phenomena are related468

expressions of a single effect which is caused by the small thickness of the469

interface [35].470

The present results complement this picture. They support the hypo-471

thesis that for gas bubbles as well, there are distinct effects due to curvature472

on the one hand and due to the small diameter on the other hand, cf. Fig.473

6. This corroborates the analysis of Malijevský and Jackson [27]. For the474

surface tension of a bubble, however, these two effects do not counteract but475

rather reinforce each other, since both the curvature effect from the Tolman476

equation (with δ < 0 [27] and a negative curvature) and the small-diameter477

effect contribute to a reduction of γ.478
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This is confirmed by an analysis following the approach of Nijmeijer et479

al. [48] as well as van Giessen and Blokhuis [50], applied to the previous sim-480

ulations of single droplets [26] and the present simulations of single bubbles,481

cf. Tab. 3. In particular, the equimolar surface tension γρ, cf. Eq. (12), is482

consistently smaller for a gas bubble than for a liquid droplet. The surface483

tension of the planar vapour-liquid interface of the LJTS fluid at T = 0.75,484

which is γ‖ = 0.493 according to the correlation of Vrabec et al. [9], deviates485

relatively little from the γρ values found for the droplet. The equimolar sur-486

face tension of bubbles from the present simulations, however, is significantly487

smaller than γ‖.488

On the basis of Hadwiger’s theorem [61], it has been argued that the489

influence of geometry on the surface tension needs to be proportional to490

the mean curvature, the Gaussian curvature, or linear combinations thereof491

[62]. Such an interpretation of Hadwiger’s theorem would explicitly rule492

out any curvature-independent effect. This cannot be upheld in the light of493

the present discussion, since the small-diameter effect, which has now been494

detected for bubbles as well as for droplets, exists analogously for planar495

slabs where curvature is strictly absent [35].496

Beside the curvature and the diameter, further aspects of confinement497

may significantly influence vapour-liquid coexistence in small systems. In498

the past, such effects have largely been discussed separately from each other.499

A unified approach to describing the thermophysical properties of nano-500

dispersed fluid phases would have to account for various size-dependent phe-501

nomena in a consistent way:502

• The effect of curvature, cf. Tolman [47] and the present discussion.503
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• The effect of a small diameter, cf. Werth et al. [35] and the present504

discussion.505

• The effect of the capillary wave cutoff, cf. Sengers and van Leeuwen506

[63]. The small circumference of the nano-dispersed phase imposes a507

restriction on the available modes, each of which contributes to the508

interfacial free energy.509

• The effect of fluctuations, cf. Reguera et al. [56]. For a small dispersed510

phase, which is surrounded by a large bulk phase, the temperature, the511

density, and the volume can fluctuate significantly.512

A theoretical approach which accounts for the interplay between these phe-513

nomena and yet retains the simplicity of Tolman’s equation or the inverse514

cube law for the diameter effect is missing so far, however. Consequently,515

where no experimental data are available, molecular simulation is at present516

the only viable method for predicting the properties of nano-dispersed phases.517

6. Conclusion518

Molecular simulation is feasible up to the micrometre length scale by massive-519

ly-parallel molecular dynamics today, facilitating an analysis of the size de-520

pendence for interfacial phenomena which it would otherwise be relatively521

hard to investigate in a reliable way. By molecular simulation, which is firmly522

founded on statistical mechanics, such effects can be rigorously investigated.523

In combination with the previous research of Malijevsky and Jackson [27]524

on droplets as well as Werth et al. [35] on thin slabs, present results on gas525

bubbles complete the recent body of work on the interplay of distinct effects526
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due to a high curvature of the interface and a small diameter of the dispersed527

phase, respectively.528

Regarding the thermodynamic properties of nano-dispersed fluid phases,529

Tröster and Binder [25] have recently pointed out that as for small droplets530

there is, for instance, a significant deviation from the planar surface tension,531

but this effect does not consistently agree with the Tolman equation, ‘neither532

the capillarity approximation nor the Tolman parametrization [. . .] should be533

employed in any serious quantitative work.’ The present analysis supports534

this conclusion. Instead of the Tolman equation, a new theoretical framework535

needs to be developed to describe the various size-dependent effects related536

to the curvature, the diameter, and possibly the circumference as well as the537

volume, which controls the magnitude of fluctuations, in a coherent way.538
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[31] H. Vehkamäki, Classical Nucleation Theory in Multicomponent Systems,605

Springer, Heidelberg, 2006.606

[32] E. de Miguel, J. Phys. Chem. B 112 (2008) 4674–4679.607

[33] K. Binder, Phys. Rev. A 25 (1982) 1699–1709.608

[34] M. P. Gelfand, M. E. Fisher, Phys. A 166 (1990) 1–74.609

[35] S. Werth, S. V. Lishchuk, M. Horsch, H. Hasse, Phys. A 392 (2013)610

2359–2367.611

28



[36] E. Salomons, M. Mareschal, J. Phys.: Cond. Mat. 3 (1991) 3645–3661.612

[37] J. P. R. B. Walton, D. J. Tildesley, J. S. Rowlinson, J. R. Henderson,613

Molec. Phys. 48 (1983) 1357–1368.614

[38] P. G. Debenedetti, Metastable Liquids: Concepts and Principles, Prince-615

ton University Press, 1996.616

[39] J. Vrabec, H. Hasse, Molec. Phys. 100 (2002) 3375–3383.617

[40] A. I. Rusanov, D. V. Tatyanenko, A. K. Shchekin, Colloid J. 72 (2010)618

673–678.619

[41] S. M. Thompson, K. E. Gubbins, J. P. R. B. Walton, R. A. R. Chantry,620

J. S. Rowlinson, J. Chem. Phys. 81 (1984) 530–542.621

[42] J. K. Percus, L. A. Pozhar, K. E. Gubbins, Phys. Rev. E 51 (1995)622

261–265.623

[43] M. Born, K. Fuchs, Proc. R. Soc. London A 166 (1938) 391–414.624

[44] A. Dillmann, G. E. A. Meier, J. Chem. Phys. 94 (5) (1990) 3872–3884.625

[45] A. Laaksonen, I. J. Ford, M. Kulmala, Phys. Rev. E 49 (6) (1994) 5517–626

5524.627

[46] R. C. Tolman, J. Chem. Phys. 16 (1948) 758–774.628

[47] R. C. Tolman, J. Chem. Phys. 17 (1949) 333–337.629

[48] M. J. P. Nijmeijer, C. Bruin, A. B. van Woerkom, A. F. Bakker, J. M. J.630

van Leeuwen, J. Chem. Phys. 96 (1991) 565–576.631

29



[49] T. Frolov, Y. Mishin, J. Chem. Phys. 131 (2009) 054702.632

[50] A. E. van Giessen, E. M. Blokhuis, J. Chem. Phys. 131 (2009) 164705.633

[51] B. B. Laird, R. Davidchack, J. Chem. Phys. 132 (2010) 204101.634

[52] C. Niethammer, M. Horsch, S. Becker, M. Bernreuther, M. Buchholz,635

W. Eckhardt, A. Heinecke, S. Werth, H.-J. Bungartz, C. W. Glass, H.636

Hasse, J. Vrabec (2013) In preparation.637
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Table 1:

658

N V ρ′
max

ρ′∞ ρ′′
0

p′(ρ′∞) p′′(ρ′∞) −Rρ −Rκ

7 303 10 648 0.7348(4) 0.736(2) 0.023(3) −0.16 0.0061 5.6 6.1

9 551 13 824 0.7364(2) 0.7365(3) 0.0145(8) −0.15 0.0061 5.9 6.2

20 514 29 791 0.7426(7) 0.745(1) 0.02(1) −0.101 0.0068 8.1 9.2

18 107 27 000 0.747(2) 0.746(1) 0.008(3) −0.093 0.0069 8.7 9.9

42 474 64 000 0.7495(6) 0.7493(3) 0.010(1) −0.068 0.0072 12.1 13.1

34 944 54 872 0.7540(8) 0.751(3) 0.009(2) −0.058 0.0074 12.6 15.1 [60]

75 794 117 649 0.7522(3) 0.7521(5) 0.011(1) −0.048 0.0075 16.0 17.7

122 232 195 112 0.7537(3) 0.7538(2) 0.0113(3) −0.035 0.0077 20.0 23.0

263 163 438 976 0.7557(2) 0.7556(4) 0.0117(5) −0.022 0.0079 28.0 32.8

659

Number of particles N and simulation volume V for a series of canonical660

ensemble MD simulations of LJTS bubbles in equilibrium (at T = 0.75).661

The maximal density ρ′
max

of the liquid (in the outer region of the simulation662

volume) was extracted from the density profile. An extrapolated density663

ρ′∞ of the liquid phase was also determined by following an approximation664

for the outer part of the the density profiles, cf. Eq. (21), to an infinite665

distance from the centre of the bubble. The gas density ρ′′
0
was determined666

in a region closer than 1.5 to the centre of the bubble. (Errors for the667

density, with a magnitude corresponding to that of the final digit, are given668

in parentheses.) The thermodynamic liquid and vapour pressures p′(ρ′∞) and669

p′′(ρ′∞) to be used within the Gibbs approach, respectively, were computed670

from the extrapolated liquid density by a fifth-order virial expansion [58];671
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they may deviate from the mechanical pressure. From the equimolar and672

capillarity radii Rρ and Rκ, respectively, which are negative by the convention673

employed here, the excess equimolar radius η = Rρ − Rκ can be obtained;674

the value of η is found to be positive (and of the order of 1 σ).675
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Table 2:

N V Rρ µ p′(∆µ)

18 107 27 000 − 8.7 −3.55(3) −0.13(4)

34 944 54 872 −12.6 −3.51(2) −0.10(3) [60]

N V sρ µsat psat

7 079 18 341 8.5 −3.37(2) 0.0084 [60]

10 409 26 971 12.5 −3.37(2) 0.0084

N V Rρ µ p′(∆µ)

2 425 27 000 8.6 −3.28(6) 0.08(6)

6 844 54 872 12.4 −3.31(4) 0.05(5) [60]

676

Results for bubbles (top), planar slabs (middle), and droplets (bottom) from677

equilibrium MD simulation of the LJTS fluid in the canonical ensemble with678

N particles and a simulation volume of V at a temperature of T = 0.75,679

where the equimolar radii Rρ and slab thicknesses sρ were determined from680

density profiles, while the chemical potential µ was computed by Widom’s681

test particle method [59]. The liquid pressure p′ was calculated from the682

deviation ∆µ between the chemical potential at the planar and curved in-683

terfaces on the basis of an equation of state [58]. The error for µ and p′,684

respectively, is indicated in parentheses, where the error of is of the same685

magnitude as the last given digit.686
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Table 3:

N V p′ − p′′ 1/Rρ γρ

7 303 10 648 −0.16(1) −0.180 0.45(4)

9 551 13 824 −0.159(5) −0.169 0.47(2)

20 514 29 791 −0.11(1) −0.123 0.44(4)

18 107 27 000 −0.10(1) −0.115 0.43(4)

42 474 64 000 −0.075(6) −0.0827 0.46(3)

75 794 117 649 −0.056(7) −0.0626 0.44(5)

122 232 195 112 −0.043(4) −0.0500 0.43(4)

N V p′ − p′′ 1/Rρ γρ

15 237 166 375 0.060(2) 0.0626 0.48(2)

12 651 140 608 0.065(2) 0.0668 0.49(2)

10 241 110 592 0.070(1) 0.0716 0.49(1)

6 619 74 088 0.080(2) 0.0831 0.48(1)

5 161 54 872 0.085(3) 0.0902 0.47(1)

3 762 39 304 0.102(2) 0.100 0.51(1)

1 418 21 952 0.15(1) 0.145 0.52(4)

687

Number of molecules N , simulation volume V , pressure difference p′ − p′′688

between the coexisting fluid phases, equimolar curvature 1/Rρ, and equimolar689

surface tension γρ, cf. Eq. (12), from the present MD simulations of gas690

bubbles (top) as well as the MD simulations of liquid droplets (bottom) from691

previous work [26], for the LJTS fluid at T = 0.75. Numbers in parentheses692

represent the error, with the magnitude corresponding to that of the last693

given digit (only results for γρ with an error of 0.05 or less are shown here).694
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695

Diagram illustrating the mechanical definition of the surface tension. The696

two faces of the box with an orientation perpendicular to the x axis expe-697

rience forces in opposite directions, expressing the tendency of an interface698

situated in the centre of the box to contract. The magnitude of the force fx699

is proportional to the surface tension γ and the length of the contact line ly.700
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Figure 2:

701

Isothermal dependence of the residual chemical potential µres, cf. Eq. (6), on702

the pressure p from a virial expansion [58] for the truncated-shifted Lennard-703

Jones potential at reduced temperatures of 0.75 (· · ·), 0.9 (· – ·), and 1.0704

(– –). The plot extends over the whole range of vapour (v) and liquid (l)705

densities including stable, metastable and unstable states. Self-intersections706

of the isotherms (•) correspond to the phase equilibrium condition at a planar707

interface, i.e. µ′ = µ′′ = µsat(T ) and p′ = p′′ = psat(T ). Solid horizontal lines:708

Vapour-liquid equilibrium at a curved interface characterized by the Laplace709

equation, cf. Eq. (5), where the reduced temperature is 0.75 and the pressure710

is smaller outside than for the dispersed phase, which is confined by the711

interface, with a pressure difference of p′ − p′′ = ± 0.2 in reduced units.712
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Figure 3:

713

Visualization of the same configuration by Phong shading (top) as opposed714

to the novel PointAO shading algorithm (bottom), cf. Eichelbaum et al. [57].715
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Figure 4:

716

Density profiles of LJTS bubbles surrounded by liquid, collected during dif-717

ferent sampling intervals from two MD simulation runs, both in the canonical718

ensemble at T = 0.75. The density profiles on the right side correspond to719

samlpling intervals from 45 000 to 60 000 (—), 60 000 to 70 000 (– –), and720

70 000 to 80 000 time steps (· · ·) after simulation onset, with N = 34 944721

and V = 38×38×38, exhibiting fast convergence and negligible fluctuations722

[60]. The density profiles on the left side, corresponding to N = 20 514 and723

V = 31 × 31 × 31 with sampling intervals from 14 to 16 (—), 24 to 26 (–724

–), and 34 to 36 million time steps (· · ·) after simulation onset, alternate725

between configurations where a bubble is present and homogeneous subsatu-726

rated liquid configurations. Horizontal dash-dotted line: Density of the bulk727

liquid at saturation; Vertical lines: Equimolar radii of the bubbles.728
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Figure 5:

729

Density profiles of bubbles in equilibrium with a subsaturated liquid phase730

from MD simulation of the LJTS fluid in the canonical ensemble (—) in731

comparison with the vapour and liquid densities at saturation (– –), for a732

temperature of T = 0.75. Top: Results for five relatively small bubbles733

with equimolar radii Rρ = −5.6, −5.9, −8.1, −8.7, and −12.1 (from left to734

right); Bottom: Results for four relatively large bubbles with Rρ = −12.6,735

−16.0, −20.0, and −28.0 (from left to right), including simulation results for736

Rρ = −12.6 from previous work [60].737
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Figure 6:
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738

Density in the centre over the equimolar radius of gas bubbles, which is nega-739

tive here by convention, from present MD simulations of the LJTS fluid in the740

canonical ensemble at T = 0.75 (◦), including a data point for Rρ = −12.6741

from previous work [60], in comparison with the vapour density at satura-742

tion (—) and a thermodynamic prediction from the capillarity approxima-743

tion (– –), considering curvature effects only and assuming γ = γ‖ (and744

hence R = Rκ = Rρ), as well as a correlation which also includes a deviation745

from the capillarity approximation proportional to the inverse cube of the746

radius (· · ·), i.e. ∆ρ = −1.5/R−3

ρ , due to the small-diameter effect found by747

Malijevský and Jackson [27].748
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Figure 7:
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749

Liquid density ρ′∞, obtained by extrapolating the density profiles from present750

MD simulations to an infinite distance from the centre of the gas bubble (◦),751

over the equimolar radius Rρ, which is negative by the convention employed752

here, for the LJTS fluid in the canonical ensemble at T = 0.75, including a753

data point for Rρ = −12.6 from previous work [60], in comparison with the754

liquid density at saturation (—) as well as a thermodynamic prediction from755

the capillarity approximation (– –), considering curvature effects only and756

assuming γ = γ‖ (and hence R = Rκ = Rρ).757
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