

Chemie Ingenieur Technik

Molekulare Modellierung und Simulation in der Fluidverfahrenstechnik

Journal:	Chemie Ingenieur Technik
Manuscript ID:	cite.201400036.R1
Wiley - Manuscript type:	Übersichtsbeitrag
Date Submitted by the Author:	n/a
Complete List of Authors:	Horsch, Martin; TU Kaiserslautern, Lehrstuhl für Thermodynamik Hasse, Hans; TU Kaiserslautern, Lehrstuhl für Thermodynamik
Keywords:	Molekulardynamik, Grenzflächen, Computerprogramme

Übersichtsbeitrag

Molekulare Modellierung und Simulation in der Fluidverfahrenstechnik

Martin Horsch^{1*} und Hans Hasse

Technische Universität Kaiserslautern, Lehrstuhl für Thermodynamik (LTD), Erwin-Schrödinger-Str. 44, 67663 Kaiserslautern, Deutschland

Die molekulare Simulation hat infolge der Fortschritte im massiv-parallelen Höchstleistungsrechnen ein hohes Maß an Vielseitigkeit entwickelt. Auf der Grundlage physikalisch realistischer Modelle der intermolekularen Wechselwirkungen kann sie Stoffdaten hochgenau beschreiben und vorhersagen. Transportprozesse und heterogene Systeme können mittlerweile zuverlässig simuliert werden. Voraussetzung dafür sind robuste molekulare Modelle und statistisch-mechanisch rigorose Simulationsmethoden. Der Stand der Technik wird hier im Hinblick auf Anwendungen in der Verfahrenstechnik kommentiert.

Schlagwörter: Molekulare Simulation, Grenzflächen, Transportprozesse, Höchstleistungsrechnen

Molecular modelling and simulation in fluid process engineering

Molecular simulation has reached a high degree of versatility following the advance of massively-parallel high-performance computing. On the basis of physically realistic models of the intermolecular interactions, thermodynamic properties can be described and predicted with a high accuracy. Transport processes and heterogeneous systems can today be reliably simulated as well. This requires robust molecular models and simulation methods with a rigorous foundation on statistical mechanics. The state of the art is commented here with a focus on applications in process engineering.

Keywords: Molecular simulation, interfaces, transport processes, high-performance computing

1. EINLEITUNG

Nach der Entwicklung der Monte-Carlo-Simulationstechnik (MC) im Los Alamos der 1950er Jahre hat sich die molekulare Simulation schnell als numerische Methodik etabliert, um auf statistischmechanischer Grundlage thermodynamische Eigenschaften zu berechnen [1 – 3]. Damit ist sie eine der ältesten Anwendungen des wissenschaftlichen Rechnens überhaupt. Während die MC-Simulation stochastisch vorgeht und eine Statistik über repräsentative molekulare Konfigurationen generiert, bildet die Molekulardynamik (MD) darüberhinaus den zeitlichen Verlauf des simulierten Systems ab. Sie verfolgt eine einzelne oder wenige repräsentative Trajektorien [2]. Der relativ frühzeitige Erfolg molekularer Ansätze im wissenschaftlichen Rechnen beruht darauf, dass schon wenige Moleküle (etwa 200 bis 1 000) genügen, um die meisten thermodynamischen Eigenschaften homogener Fluide wiederzugeben. Dies gilt auch für Phasengleichgewichte, etwa zwischen Dampf und Flüssigkeit (VLE), die z.B. durch Grand-Equilibrium-Simulation der beiden homogenen Phasen untersucht werden können, ohne die Phasengrenze explizit zu betrachten [4].

¹ Korrespondierender Autor: Martin Horsch, martin.horsch@mv.uni-kl.de, Tel.: +49 631 2053227, Fax: +49 631 2053835.

Chemie Ingenieur Technik

Der Ausgangspunkt der molekularen Simulation ist das molekulare Modell, d.h. eine auch nach numerischen Gesichtspunkten günstige Darstellung der Wechselwirkung zwischen den Molekülen als klassisch-mechanisches Kraftfeld. Schon sehr einfache Modelle – beginnend bei harten Kugeln – genügen, um viele physikalische Phänomene qualitativ wiederzugeben und die im Hintergrund wirkenden Mechanismen auf molekularer Ebene zu untersuchen. Ist ein Modell qualitativ korrekt, so lässt es sich in der Regel auch durch die optimale Wahl der Modellparameter mit realen Stoffdaten in Übereinstimmung bringen [3, 5, 6]. Durch die bemerkenswerte Weiterentwicklung der Simulationstechnik im Höchstleistungsrechnen, sowohl hinsichtlich der Simulationsmethoden als auch der Hardware, hat sich Computational Molecular Engineering als eigenständige Disziplin der Modellierung und Simulation herausgebildet, die mittlerweile einen nicht zu unterschätzenden Beitrag zur Forschung in der Fluidverfahrenstechnik leistet [3, 7 – 9].

Neben der MC- und MD-Simulation gibt es in der molekularen Thermodynamik zahlreiche weitere numerische Methoden mit jeweils eigenen Stärken und Schwächen [8]. Hierzu gehören mesoskopische Ansätze wie die Gitter-Boltzmann-Methode oder klassisch-mechanische Dichtefunktionaltheorien, die eine Position zwischen partikel- und kontinuumsbasierter Mechanik einnehmen [10]. Sie können größere Längen- und Zeitskalen überbrücken, zumeist allerdings auf Kosten der Zuverlässigkeit des Modells. Von großer Bedeutung sind auch die molekularen Zustandsgleichungen auf Grundlage der Statistischen Assoziierenden Fluidtheorie [5, 8, 11]. Im Computational Molecular Engineering setzt es sich zunehmend durch, mehrere Ansätze miteinander zu kombinieren [3, 8], etwa durch ihre Kopplung zu skalenübergreifenden Simulationen oder durch den Einsatz identischer Modelle in molekularen Simulationen und Zustandsgleichungen [5].

Die Simulation einiger technischer Vorgänge an Oberflächen, wie etwa des Sputtering [12], beruht auch auf zuverlässigen Mehrkörperpotentialen für die Wechselwirkung zwischen den Atomen im Festkörper. Solche Modelle können, gerade wenn sie auch einen Phasenübergang wiedergeben sollen, hochkomplex sein und über eine sehr große Zahl anpassbarer Parameter verfügen [13]. Auch die Konformation von Makromolekülen mit einer großen Anzahl innerer Freiheitsgrade ist der molekularen Simulation zugänglich [14]. Für vergleichsweise langsame Prozesse wie die Proteinfaltung erfordert die Exploration der freien Energielandschaft allerdings besondere Techniken, und auch die Parametrierung der Kraftfelder stellt eine besondere Herausforderung dar. Ihren Ursprung haben die molekularen Methoden aber in der physikalischen Grundlagenforschung. Dort werden sie in Verbindung mit abstrakten, rein qualitativen Modellen bis heute gewinnbringend eingesetzt. So kann etwa die Simulation harter Kugeln zum Verständnis der molekularen Struktur flüssiger Phasen beitragen [15].

In diesem Beitrag soll der Stand der Technik der molekularen Modellierung und Simulation im Hinblick auf mögliche Anwendungen in der Fluidverfahrenstechnik kommentiert werden. Gerade in der Thermodynamik verfügen die molekularen Methoden im Vergleich zu einer rein empirischen Korrelation verfügbarer Stoffdaten über einen inhärenten Vorteil. Indem ein physikalischer Modellierungsansatz gewählt wird, der die mikroskopischen Eigenschaften und Wechselwirkungen von vornherein qualitativ korrekt wiedergibt, ergibt sich bei geschickter Wahl des Modells eine mindestens gleich gute numerische Übereinstimmung mit den Stoffdaten wie bei phänomenologischen Ansätzen. Der Anspruch des Computational Molecular Engineering ist es, sich dabei in der Regel im Bereich der experimentellen Ungenauigkeit zu bewegen, d.h. die größtmögliche Genauigkeit überhaupt zu erzielen. Dies gilt sowohl für molekulare Zustandsgleichungen als auch für die Simulation [5, 8].

2. COMPUTATIONAL MOLECULAR ENGINEERING

2.1 Molekulare Modellierung von Fluiden

Entscheidend für die Anwendbarkeit eines Modells im Ingenieurwesen ist die Übereinstimmung mit bekannten Stoffeigenschaften, die Zuverlässigkeit bei der Extrapolation bzw. der Vorhersage für Wiley-VCH Page 3 of 18

Chemie Ingenieur Technik

60

experimentell noch nicht untersuchte Zustandspunkte. Auf Grundlage einer physikalisch realistischen Beschreibung mit wenigen anpassbaren Parametern kann beides erreicht werden. So beruhen molekulare Kraftfeldmethoden auf einem klassisch-mechanischen Modell der zwischen den Molekülen wirkenden Kräfte. Diese werden als Paarpotential *u*(*r*) dargestellt, d.h. über den Beitrag punktförmiger Wechselwirkungszentren verschiedener Moleküle zur potentiellen Energie des Systems in Abhängigkeit vom Abstand *r* zwischen den Zentren. Das Lennard-Jones-Potential (LJ)

$$u(r) = 4\varepsilon \left[(\sigma/r)^{12} - (\sigma/r)^6 \right]$$

mit den Parametern ε (Energie) und σ (Länge) erweist sich als numerisch effektiver Weg, die kurzreichweitigen intermolekularen Wechselwirkungen abzubilden [2, 6]. Es berücksichtigt sowohl die Anziehung durch dispersive Londonkräfte als auch die weiche elektrostatische Repulsion bei der nichtbindenden gegenseitigen Durchdringung von Molekülorbitalen. Langreichweitige elektrostatische Wechselwirkungen können durch Punktladungen und eine Multipolentwicklung mit Punktpolaritäten höherer Ordnung repräsentiert werden.

So eignet sich etwa die Kombination eines LJ-Wechselwirkungszentrums mit einer Punktladung als Modell für einatomige Ionen in wässriger Lösung [16]. Durch die geeignete Anordnung von zwei Punktladungen in Kombination mit einem LJ-Zentrum wird nicht nur die Polarität, sondern auch die Struktur und Dynamik der Wasserstoffbrücken zwischen Molekülen sowie der Einfluss der H-Brückenbindung auf die thermodynamischen Eigenschaften wiedergegeben [17], vgl. Abb. 1. Dabei ist es entscheidend, die sterische Asymmetrie das Wasserstoffbrücke zu berücksichtigen: Werden die Punktladungen äquidistant zum LJ-Zentrum angeordnet (unten in Abb. 1), so bestimmt sich das VLE und die kritische Temperatur des Modells ausschließlich aus den LJ-Potentialparametern und dem Dipolmoment. Bei unsymmetrischer Anordnung der Punktladungen lassen sich der Einfluss des Dipols und der H-Brücken separieren (oben in Abb. 1). Bei gleichbleibendem Dipolmoment bewirkt ein größerer Abstand der Punktladungen dann eine stärkere orientierungsabhängige Anziehung infolge der Wasserstoffbrückenbindung. Ein zweites LJ-Zentrum für das Wasserstoffatom ist unnötig, da dessen einziges Elektron einem bindenden Molekülorbital angehört und keinen eigenständigen Beitrag zur Dispersion leistet.

Bei solchen Modellierungsansätzen, die alle relevanten physikalischen Phänomene qualitativ berücksichtigen, genügen schon wenige Parameter, um eine hochgenaue Übereinstimmung mit realen Stoffdaten zu ermöglichen. Dies betrifft sowohl Eigenschaften des homogenen Fluids als auch Transportgrößen [18, 19], vgl. Abb. 2, sowie VLE-Daten und Oberflächenspannungen [20], vgl. Abb. 3. Schon das 1CLJ-Modell, d.h. ein einzelnes LJ-Zentrum, ist mit seinen zwei Parametern ein geeignetes Modell für Edelgase und selbst für Methan [2, 6]. Ähnlich verhält es sich für das LJTS-Modell, bei dem das LJ-Potential bei $r = 2.5 \sigma$ abgeschnitten wird. Molekulare Modelle aus zwei gleichartigen LJ-Zentren und einem Punktdipol (2CLJD) oder Punktquadrupol (2CLJQ) mit insgesamt vier Parametern genügen bereits, um die meisten niedrigmolekularen Fluide zuverlässig abzubilden [21]. Werden für die attraktiven und repulsiven Beiträge zur intermolekularen Wechselwirkung auch die Exponenten als Parameter freigegeben, so ergibt sich das vierparametrige Mie-Potential als Verallgemeinerung des LJ-Modells. Dieses stellt einen grobkörnigen Ansatz dar (coarse graining), denn ein einzelnes rotationssymmetrisches Mie-Zentrum genügt bereits für CO₂, einige wenige Zentren für deutlich komplexere Moleküle [5].

Entscheidend ist in jedem Fall die quantitative Optimierung des molekularen Modells, d.h. seine Parametrierung. In der Regel genügt die Minimierung einer einzigen Zielgröße, etwa der mittleren Abweichung von einer Korrelation experimenteller VLE-Daten [7]. Durch den Einsatz einer echten multikriteriellen Optimierung kann die gesamte Menge der pareto-optimalen Parametersätze berechnet werden. Daraus ergibt sich ein flexibler Modellierungsansatz, der es ermöglicht, je nach Zustandspunkt und untersuchter Fragestellung eine geeignete Kombination von Parameterwerten zu wählen [6]. Bei komplexen Modellen mit vielen Wechselwirkungszentren ist es im allgemeinen von Vorteil, einen integrierten Ansatz aus Simulationen und Zustandsgleichungen oder Korrelationen von Modelleigenschaften zu verfolgen, um den numerischen Aufwand der Modellparametrierung zu begrenzen [5].

Die empirische Validierung eines Modells erfolgt durch die Überprüfung seiner Extrapolationsfähigkeit [3]. Dazu werden üblicherweise Experimentaldaten, die nicht in den Vorgang der Modellparametrierung eingeflossen sind, mit den Ergebnissen molekularer Simulationen verglichen [7]. Diese sind dann prädiktiv, und die Qualität der Vorhersage spiegelt die Qualität des Modells. Von Bedeutung ist sowohl die rein quantitative Extrapolation, bei der nur der betrachtete Zustandspunkt variiert wird, als auch der qualitative Sprung zur Prädiktion andersartiger Stoffdaten. Beispielsweise kann sich eine gute Übereinstimmung mit der experimentell gemessenen Oberflächenspannung auch dann ergeben, wenn das Modell nur mittels Simulationen homogener Systeme an VLE-Daten angepasst wurde [6, 20], vgl. Abb. 3. Bei Gemischen besteht zusätzlich die Notwendigkeit, die Paarpotentiale zwischen verschiedenartigen Molekülen zu parametrieren. Für elektrostatische Zentren, d.h. Punktladungen und Punktpolaritäten höherer Ordnung, ergibt sich die Wechselwirkung aus dem coulombschen Gesetz, unabhängig davon, ob es sich um gleich- oder verschiedenartige Moleküle handelt. Für das LJ-Potential können empirische Kombinationsregeln (wie etwa die Lorentz-Berthelot-Mischungsregel) mit binären Wechselwirkungsparametern nahe bei 1 eingesetzt werden [21]. Auch dies belegt die Extrapolationsfähigkeit und Validität der molekularen Modelle.

2.2 Molekulare Simulation im Höchstleistungsrechnen

Neben der prinzipiellen Zuverlässigkeit des Modellierungsansatzes ist die numerisch effiziente Auswertung und Parametrierung eine Voraussetzung für seine Anwendung in der Ingenieurspraxis. Computational Molecular Engineering ist, ähnlich wie etwa Computational Fluid Dynamics, in vielen Fällen nur als Höchstleistungsrechnen denkbar. So müssen für die Modelloptimierung verschiedene Parametersätze betrachtet und auf ihre Übereinstimmung mit realen Stoffdaten (wie etwa VLE-Daten) getestet werden. Für jedes Modell ist dabei eine Reihe von VLE-Simulationen nötig, die jeweils die für Ingenieuranwendungen geforderte Genauigkeit erreichen müssen.

Die effiziente parallele Durchführung zahlreicher Simulationen relativ kleiner homogener Systeme kann sich auf eine Parallelisierung der Potential- und Kraftberechnung stützen, wie sie etwa im Simulationscode *ms2* implementiert ist [9]. Dabei müssen die Koordinaten (und Geschwindigkeiten) aller Moleküle nach jedem MC- oder MD-Schritt an alle parallelen Prozesse verteilt werden. Für die Simulation von Systemen mit großen Teilchenzahlen ist dies undurchführbar. Numerisch günstiger ist vor allem in der Molekulardynamik ein volumenbasierter Dekompositionsansatz (vgl. Abb. 4). Zwischen zwei Integrationszeitschritten müssen dabei nur Prozesse, die räumlich unmittelbar benachbarte Teilvolumina bearbeiten, Daten über einen relativ kleinen Nahbereich austauschen. Mit dem Simulationscode *ls1* konnte so auf dem *SuperMUC*-Cluster am Leibniz-Rechenzentrum in Garching bereits ein Mikrosystem mit über vier Billionen Molekülen simuliert werden [22].

Hohe Teilchenzahlen verbieten es zudem, die Wechselwirkung – oder auch nur den Abstand – zwischen allen Molekülpaaren explizit zu berechnen. Abhilfe schafft hier die räumliche Vorsortierung der Moleküle durch Nachbarschaftslisten oder eine Datenstruktur aus verknüpften Zellen (linked cells). Dabei müssen die innersten Schleiden des Codes nur für die vergleichsweise wenigen Molekülpaare durchlaufen werden, die sich in benachbarten Zellen befinden. Mit adaptiven Zellen und einer dynamischen Lastbalancierung bei der Parallelisierung können auch Systeme mit stark heterogenen und fluktuierenden Partikelverteilungen effizient simuliert werden, vgl. Abb. 4. Ein solches Schema sind *k*-dimensionale Bäume (*k*-d trees) zur Darstellung einer rekursiven Volumendekomposition in Hälften, die unterschiedlich groß sind, aber etwa die gleiche Rechenlast tragen [22].

Wie in Abb. 5 am Beispiel der MD-Simulation eines Tropfens mit 3,7 Millionen Molekülen zu sehen ist, steigert die Lastbalancierung durch *k*-d trees auf der Grundlage einer adaptiven Zellenstruktur die Skalierbarkeit erheblich. Die Kapazität von Rechnerarchitekturen mit einer sehr großen Anzahl von Wiley-VCH

Cores können erst dadurch effektiv ausgenutzt werden. Durch das effiziente massiv-parallele Höchstleistungsrechnen wird die molekularen Simulation zum Computerexperiment. Sie lässt Prozesse in Systemen mit stark heterogenen Dichteverteilungen, wie die Durchströmung nano- oder mikroporöser Membranen [23 – 25], *in silico* ablaufen und kann zum Verständnis komplexer aktivierter Prozesse wie der Nukleation in übersättigten Dämpfen beitragen [26].

3. EINSATZ IN DER FLUIDVERFAHRENSTECHNIK

3.1 Thermodynamische Stoffdaten

Eine sehr umfängliche Palette an Stoffdaten ist der molekularen Modellierung und Simulation unmittelbar zugänglich. Dies beinhaltet neben dem Zusammenhang von Dichte, Druck, Temperatur und Zusammensetzung für homogene Fluide auch Phasengleichgewichtsdaten verschiedenster Art: VLE und LLE oder auch mehrphasige Systeme. Da es möglich ist, molekulare Modelle an wenige experimentelle Datenpunkte anzupassen, können so in den Stoffdatenbanken bestehende Lücken überbrückt werden. Vor allem für Gefahrstoffe oder schwer vermessbare Zustandspunkte kann dies einen gewinnbringenden Weg zur Einsparung besonders aufwendiger Experimente darstellen. Daneben ergibt sich durch die molekulare Simulation ein unabhängiger Weg zur Validierung und Weiterentwicklung phänomenologischer Stoffdatenmodelle und Zustandsgleichungen. Den Unternehmen der chemischen Industrie sind diese Möglichkeiten schon seit längerem bekannt. Der aktuelle Entwicklungsstand wird u.a. durch die regelmäßigen Simulationswettbewerbe des Industrial Fluid Properties Simulation Collective (IFPSC) abgefragt.

Die molekulare Modellierung und Simulation ist jedoch weit mehr als ein Werkzeug zur Vorhersage der Stoffdaten homogener Fluide im Gleichgewicht. Die folgenden Abschnitte illustrieren dies am Beispiel von Anwendungsgebieten mit besonderer Bedeutung für die Verfahrenstechnik: Durch die hochgenaue Wiedergabe der Struktur und Dynamik auf der Nanometer- und Nanosekundenskala eignet sich die molekulare Simulation besonders zur Untersuchung von Grenzflächeneigenschaften (Abschnitt 3.2) und Transportprozessen (Abschnitt 3.3). Vor allem für Prozesse an Phasengrenzflächen, wie etwa Tropfendynamik und Nukleation, zeigt sich zunehmend das große Potential molekularer Methoden in Verbindung mit dem Höchstleistungsrechnen [22, 26].

3.2 Eigenschaften von Fluiden an Grenzflächen

Indem die molekulare Struktur des Fluids an einer Phasengrenze aufgelöst wird, können Grenzflächeneffekte detailliert untersucht werden. So zeigt sich in einer molekularen Simulation der kontinuierliche Übergang zwischen fluiden Phasen sowie die einer dem Fluid von der Oberfläche eines Festkörpers aufgezwungene Ordnung (vgl. Abb. 6). Neben der mittleren Dichteverteilung ergeben sich aus der Simulation auch Fluktuationen und Wellenbewegungen und somit auch Konfigurationen, die auf molekularer Ebene stark vom mechanischen Gleichgewicht abweichen. In der phänomenologischen Thermodynamik erscheinen diese Effekte nur in Form aggregierter Exzessgrößen der Phasengrenze, wie der Adsorption Γ_{i} , d.h. der Exzessdichte einer Komponente *i*, sowie der Oberflächenspannung γ , d.h. der freien Exzessenergie [27]. Diese Größen sind der molekularen Simulation genauso zugänglich wie das chemische Potential μ_{i} , durch das sie nach der Gibbs'schen Adsorptionsgleichung

$$\left(\frac{\partial\gamma}{\partial\mu_i}\right)_{T,\mu_{j\neq i}} = -\Gamma_i$$

miteinander verknüpft sind. Wie in Abb. 7 zu sehen ist, lässt sich auch die Anreicherung einer Komponente an einer Grenzfläche, die selbst für Gemische niedrigmolekularer Fluide ein erhebliches Ausmaß erreichen kann, durch molekulare Simulation detailliert untersuchen. Experimentell kann dieser Effekt für fluide Grenzflächen dagegen nur indirekt über die Abhängigkeit der Oberflächenspannung von Wiley-VCH der Zusammensetzung beobachtet werden.

Zur Berechnung von γ unterscheidet man zwischen mechanischen und thermodynamischen Ansätzen [1, 27]. Bei planaren fluiden Grenzflächen führen diese Herangehensweisen zum gleichen Ergebnis. Die Oberflächenspannung kann somit unmittelbar aus der Anisotropie des Drucktensors für das Gesamtsystem berechnet werden. Bei Separation kurz- und langreichweitiger Effekte in Kombination mit einer geeigneten Abschneidekorrektur kann diese Methode sehr effizient implementiert werden [20]. An einer gekrümmten Grenzfläche leisten dagegen Fluktuationen einen wesentlichen Beitrag zur freien Exzessenergie, der in mechanischen Definitionen der Oberflächenspannung nicht berücksichtigt wird. Für sehr kleine Tropfen oder Gasblasen müssen daher andere, thermodynamisch bzw. statistischmechanisch rigorose Methoden eingesetzt werden [27].

Die quantitativ zuverlässige Modellierung der Adsorption mit molekularen Methoden stellt eine besondere Herausforderung dar. Neben dem Kraftfeld für das Fluid muss auch der Festkörper sowie das Wechselwirkungspotential zwischen Fluidmolekülen und der Adsorberoberfläche dargestellt werden [28]. Das Substrat kann zudem regelmäßige und unregelmäßige Strukturen aufweisen, die sich zu einer komlexen Morphologie überlagern [29]. Aufgrund ihrer heterogenen Struktur sind bei Systemen mit einer Phasengrenze auch langreichweitige Wechselwirkungen stärker zu berücksichtigen [20]. Dieses Feld ist besonders vielversprechend, da hier alle Vorteile der molekularen Simulation gegenüber rein empirischen Ansätzen zur Geltung kommen. Auf Grundlage validierter molekularer Modelle können auch mehrere adsorbierte Schichten detailliert vorhergesagt werden, ohne vereinfachende Annahmen über deren thermodynamische Eigenschaften machen zu müssen [29]. Angesichts der hier in den letzten Jahren gemachten Fortschritte befasst sich etwa auch der aktuelle Simulation Challenge des IFPSC mit der Adsorption.

Benetzungseigenschaften ergeben sich aus dem Dreiphasenkontakt einer Dampf-Flüssigkeits-Grenzfläche mit der Oberfläche eines festen Substrats. In Abb. 6 ist etwa ein Dichteprofil aus der Simulation eines Tropfens auf einer glatten Wand zu sehen, die beide über das LJTS-Potential modelliert werden [28]. Man erkennt mehrere geordnete Schichten in der flüssigen Phase sowie die in einer einzigen Schicht erfolgende Adsorption aus der Gasphase. Die nichttriviale Überlagerung dieser molekularen Ordnung durch die gekrümmte Grenzfläche des Tropfens ist auch experimentell nicht direkt zugänglich und nur durch molekulare Simulation in dieser Vollständigkeit zu erfassen. Der Kontaktwinkel aus der Simulation kann allerdings mit Stoffdaten abgeglichen und z.B. zur Parametrierung der Fluid-Wand-Wechselwirkung genutzt werden, sofern der – durch Verunreinigung, Rauigkeit oder Unregelmäßigkeiten im Substrat typischerweise gegebenen – Komplexität des experimentell untersuchten Systems hinreichend Rechnung getragen wird [28, 29].

3.3 Transportprozesse und Nichtgleichgewichte

Transportgrößen wie Wärmeleitfähigkeiten, Viskositäten und Diffusionskoeffizienten sind experimentell zugängliche Stoffdaten, die für zahlreiche verfahrenstechnische Anwendungen relevant sind. Die in den entsprechenden Prozessen der Wärme-, Impuls- und Stoffübertragung auftretende Dissipation ist allerdings vor allem in heterogenen Systemen (z.B. an einer Wand oder in der Nähe einer Phasengrenze) oft zu komplex, um sich durch einfache Randbedingungen mit einem konstanten und linearen Transportkoeffizienten wiedergeben zu lassen [30]. Vor allem für den Stofftransport durch nanoporöse Materialien genügt eine solche aggregierte Darstellung der Vorgänge kaum [23, 25]. Für aktivierte Prozesse sind Ansätze vom Typ der Arrheniusgleichung üblich, wobei die Beschreibung einer möglicherweise komplexen Zustandsänderung auf die Bestimmung einer Aktivierungsenergie reduziert wird. Die molekulare Simulation ermöglicht auch hier einen tieferen Einblick [31, 32].

Zur Berechnung von Transporteigenschaften wird ein Fluid entweder im Gleichgewichtszustand nach einem statistisch-mechanischen Ansatz analysiert (EMD, d.h. equilibrium MD), oder es wird ein Nichtgleichgewicht vorgegeben (NEMD, d.h. non-equilibrium MD), um den durch die Auslenkung vom Gleichgewichtszustand hervorgerufenen Ausgleichsvorgang zu betrachten [19, 24]. Im Bereich einer Wiley-VCH

Chemie Ingenieur Technik

geringfügigen Auslenkung lassen sich viele solche Prozesse durch lineare Transportkoeffizienten beschreiben. Die statistische Mechanik stellt einen Zusammenhang zwischen diesen für die Dissipation im Nichtgleichgewicht charakteristischen Eigenschaften und der Fluktuation verwandter Größen im Gleichgewicht her.

So ergibt sich beispielsweise nach der Einsteinrelation der Selbstdiffusionskoeffizient unmittelbar aus der mittleren Strecke, die einzelne Moleküle im Lauf der Zeit zurücklegen. Über den Green-Kubo-Formalismus lassen sich Transportgrößen auch als Integrale über Autokorrelationsfunktionen $\omega(0) \cdot \omega(t)$ charakteristischer Observablen ω bestimmen. Für solche EMD-Ansätze eignen sich bereits kleine Systeme (mit ca. 1 000 Molekülen), allerdings ist eine gute Statistik und die Verwaltung großer Datenmengen erforderlich. In Abb. 2 sind EMD-Simulationsergebnisse für binäre Gemische von Methanol und Ammoniak dargestellt. Die molekularen Modelle wurden ausschließlich anhand quantenmechanischer Rechnungen und experimenteller VLE-Daten parametriert. Auch hier ergibt sich eine gute Übereinstimmung der Modellprädiktion mit den realen Stoffdaten [19].

Transportprozesse können in einer MD-Simulation auch direkt abgebildet werden. Von einem instabilen
Anfangszustand ausgehend kann dabei der gesamte Relaxationsvorgang bis hin zum Gleichgewicht
betrachtet werden. Neben den Transportgrößen selbst lassen sich mit einer solchen direkten
Relaxationssimulation auch weitere Erkenntnisse über den Verlauf des jeweiligen Prozesses gewinnen.
NEMD-Simulationsmethoden verzichten auf die zeitabhängige Darstellung des Prozesses und erzeugen
einen stationären Nichtgleichgewichtszustand. Dadurch kann die Geschwindigkeit des
Ausgleichsvorganges und damit der Transportkoeffizient unter wohldefinierten Bedingungen mit höherer
Genauigkeit bestimmt werden. Solche Methoden erfordern die Intervention eines maxwellschen Dämons,
z.B. in Form einer treibenden Kraft, die den stationären Zustand aufrechterhält.

Zahlreiche Anwendungen ergeben sich dafür in der Mikro- und Nanofluidik [23], z.B. bei der Durchströmung nanoporöser Membranen [24, 25]. So lassen sich kollektive Diffusionskoeffizienten von Fluiden in Kontakt mit einem nanostrukturierten Festkörper durch NEMD mit dem Dämon von Avendaño berechnen. Dazu werden in einem Teilvolumen des simulierten Systems formal unterschiedlich gefärbte, davon abgesehen aber identische Moleküle in entgegengesetzte Richtungen beschleunigt. Die ortsaufgelöste Scherviskosität des Fluids und der Druckverlust bei der Durchströmung einer nanoporösen Membran können durch ähnliche Simulationen ebenfalls erfasst werden. Die molekulare Simulation kann hierbei auch die für die Filtration besonders relevanten Ein- und Austrittseffekte wiedergeben [24], vgl. Abb. 8. Die NEMD ist der EMD gegenüber grundsätzlich darin im Vorteil, dass sie in der Lage ist, Transportvorgänge auch im nichtlinearen Bereich wiederzugeben, insbesondere für nicht-netwonsche Fluide.

Durch ihre molekulare Auflösung eignet sich die MD-Simulation besonders zur Untersuchung der gekoppelten Wärme- und Stoffübertragung bei einem Phasenübergang, wie z.B. der Verdampfung durch Blasensieden oder des Kondensationsvorgangs in einem übersättigten Dampf. Da hierbei zunächst disperse nanoskalige Keime der unter den jeweiligen Bedingungen stabilen Phase entstehen, handelt es sich um einen von einem metastabilen Zustand ausgehenden aktivierten Prozess. Der erste Schritt eines solchen Vorganges ist die Nukleation, d.h. die Überwindung einer freien Energiebarriere durch die Bildung eines überkritischen Nukleus. Obwohl die Nukleation als aktivierter Vorgang komplexer ist als eine einfache Relaxation, kann auch sie direkt simuliert werden. Eine einzige MD-Simulation gibt dann den gesamten Phasenübergang wieder. Ein NEMD-Ansatz ergibt sich durch das pseudo-großkanonische Ensemble mit McDonald's Dämon: Dieser maxwellsche Dämon entfernt hinreichend große Nuklei der entstehenden dispersen Phase, und aus der Häufigkeit seiner Interventionen lässt sich die Nukleationsrate bestimmen [26].

Die molekulare Modellierung ist eine zuverlässige Methode, um Stoffdaten zu beschreiben und vorherzusagen. Wie gezeigt wurde, können massiv-parallele molekulare Simulationen großer heterogener Systeme darüberhinaus auch dazu beitragen, die Vorgänge zu beleuchten, die Transportprozessen an Grenzflächen zugrundeliegen. Bei quantitativer Übereinstimmung mit den Eigenschaften realer Fluide ergibt sich daraus ein auch für Optimierungen in der Verfahrenstechnik vielversprechender Ansatz, umso mehr wenn es gelingt, Festkörperoberflächen und ihren Kontakt mit dem Fluid realistisch abzubilden. Die Kenntnis der Phasengleichgewichtsdaten ist in Kombination mit Benetzungseigenschaften für viele verfahrenstechnische Anwendungen wie etwa die Destillation interessant. Unmittelbar lassen sich Adsorptionsisothermen sowie die Kinetik der Adsorption und Desorption simulieren. Auch in der Extraktion und der Auslegung von Kreisprozessen ergeben sich naheliegende Anwendungen. Der Weg der molekularen Methoden von der Grundlagenforschung bis hin zu ihrem systematischen Einsatz in der Prozessoptimierung ist erst zum Teil zurückgelegt. Es zeichnet sich aber bereits ab, dass es sich auszahlen wird, ihn auch weiterhin konsequent zu beschreiten.

Danksagung. Wir danken S. Becker, W. Eckhardt, C. Engin, S. Grottel, G. Guevara Carrión, C. Niethammer, G. Reina und S. Werth für ihre Mitarbeit bei Simulation und Visualisierung, C. Avendaño Jiménez, K. Langenbach, S. V. Lishchuk, E. A. Müller, G. Scheuermann, F. Siperstein, R. Srivastava, N. Tchipev und J. Vrabec für wertvolle Diskussionen, dem Bundesministerium für Bildung und Forschung für die Förderung des Projektes SkaSim und der Deutschen Forschungsgemeinschaft für die Förderung des Sonderforschungsbereiches 926 sowie eines Reinhart-Koselleck-Projekts (H.H.). Diese Arbeit wurde unter dem Patronat der Boltzmann-Zuse-Gesellschaft angefertigt.

LITERATUR

- [1] J. S. Rowlinson, B. Widom, *Molecular Theory of Capillarity*, Clarendon, Oxford **1982**.
- [2] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press 1989.
- [3] P. Ungerer, C. Nieto Draghi, B. Rousseau, G. Ahunbay, V. Lachet, J. Mol. Liq. 2007, 134, 71 89.
- [4] J. Vrabec, H. Hasse, Mol. Phys. 2002, 100, 3375 3383.
- [5] C. Avendaño, T. Lafitte, C. S. Adjiman, A. Galindo, E. A. Müller, G. Jackson, *J. Phys. Chem. B* **2013**, *117*, 2717 2733.
- [6] K. Stöbener, P. Klein, S. Reiser, M. Horsch, K.-H. Küfer, H. Hasse, 2014, eingereicht.
- [7] B. Eckl, J. Vrabec, H. Hasse, Fluid Phase Equilib. 2008, 274 (4th fluid properties challenge), 16 26.
- [8] *Molecular Systems Engineering* (Hrsg.: E. N. Pistikopoulos, M. C. Georgiadis, V. Dua, C. S. Adjiman, A. Galindo), Wiley-VCH, Weinheim **2010**.
- [9] S. Deublein, B. Eckl, J. Stoll, S. V. Lishchuk, G. Guevara Carrión, C. W. Glass, T. Merker, M. Bernreuther, H. Hasse, J. Vrabec, *CIT* **2012**, *84*, 114 120.
- [10] H. Emmerich, *The Diffuse Interface Approach in Materials Science*, Springer, Heidelberg **2004**.
- [11] J. Groß, G. Sadowski, Ind. Eng. Chem. Res. 2001, 40, 1244 1260.
- [12] C. Engin, H. M. Urbassek, *Nucl. Instrum. Meth.* **2013**, 295, 72 75.
- [13] D. W. Brenner, Phys. Stat. Sol. B 2000, 217, 23 40.
- [14] E. H. Lee, J. Hsin, M. Sotomayor, G. Comellas, K. Schulten, *Structure* **2009**, *17*, 1295 1306.

Chemie Ingenieur Technik

- [15] S. N. Wanasundara, R. J. Spiteri, R. K. Bowles, J. Chem. Phys. 2014, 024505.
- [16] S. Deublein, J. Vrabec, H. Hasse, J. Chem. Phys. 2012, 136, 084501.
- [17] K. Langenbach, C. Engin, M. Horsch, H. Hasse, 2014, in Vorbereitung.
- [18] G. Guevara Carrión, H. Hasse, J. Vrabec, *Top. Curr. Chem.* **2012**, 307, 201 250.
- [19] G. Guevara Carrión, J. Vrabec, H. Hasse, Int. J. Thermophys. 2012, 33, 449 468.
- [20] S. Werth, M. Horsch, H. Hasse, **2014**, in Vorbereitung.
- [21] Y.-L. Huang, J. Vrabec, H. Hasse, Fluid Phase Equilib. 2009, 287, 62 69.

[22] W. Eckhardt, A. Heinecke, R. Bader, M. Brehm, N. Hammer, H. Huber, H.-G. Kleinhenz, J. Vrabec, H. Hasse, M. Horsch, M. Bernreuther, C. W. Glass, C. Niethammer, A. Bode, H.-J. Bungartz, in *Supercomputing: ISC 2013 Proceedings* (Hrsg.: J. M. Kunkel, T. Ludwig, H. W. Meuer), Springer, Heidelberg **2013**, 1 – 12.

[23] G. Karniadakis, A. Beskok, N. Aluru, *Microflows and Nanoflows: Fundamentals and Simulation*, Springer, New York **2005**.

[24] H. Frentrup, C. Avendaño, M. Horsch, A. Salih, E. A. Müller, *Mol. Sim.* **2012**, *38*, 540 – 553.

[25] J. Kärger, D. M. Ruthven, D. N. Theodorou, *Diffusion in Nanoporous Materials*, Wiley-VCH, Weinheim **2012**.

[26] M. Horsch, J. Vrabec, J. Chem. Phys. 2009, 131, 184104.

[27] A. Malijevský, G. Jackson, J. Phys.: Cond. Mat. 2012, 24, 464121.

[28] S. Becker, M. Horsch, H. Hasse, 2014, in Vorbereitung.

[29] V. Kumar, S. Sridhar, J. D. Errington, J. Chem. Phys. 2011, 135, 184702.

[30] S. Kjelstrup, D. Bedeaux, E. Johannessen, J. Groß, *Non-Equilibrium Thermodynamics for Engineers*, World Scientific, Singapur **2010**.

[31] D. Wales, *Energy Landscapes: Applications to Clusters, Biomolecules and Glasses*, Cambridge University Press **2004**.

[32] P. L. Freddolino, C. B. Harrison, Y. Liu, K. Schulten, *Nature Phys.* 2010, 6, 751 – 758.

ABBILDUNGSVERZEICHNIS

Abbildung 1. Siede- und Taudichten molekularer Modelle mit einem LJ-Zentrum und zwei Punktladungen (gleichen Betrags und entgegengesetzten Vorzeichens) bei Variation der Modellparameter sowie der Struktur [17]. Die reduzierte Dipolstärke μ* der hier untersuchten Modelle wird zwischen 2 (leere Symbole) und 2,45 (volle Symbole) variiert, während der reduzierte Abstand d* zwischen den Partialladungen 0,3 (▼), 0,4 (●), bzw. 0,5 (▲) beträgt. Das LJ-Zentrum befindet sich dabei jeweils auf der gleichen Position wie die negative Partialladung (oben), bzw. es befindet sich in der Mitte zwischen den Partialladungen (unten).

Abbildung 2. Links: Temperaturabhängigkeit der Dichte (oben) und des Selbstdiffusionskoeffizienten (unten) von flüssigem Ammoniak bei p = 10 MPa [19]; Vergleich einer Zustandsgleichung (—) bzw. von Experimentaldaten (+) mit den molekularen Modellen von Feng et al. (△) sowie Guevara et al. (○). Rechts: Abhängigkeit der Scherviskosität binärer flüssiger Gemische aus Ammoniak und Methanol (bei p = 10 MPa) von ihrer Zusammensetzung bei drei verschiedenen Temperaturen; Vergleich des molekularen Modells von Guevara et al. (Symbole) mit einem von Experimentaldaten der beiden Reinstoffe ausgehenden phänomenologischen Modell (—), vgl. Guevara et al. [19].

Abbildung 3. Oberflächenspannung realer quadrupolarer Fluide nach Korrelationen experimenteller Daten aus der DIPPR-Datenbank (—) im Vergleich zur Vorhersage durch molekulare Modelle vom 2CLJQ-Typ (□), vgl. Werth et al. [20]. Die Parametrierung der molekularen Modelle erfolgte ausschließlich anhand von Eigenschaften der homogenen Bulkphasen im Dampf-Flüssigkeits Gleichgewicht, d.h. ohne Berücksichtigung der Oberflächenspannung.

Abbildung 4. Geeignete Datenstrukturen für die massiv-parallele molekulare Simulation von Systemen mit hochgradig heterogener und fluktuierender Partikelverteilung, wie sie im MD-Code Is1 implementiert sind [18]. Den verschiedenen parallelen Prozessen werden durch einen Lastbalancierungsalgorithmus bestimmte Teilvolumina zugewiesen (rechts). Zur Vereinfachung der Nachbarschaftssuche werden die Moleküle in verknüpfte Zellen einsortiert, deren Zumessung adaptiv auf Schwankungen der lokalen Dichte abgestimmt werden kann (links).

Abbildung 5. Starke Skalierung, d.h. Abnahme der Rechenzeit über der Anzahl paralleler Prozesse bei unveränderlichem Anwendungsszenario, für die MD-Simulation eines Flüssigkeitstropfens des LJTS-Fluids mit N = 3 700 000 Teilchen bei der reduzierten Temperatur T* = 0,95 mit dem Simulationscode Is1. Die Parallelisierung erfolgt volumenbasiert durch Zuteilung gleich großer Teilvolumina (\circ) bzw. unter Einsatz eines Lastbalancierungsalgorithmus auf der Grundlage k-dimensionaler Bäume (\blacksquare). Die Simulationen wurden auf dem Rechencluster hermit am Höchstleistungsrechenzentrum Stuttgart durchgeführt.

Abbildung 6. Dichteprofil eines LJTS-Flüssigkeitstropfens mit einem reduzierten Radius von $R^* =$ für ein System aus N = 1500 Fluidteilchen bei der reduzierten Temperatur $T^* = 0,8$ auf einer ebenfalls durch das LJTS-Potential modellierten planaren Festkörperoberfläche mit einer reduzierten Dichte von $\rho^* = 2,1$ und einer reduzierten Fluid-Wand-Wechselwirkungsenergie von $\zeta = 0,65$, vgl. Becker et al. [28]. Der durch eine kugelförmige Oberfläche (—) approximierte Kontaktwinkel beträgt in diesem Fall $\theta = 60^\circ \pm 2^\circ$.

Abbildung 7. MD-Simulation einer planaren Dampf-Flüssigkeits-Grenzfläche für das binäre Gemisch aus Sauerstoff (2CLJQ-Modell) und CO₂ (3CLJQ-Modell) bei T = 253 K und p = 6,5 MPa [20]. Oben: Visuelle Darstellung einer Konfiguration, wobei die dargestellten Kugeln den LJ-Wechselwirkungszentren entsprechen. Unten: Profil der partiellen Dichte der beiden Komponenten, wodurch die Anreicherung von Sauerstoff an der Grenzfläche erkennbar wird, vgl. Werth et al. [20].

Abbildung 8. Konfigurationen aus NEMD-Simulationen der von einem Druckgradienten getriebenen (Poiseuille-)Strömung von Wasser durch aus wenigen Graphenschichten zusammengesetzte nanoporöse Kohlenstoffmembranen.

(siehe Worddokument, letzte Seite) 88x65mm (300 x 300 DPI)

1.5

1

0.5

0

15

(siehe Worddokument, letzte Seite) 234x321mm (300 x 300 DPI)

(siehe Worddokument, letzte Seite) 100x83mm (300 x 300 DPI)