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Abstract

Menisci of the truncated and shifted Lennard-Jones fluid between parallel planar walls

are investigated by molecular dynamics simulation. Thereby, the characteristic energy of the

unlike dispersive interaction between fluid molecules and wall atoms is systematically varied to

determine its influence on the contact angle. The temperature is varied as well, covering most
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of the range between the triple point temperature and the critical temperature of the bulk fluid.

The transition between obtuse and acute angles is found to occur at a temperature-independent

magnitude of the fluid-wall dispersive interaction energy.On the basis of the present simulation

results, fluid-wall interaction potentials can be adjustedto contact angle measurements.

Introduction

A major challenge for molecular modeling consists in the definition of unlike interaction potentials.

In the past, a variety of combination rules were proposed, none of which was found to be valid in

general. Several of these, including the Lorentz-Berthelot combination rule, are considered to

be a good starting point for further adjustment in most cases1. The present work contributes to

understanding the dispersive interaction between a solid wall and a fluid, which is essential for the

analysis of adsorption and microscopic flow properties.

In principle, the Lorentz-Berthelot rule can be applied foreffective pair potentials acting be-

tween the fluid particles and the atoms of a solid wall2,3, based on size and energy parameters

derived from properties of the solid and the fluid. However, while using combination rules to ex-

trapolate from homogeneous bulk solid and fluid properties to interfacial phenomena can lead to a

good agreement with the actual behavior2, this approach has only shaky theoretical foundations4.

Unlike pair potentials between a fluid and a solid can only be expected to give reliable results

if they are developed using actual information on fluid-wallcontact effects. Since adsorption in

nanopores can be studied on the basis of effective pair potentials3,5–9, it is obversely possible to

fit model parameters to adsorption isotherms10. The present study follows the line of research,

suggested by Werder et al.11 , of adjusting unlike parameters to contact angle measurements.

Using density functional theory, Teletzke et al.12 examined the dependence of wetting and

drying transitions on characteristic size and energy parameters of the fluid-wall dispersive inter-

action. Subsequently, Sokołowski and Fischer13 as well as Giovambattista et al.14 investigated

fluid density profiles in extremely narrow channels for several values of the fluid-wall dispersive

energy and surface polarity, respectively. On the microscopic and the nanoscopic level, the statics
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and dynamics of fluids under confinement and the corresponding three-phase contact lines can also

be investigated by the lattice Boltzmann method15–18.

Molecular dynamics (MD) simulation can be applied to this problem as well, leading to a con-

sistent molecular approach. The increase in computing power and the development of massively

parallel MD software provide tools for simulating systems with a large number of particles. Sys-

tem sizes accessible to MD simulation are getting closer to the smallest experimental settings. This

allows comparing simulation data directly to experimentalobservables for a growing spectrum of

properties, including the contact angle. The truncated andshifted Lennard-Jones (LJTS) poten-

tial19 is used in the present work for describing both the fluid-fluidand the fluid-wall interaction,

leading to systems that extend previous studies on interface properties for the LJTS fluid20–22.

Hysteresis23 as well as the formation and growth of liquid precursor layers on the surface4 are not

discussed as the present work deals with equilibrium properties of the phase boundary only.

Model and simulation method

Like the original Lennard-Jones (LJ) potentialuLJ(r) = 4ε
[

(σ/r)12− (σ/r)6
]

, the LJTS model19

uts
i j (r i j ) =











uLJ(r i j )−uLJ(rc) r i j < rc

0 r i j ≥ rc,
(1)

with a cutoff radius ofrc = 2.5σ , accurately reproduces the thermophysical properties of several

non-polar fluids, in particular noble gases and methane, when adequate values for the size and

energy parametersσ andε are specified20. Due to the relatively small cutoff radius, molecular

simulation is comparably fast, while the full descriptive power of the LJ potential is retained even

for systems with phase boundaries20.

In order to accurately describe properties of a solid material, it is usually necessary to employ

multi-body potentials which have a large number of model parameters and are computationally

quite expensive24–26. The present study, however, does not regard the propertiesof a specific wall
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material but rather the influence of the fluid-wall dispersive interaction on the fluid itself. Ac-

cordingly, a layered wall was represented here by a comparably straightforward system of coupled

harmonic oscillators, using different spring constantsDy andDxz for the transverse vibration with

respect to the layers

uy
i (yi) =

Dy

2
(yi −y◦i )

2, (2)

whereiny◦i is the equilibrium value of they coordinate (i.e. the direction perpendicular to the wall),

and longitudinal oscillations,

uxz
i j (r i j ) =

Dxz

2
(r i j −A)2, (3)

with respect to the equilibrium bond lengthA between neighboring atomsi and j.

Fluid-wall interactions can be represented by full5 or slightly modified27 LJ potentials, acting

between fluid particles and the atoms of the solid. Followingthis approach, the LJTS potential

with the size and energy parametersσfw = σ as well as

εfw = ζ ε, (4)

was applied for the unlike interaction using the same cutoffradius as for the fluid. Potential pa-

rameters for the molecular models of the fluid as well as the solid component were chosen such as

to represent methane and graphite, respectively. For the fluid, the LJTS size and energy parameters

σ = 3.7241 Å andε/k = 175.06 K, as well as the molecular massm= 16.04 u were used20, so that

the carbon-carbon (C–C) bond length in graphiteA = 1.421 Å28 can be expressed in LJ units asA

= 0.3816σ , while the interlayer distanceY = 3.35 Å corresponds to 0.8996σ .

The spring constantDxz = 15600 N/m related to the sp2 bonds was adjusted to the C–C radial

distribution function obtained from simulations with the Tersoff24 potential, for a system consist-

ing of seven graphite layers with 7052 carbon atoms per layer. This distribution had to be rescaled

because as previously shown22,29, the Tersoff potential deviates by about 3% from the actual bond

length in graphite. In agreement with the relation between the C–C bond energy (4.3 eV) and the

interaction energy between adjacent graphite layers (0.07eV)30, the interlayer spring constant was
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Figure 1: Simulation snapshots for the reduced fluid-wall dispersive energyζ = 0.09 (left) and
0.16 (right) at a temperatureT = 0.73ε/k. The upper half is reproduced in the bottom to illustrate
the effect of the periodic boundary condition.

specified asDy = Dxz/60. Eqs. (2) and (3) ensure that the wall atoms oscillate around the fixed

y coordinate that corresponds to their layer, while no particular x andz coordinates are preferred

because the atoms are only connected with their immediate neighbors to permit individual sliding

of the wall layers.

Parallel canonical ensemble MD simulations were conductedwith the programℓs1 Mardyn31,

using spatial domain decomposition based on a linked cell data structure, to obtain the contact an-

gle dependence on the temperature and the reduced fluid-walldispersive energy. For all simulation

runs, the equations of motion were integrated according to the Verlet leapfrog algorithm with a

time step of 1 fs, i.e. 8.09· 10−4 ε−1/2m1/2σ in LJ units. Vapor and liquid were independently

equilibrated in homogeneous simulations for 10 ps. This wasfollowed by 200 ps of equilibration

for the combined system, i.e. a liquid slab surrounded by vapor (overall containing between 13 600

and 15 800 fluid particles), with a wall consisting of four layers (containing 7052 carbon atoms

per layer), cf. Figure 1, where the starting configuration contained a planar vapor-liquid interface

perpendicular to thez coordinate axis. The length of the simulation box for the combined system

was 29.1σ in x direction, 32.0σ in y direction, and 46.1σ in zdirection in all cases. Note that the

distance from the wall is given by they coordinate, whilez is the characteristic direction for the

density gradient of the fluid. The periodic boundary condition was applied to the system, leaving

a channel for the fluid with a height of 27.4σ between the wall and its periodic image.
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Via binning, the density profiles were averaged over at least800 ps after equilibration. The

arithmetic mean densityρvl = (ρ ′+ρ ′′)/2 was applied to define the position of the phase boundary,

whereρ ′ andρ ′′ are the saturated bulk densities of liquid and vapor which are known for the LJTS

fluid from previous work20. In the immediate vicinity of the wall, the fluid is affected by short-

range ordering effects8,15,32. The influence of this phenomenon was minimized by taking density

averages over a bin size of about 1σ , cf. Figure 2, following Giovambattista et al.33. A circle was

adjusted to the positions of the interface in the bins corresponding to distances between 3 and 11

σ from the wall, and the tangent to this circle at a distance of 1σ from the wall was consistently

used to determine the contact angle.

Figure 2: Vapor-liquid interface profiles for the reduced fluid-wall dispersive energyζ = 0.07 (up-
ward triangles), 0.10 (squares), 0.13 (circles), and 0.16 (downward triangles) at a temperatureT
= 0.82ε/k. Note that the full lines are circle segments, adjusted to the data points that are repre-
sented by symbols. The almost perfect match between the individual simulation results, indicated
by their collective agreement with the fit, reflects the precision of the present simulation data. At
T = 1 ε/k, however, the margin of error becomes more significant.

Simulation results

Menisci between parallel planar walls were simulated for a reduced fluid-wall dispersive energy

ζ between 0.07 and 0.16 at temperatures of 0.73, 0.82, 0.88, and 1 ε/k. Note that for the bulk

LJTS fluid, the triple point temperature is about 0.65ε/k according to van Meel et al.34 while the
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critical temperature is 1.0779ε/k according to Vrabec et al.20, so that almost the entire regime of

vapor-liquid coexistence was covered here.

High values ofζ correspond to a strong attraction between fluid particles and wall atoms,

leading to a contact angleϑ < 90◦, i.e. to partial (ϑ > 0◦) or perfect (ϑ = 0◦) wetting of the

surface. As expected, with increasing fluid-wall dispersive energy, the extent of wetting grows,

cf. Figure 1. As can be seen in Table 1 and Figure 2, the transition from obtuse to acute contact

angles occurs atζ values between 0.11 and 0.13 over the whole studied temperature range. Present

simulation results were correlated by

cosϑ(T,ζ ) =

(

1+
τ1.7

27

)

tanh
ζ −Z
0.087

, (5)

whereτ = (1−T/Tc)
−1 approaches infinity forT → Tc, while Z = 0.119 is the reduced fluid-wall

dispersive energy that leads to a contact angle ofϑ = 90◦.

Perfect wetting or drying is present where Eq. (5) yields cosϑ ≥ 1 or cosϑ ≤−1, respectively.

In particular, both the value ofZ and the symmetry relation

cosϑ(T,Z−∆ζ ) = −cosϑ(T,Z+∆ζ ), (6)

were found to be temperature-independent. Note that the simulation results stronlgy suggest such

Table 1: Contact angle of the LJTS fluid on graphite from MD simulation as a function of reduced
fluid-wall dispersive energy and temperature.

H
H

H
H

H
H

ζ
kT/ε

0.73 0.82 0.88 1

0.07 127◦ 134◦ 139◦ 180◦

0.09 112◦ 116◦ 119◦ 180◦

0.10 107◦ 106◦ 109◦ 145◦

0.11 99◦ 95◦ 96◦ 128◦

0.12 — — 86◦ 86◦

0.13 82◦ 79◦ 76◦ 81◦

0.14 73◦ 67◦ 63◦ 0◦

0.16 58◦ 45◦ 40◦ 0◦
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a symmetry property, cf. Figure 3, which is not an artifact ofthe correlation.

Figure 3: Simulation results for the contact angle in dependence of the reduced fluid-wall dis-
persive energyζ at temperaturesT = 0.73 (diamonds), 0.88 (squares), and 1ε/k (circles), in
comparison with the proposed correlation (solid lines), cf. Eq. (5), and the linear approximation
(dotted lines), cf. Eqs. (8) and (9), withc = −7 σε.

Figure 3 shows, particularly for high temperatures, that there is a narrow range ofζ values

that lead to the formation of a contact angle as opposed to perfect wetting or drying. The present

plots agree qualitatively with those determined by Giovambattista et al.33 for the influence of the

polarity of hydroxylated silica surfaces on the contact angle formed with water. In Figure 4, it

can be seen that the extent of wetting (forζ > Z) or drying (forζ < Z), respectively, increases as

the temperature approachesTc. Eventually, this leads to the known phenomenon of criticalpoint

wetting35 for the whole range above a wetting temperatureTw.

The effects described above can be accounted for by the Youngequation

cosϑ(T,ζ ) =
γs(T,ζ ,ρ ′′)− γs(T,ζ ,ρ ′)

γ(T)
, (7)

which relates the vapor-liquid surface tensionγ and the contact angle to the interfacial tensionγs

that acts between wall and vapor or liquid. Qualitatively, the essential phenomena are reproduced

by assuming a linear dependence of the fluid-wall surface tension on the fluid density as well as
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Figure 4: Simulation results for the contact angle in dependence of the temperature at fluid-wall
dispersive energiesζ = 0.09 (upward triangles), 0.10 (squares), 0.12 (bullets),and 0.14 (downward
triangles), in comparison with the proposed correlation (solid lines), cf. Eq. (5), and the linear
approximation (dotted lines), cf. Eqs. (8) and (9), withc = −7 σε. The entire temperature range
between triple point and critical point of the bulk fluid is shown.

the magnitude of the fluid wall interaction

(

∂ 2γs

∂ζ ∂ρ

)

T
= c, (8)

with
(

∂γs

∂ρ

)

ζ ,T

∣

∣

∣

∣

∣

ζ=Z

= 0, (9)

whereinρ refers to the density of the fluid. Forc ≈ −7 σε, a good quantitative agreement is

obtained, cf. Figures 3 and 4, using the values of Vrabec et al. 20 for the density of the bulk fluid

phases and the vapor-liquid surface tension. This illustrates that despite its nanoscopic dimension,

the Young equation and related concepts, such as effective dividing surfaces between the fluid

phases as introduced by Gibbs, are fully applicable to the investigated system geometry.

The deviation of the contact angle from 90◦ increases withT → Tc becauseγ(T) converges to

zero faster than the density differenceρ ′(T)−ρ ′′(T) between the two fluid phases. The relevant
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critical exponents in case of the LJTS fluid are

lim
T→Tc

ln [ρ ′(T)−ρ ′′(T)]

ln(Tc−T)
≈

1
3
, (10)

for the saturated densities of the bulk fluid20, in accordance with the Guggenheim36 approach,

and
d lnγ(T)

d ln(Tc−T)
≈ 1.21, (11)

for the vapor-liquid surface tension20, confirming a similar value (1.26) obtained from fluctuation

theory of critical phenomena37.

The correlation given by Eq. (5) suggests for the present system a first-order transition between

partial and perfect wetting or drying, respectively, as described by Cahn35. With ζ ≈ Z, Fig-

ure 3 shows that the contact angleϑ depends linearly on the fluid-wall dispersive energy, and the

symmetry property suggests forζ = Z thatγs does not depend on the density of the fluid.

Comparative discussion

Qualitatively, the symmetry relation given by Eq. (6) corroborates Monson23 who obtained the

same property based on mean-field DFT calculations. If each layer of the wall is approximated as

a plane of uniform densityη, the well depth of the fluid-wall dispersive interaction, which can be

used to compare different interaction models quantitatively, is given by

W = −ηζ min
y>0

∫ ∞

0
dλ 2πλ

L−1

∑
ℓ=0

uts
(

[

(y+ ℓY)2+λ 2]1/2
)

, (12)

for a system ofL layers with an interlayer distance ofY. In the present case withrc = 2.5σ for the

LJTS potential as well as a surface density ofη = 5.287σ−2, an interlayer distance ofY = 0.8996

σ , and the number of layersL = 3 (the fourth layer of the wall is beyond the cutoff radius),one

obtains

W = 17.29kTc · ζ , (13)
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normalized by the critical temperatureTc = 1.0779ε/k of the bulk LJTS fluid20. The transition

from obtuse to acute contact angles, occurring atZ = 0.119 in the present case, therefore corre-

sponds to a well depth ofWZ = 2.057kTc.

A very similar system was investigated by Bucior et al.8 , albeit for the LJTS fluid with a

cutoff radius of 27/6 σ as well as a rigid wall with a surface densityη = 1.7342σ−2 and a single

solid layer, i.e.L = 1. For that fluid, the critical temperature is given by Schrader et al.38 as

Tc = 0.9999ε/k, so that the fluid-wall dispersive energy was related to the well depth byW =

5.429kTc · ζ according to Eq. (12). From the density profiles of Bucior et al. 8 one finds that

a rectangular contact angle is reached for a reduced fluid-wall dispersive energyζ between 0.61

and 0.7, i.e. 3.3kTc < WZ < 3.8kTc which is on the same order of magnitude as the present result.

The quantitative deviation has to be attributed to the different solid structure, since the single wall

layer of Bucior et al.8 leads to a faster decay of the fluid-wall dispersion with respect to the

distance than in the present simulations where three layerscan directly interact with the fluid. A

larger value ofWZ/(kTc) is required to compensate for the effectively smaller length scale of the

dispersive interaction.

The present correlation, cf. Eq. (5), predicts perfect wetting for

Tw

(

W
kTc

)

=



1−0.144

[

(

tanh

[

0.665
W
kTc

−1.37

])−1

−1

]−0.588


Tc. (14)

The transition to perfect wetting was also simulated by Bojan et al.39 who applied the Monte Carlo

method in the grand canonical ensemble to neon on metal surfaces. Thereby, the full LJ fluid, with

Tc = 1.310ε/k as determined by Lotfi et al.40 , was used to model neon. WithW = 2.13kTc,

representing magnesium, they obtained a wetting temperature of Tw ≈ 0.50Tc, as opposed to the

present results which imply that perfect wetting is only reached above 0.974Tc, in the immediate

vicinity of the critical temperature.

As Bojan et al.39 themselves remark, their calculations predict a much lowerwetting tem-

perature than a similar previous study by Sokołowski and Fischer41 on the local structure of fluid
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argon in contact with solid carbon dioxide (with the same value ofW/ε). The latter MD simulation

results used a size parameterσfw/σ that is significantly smaller than unity in case of argon and car-

bon dioxide32,41and therefore cannot be directly compared to the present work, since varying the

interaction length scale can lead to qualitatively different properties such as a change in the order

of the wetting transition12. However, it should be pointed out that significantly betteragreement

was obtained here with the results of Sokołowski and Fischer41 than with those of Bojan et al.39.

The results presented above can now be used to provide an estimate for the magnitude of the

dispersive interaction between fluids and wall materials for which experimental data on the contact

angle are available. For instance, regarding the refrigerant R134a (1,1,1,2-tetrafluoroethane) at

temperatures between 10 and 80◦C, Vadgama and Harris42 obtained contact angles of 5.5◦ ± 1◦

on copper and 7◦ ± 1◦ on aluminum. WithT = 0.85Tc, which is 45◦C for R134a, the well depth

can be estimated asW/k ≈ 2.9Tc = 1100 K in both cases on the basis of Eqs. (5) and (13).

This can be related to a molecular model of the dispersive interaction by

W = −ρw min
y>0

∫ ∞

0
dλ 2πλ

∫ ∞

0
dυ ufw

(

[

(y+υ)2 +λ 2]1/2
)

, (15)

whereinρw is the density of the solid wall andufw is the dispersive interaction potential acting

between a fluid molecule and a wall atom. Note that, while Eq. (12) corresponds to a sum over

truncated and shifted LJ-10-4 terms, Eq. (15) does not rely on any particular assumption on the

internal structure of the solid wall. If e.g. a LJ-12-6 potential is used forufw, it corresponds to

a LJ-9-3 interaction. This reasoning can plausibly be applied to all fluids that do not exhibit an

excessively polar or anisotropic structure.

Conclusion

The contact angle formed between a wall and a vapor-liquid interface was determined by canon-

ical ensemble MD simulation for non-polar fluids with equal length scales for the fluid-fluid and

fluid-wall dispersive interactions, while the magnitude ofthe fluid-wall dispersive interaction and
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the temperature were varied. Over the whole temperature range under investigation, the contact

angle dependence on the fluid-wall dispersive energy was found to follow a simple symmetry law,

whereby the dependence on the temperature is qualitativelycovered by the Young equation, lead-

ing to a first-order transition to perfect wetting or drying at high temperatures. At a temperature-

independent value of the reduced fluid-wall dispersive energy, the interfacial tension between vapor

and solid as well as liquid and solid is equal, correspondingto the transition between obtuse and

acute contact angles.

The present MD simulation results can be expected to carry over to macroscopic systems,

since a qualitative influence of the wall on the vapor-liquidinterface profile, as determined by an

arithmetic mean density criterion, was only detected in theimmediate vicinity of the wall. At

temperatures of 0.88ε/k and below, in particular, the phase boundary was found to be almost per-

fectly cylindrical for a distance from the wall exceeding 2.5 σ , which approximately corresponds

to a nanometer. The generality of the present findings is, however, limited to systems where the

interaction between fluid molecules and the fluid-wall interaction are dominated by dispersion, as

opposed to electrostatics, such that the characteristic length scales of the fluid-fluid and the fluid-

wall dispersion are similar. Furthermore, the effects of surface roughness were not discussed here,

although they are clearly decisive for many practical applications.
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