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The most interesting step of condensation is the cluster formation up to the critical size. In
a closed system, this is an instationary process, as the vapour is depleted by the emerging liquid
phase. This imposes a limitation on direct molecular dynamics (MD) simulation of nucleation by
affecting the properties of the vapour to a significant extent so that the nucleation rate varies
over simulation time. Grand canonical MD with McDonald’s deemon is discussed in the present
contribution and applied for sampling both nucleation kinetics and steady-state properties of a
supersaturated vapour. The idea behind the new approach is to simulate the production of clusters
up to a given size for a specified supersaturation. In that way, nucleation is studied by a steady-state
simulation. A series of simulations is conducted for the truncated and shifted Lennard-Jones fluid
which accurately describes the fluid phase coexistence of noble gases and methane. The classical
nucleation theory is found to overestimate the free energy of cluster formation and to deviate by
two orders of magnitude from the nucleation rate below the triple point at high supersaturations.
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INTRODUCTION

The key properties of nucleation processes in super-
saturated vapours are the height Af2* of the free energy
barrier that must be overcome to form stable clusters and
the nucleation rate J that indicates how many macro-
scopic droplets emerge in a given volume per time. The
most widespread approach for calculating these quanti-
ties is the classical nucleation theory (CNT) [1], which
has significant shortcomings, e.g., it overestimates the
free energy of cluster formation [2,3]. An important prob-
lem of CNT in case of vapour to liquid nucleation is that
the underlying basic assumptions for the liquid do not
apply to nanoscopic clusters [4-6].

Molecular simulation permits the investigation of
nanoscopic surface effects and the stability of supersat-
urated states from first principles, using effective pair
potentials. For instance, the spinodal line can be detect-
ed with Monte Carlo (MC) [7] simulation methods; in
experiments, it can only be approximated as it is impos-
sible to discriminate an unstable state from a metastable
state where A§2* is low. Equilibria [8] and vapourization
processes [9,10] of single clusters can also be simulated
to obtain the surface tension as well as heat and mass
transfer properties of strongly curved interfaces. More-
over, molecular dynamics (MD) [11-13] and MC [14] sim-
ulation of supersaturated systems with a large number of
particles are useful for the study of very fast nucleation
processes, whereas lower nucleation rates can be calcu-
lated by transition path sampling based methods [15,16].

Equilibrium simulations fail to reproduce kinetic prop-
erties of nucleation processes such as the overheating of

growing clusters due to latent heat. On the other hand,
direct MD simulation of nucleation, where cluster forma-
tion is observed directly in a near-spinodal supersaturat-
ed vapour, has its limits: if nucleation occurs too fast, it
affects the properties of the vapour to a significant ex-
tent so that the nucleation rate obtained according to the
method of Yasuoka and Matsumoto [11] and other prop-
erties of the system vary over simulation time [17]. In
the present work, nucleation is studied as a steady-state
process by combining grand canonical MD (GCMD) and
McDonald’s deemon [18,19], an ‘intelligent being’ that
eliminates large droplets from the system.

SIMULATION METHOD

Supersaturated states can be characterized in terms
of the difference between the chemical potential y of the
vapour and the saturated chemical potential. The chem-
ical potential of the vapour can be regulated by simulat-
ing the grand canonical ensemble with GCMD: alternat-
ing with canonical ensemble MD steps, particles are in-
serted into and deleted from the system probabilistically,
with the usual grand canonical acceptance criterion [20].
For a test insertion, random coordinates are chosen for
an additional particle, and for a test deletion, a random
particle is removed from the system. The potential en-
ergy difference AV due to the test action is determined
and compared with the chemical potential. The accep-
tance probability for insertions is
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while for deletions it is

P = min <l,exp ['ukiTAv} AZN) , (2)
B

wherein A is the thermal wavelength. Of course, care
must be taken that the momentum of the inserted parti-
cles is consistent with the simulated ensemble and does
not introduce any artificial velocity gradients. The MD
integration time step was At = 0.00404 in reduced time
units, i.e., o(m/e)'/?, wherein ¢ is the energy parame-
ter of the fluid model and m is the mass of a particle.
The number of test actions per simulation time step was
chosen between 107 and 10~3 N, a value which was oc-
casionally decreased after equilibration, if very low nu-
cleation rates were observed.

Molecular simulation of nucleation has to rely on
a cluster criterion to distinguish the emerging liquid
from the surrounding supersaturated vapour [21]. In the
present case, the Stillinger criterion [22] was used to de-
fine the liquid phase and clusters were determined as
biconnected components. Whenever a cluster exceeded
the specified threshold size @, an intervention of Mc-
Donald’s deemon removed it from the system, leaving a
vacuum behind [18,19].

NUCLEATION THEORY

The free energy of cluster formation is the same for
the grand canonical and the isothermal-isobaric ensem-
ble [23]. At specified values of the chemical potential
of the supersaturated vapour, the total system volume V'
and the temperature 7', it is related to the surface energy

n by [24]

Ve(v)
A, = / (0 — po)dV
Ve(1)
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where v is the number of particles in the cluster, p is
the supersaturated vapour pressure, V;(v) is the vol-
ume and F(v) the surface area of a cluster containing
v particles. Note that u, as well as p; are the chemi-
cal potential and the pressure of the liquid phase at the
conditions prevailing inside the cluster. In CNT, it is
assumed that the bulk liquid density at saturation p’
and the density of a nanoscopic cluster are the same
and all clusters are treated as spheres, i.e., py = p’ and
Fv) =Fe(v) = (6\/Ey/p')2/3. Accordingly, the chemi-
cal potential of the liquid inside the nucleus is approxi-
mated by

pldp
ue:ua(T)+/ — &
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and the cluster surface tension 4 = (9n/0F) is approx-
imated by the surface tension « of the planar vapour-
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liquid interface, leading to [25,26]

7" 21<4)2+MG(T)H+]L"(T)

ds? = —
v\ p 0

dv. (5)

The free energy of formation has a maximum A* which
lies at the size v* of the critical nucleus. Including the
Zel’dovi¢ factor fz and the thermal non-accomodation
factor far of Feder et al. [1], the nucleation rate is

pA
h
where N7 is the number of vapour molecules in the sys-
tem and h is the Planck constant.

Instead of using the surface tension of the planar inter-

face, Laaksonen, Ford, and Kulmala (LFK) [27] proposed
an expression equivalent to

T = farfa st en(-BANEEFW), ()

Fv)
/ AdF = vF(v) (1 + a8 4 agy_Q/?’) . (7N
0

The two parameters oy and «s are determined from
the assumption that almost all particles are arranged
either as monomers or as dimers and that the Fisher [2§]
equation of state correctly relates p/T to the number of
monomers and clusters present per volume. Effectively,
LFK theory modifies CNT only by the introduction of
the parameter oy, since as cancels out for all free energy
differences, if the usual assumption F ~ v%/3 is applied.
The Hale scaling law (HSL) is based on a different
approach [29]. In agreement with experimental data on
nucleation of water and toluene [29], it predicts

Y l 1/2 9 473
T~ (T) ree e ®

with a proportionality constant depending only on prop-
erties of the critical point.

In the present work, these theories are evaluated us-
ing Gibbs-Duhem integration over the metastable part
of the vapour pressure isotherm collected by a canoni-
cal ensemble MD simulation of small systems. The fluid
model under consideration is the truncated and shifted
Lennard-Jones (t. s. LJ) potential with a cutoff radius of
2.50 [30]. Note that the chemical potential supersatura-
tion, i.e., S = exp (B[u — uo(T)]), deviates considerably
from the pressure supersaturation p/p, and the densi-
ty supersaturation p/p”, with respect to the saturated
vapour pressure p, (1) and density p”(T') of the bulk, cf.
Fig. 1. For the saturated chemical potential of the t. s.
LJ fluid, a correlation based on the previously published
data [8] gives

po(T) — pia(T)
kT

1.7106e  1.1514¢2
= —0.2367 — - (©
T ez )

In Fig. 2, the chemical potential supersaturation is shown
as a function of the vapour density determined by GCMD
simulation with McDonald’s deemon. These values agree
well with the metastable vapour pressure isotherm of the
t. s. LJ fluid obtained by a canonical ensemble simula-
tion.
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Fig. 1. Chemical potential supersaturation S (—), pressure
supersaturation p/p, (— —), and density supersaturation p/p”
(- - +) in dependence of the excess pressure Ap =p —po at T
= 0.7 and 0.8 ¢/ks.
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Fig. 2. Density dependence of the chemical potential su-
persaturation for the vapour of the t. s. LJ fluid, obtained
from GCMD simulation with McDonald’s deemon () and
by integration of the Gibbs—Duhem equation using data from
canonical ensemble MD simulation with 7" = 0.7 (- -) and
0.85 ¢/ks (—).

INTERVENTION RATE
AND NUCLEATION RATE

The size evolution of any given cluster can be con-
sidered as a random walk over the order parameter v,
changing only by relatively small amounts Av, usually by
the absorption or emission of monomers. As discussed by
Smoluchowski [31,32] during his scientifically most pro-
ductive period in Lviv and Krakéw the probabilities for
the growth and decay transitions are proportional to the
respective values of the partition function W resulting in

1 (dW/dv)Av

Ptv) =<+

> Tawroey * 00, (10)

and

PTW%%%%%€%+O@% (11)

The probability PF(v) that a certain size is eventually
reached (at any time during the random walk process),

given that the current size is v, has the property
PR =Prw)PF(v+ Av) + P~ (v)PF (v — Av). (12)

By substituting

d F
Prv+ Av) =PF(v) + dLAI/
v
?PF 3
+ WAV +0 (Al/ ) y (13)
it follows for small Av neglecting terms of third order
and beyond, that

dw  —d(dPF/dv)
Wdv — 2(dPF/dv)dv’ (14)

Using the partition function for the grand canonical en-
semble, the derivative of the probability is given by

dPF
—— =F exp(28A0,), (15)
dv
where f is an integration constant. Obtaining the two
remaining parameters from the boundary conditions

@ =0, (16)
li =1 1
@gnoo 9o ’ ( 7)

the probability qo for a cluster containing @ molecules
of eventually reaching macroscopic size, i.e., J — 00, is

f1@ exp (26A82,) dv

o= floo exp (2BA0,)dv’

(18)

The intervention rate Jo of McDonald’s deemon is relat-
ed to the nucleation rate J by

J = Jege- (19)

Thus, with an intervention threshold far below the crit-
ical size, the intervention rate is many orders of magni-
tude higher than the steady-state nucleation rate. How-
ever, as confirmed by the present simulation results
shown in Table 1, it reaches a plateau for © > v*, where
v* = 41 according to CNT and 39 according to SPC.

RESULTS AND DISCUSSION

Homogeneous nucleation of the t. s. LJ fluid was stud-
ied by a series of GCMD simulations with McDonald’s
daemon for systems containing up to 17 million particles.

After a temporal delay, depending on the threshold
size, the pressure and the intervention rate reached a
constant value, cf. Fig. 3. In a canonical ensemble MD
simulation under similar conditions as the GCMD sim-
ulation that is also shown in Fig. 3, the pressure super-
saturation decreased from about 3 to 1.5 and the rate of
formation was significantly lower for larger nuclei, due
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to the free energy effect accounted for by Egs. (18) and
(19) as well as the depletion of the vapour [19].

80 T ', \.'\l-/NVT > 25

30 ©=50 ..
< i

V,r> 25
oob0gpgpogpoD
[ 1
1 Ll

0 250
simulation time in units of o(m/g)"?

500 750 1000 1250

Fig. 3. Top: Number per unit volume p, of clusters con-
taining more than 25 (- —-), 50 (—), and 150 (- —) particles
in a canonical ensemble MD simulation at T = 0.7 ¢/kg and
p = 0.004044 o3 using a hybrid geometric-energetic cluster
criterion, number per unit volume p, of clusters with v > 25
(O) in a GCMD simulation with 7" = 0.7 £ /kg, S = 2.8658,
and © = 50, using the Stillinger [22]| cluster criterion with
clusters determined as biconnected components, as well as
the aggregated number of McDonald’s deemon interventions
per unit volume in the GCMD simulation, over simulation
time. Bottom: Pressure over simulation time for the canoni-
cal ensemble MD simulation (— —) and the GCMD simulation
with McDonald’s deemon (—) [19].

The constant supersaturation of the GCMD simula-
tion agreed approximately with the time-dependent su-
persaturation in the canonical ensemble about ¢ = 400
after simulation onset, cf. Fig. 3. At this stage, the num-
ber of small clusters present per volume was similar in
both cases, and the rate of formation for clusters with
v > 150 at t = 400 in the canonical ensemble simulation
was of the same order of magnitude as the intervention
rate of the deemon.

Van Meel et al. [16] determined by MC simulation with
forward flux sampling that supersaturated vapours of the
t. s. LJ fluid at a temperature of T' = 0.45 ¢/kg, 1. e., sig-
nificantly below the triple point 75 = 0.65 €/kg, initially
undergo vapour to liquid nucleation, and CNT is known
to underestimate the vapour to liquid nucleation rate
of unpolar fluids [13]. The present deemon intervention
rates confirm this conclusion. LFK and HSL are signif-
icantly more accurate than CNT. Note in Table 2 that
the nucleation rate according to Eq. (19) based on the
CNT value of gg is given.

From Table 2 it is also confirmed that the ‘direct ob-
servation method” (DOM) [17], which in the present case
corresponds to assuming

InJo=InJ —Inge = —In7V, (20)
where 7 is the temporal delay of the formation for the
first sufficiently large cluster, is inadequate for nucleation
near the spinodal line.

| 14 N p/ps| © Ingo(CNT) Inge(LFK)| InJe|
5.38 x 105 124000 2.70 10 —16.7 —12.7 —13.6
4.32 x 107 1020000 2.75 | 20 —8.14 —6.33 —17.0
5.38 x 106 129000 2.78 | 25 —5.55 —4.34 —17.6
5.38 x 106 129000 2.78 | 35 —2.32 —1.82 —19.9
4.32 x 107 1040000 2.78 | 48 —0.508 —0.400 | —21.7
4.32 x 107 1040000 2.78 | 65 —0.022 —-0.019 | -21.9
2.15 x 10" 518000 2.77 | 74 —0.002 —-0.002 | —-22.1

Teble 1. Dependence of the intervention rate Jo as well as the probability go according to CNT and LFK on the intervention
threshold size © for McDonald’s deemon during GCMD simulation at T'= 0.7 € /kg and S = 2.4958, where the rates are given

in units of (6/m)1/20_44 The number of particles in the system and the values for the pressure supersaturation p/p, refer to

the steady state and the constant volume of the system is given in units of o3.

lp/ps 100°N]| © —IntV Inge(CNT) InJ | InJont InJipxk  InJusi|
30.2 0.397 9 —23.1 —4.57 —26.4 —-31.5 —26.2 —24.7
32.4 0.429 9 —23.0 —3.80 —25.0 —-30.5 —25.4 —24.0
55.9 1.07 12 —22.5 —0.062 —18.0 —24.2 —20.2 —19.5
74.7 17.1 24 —-17.1 ~0 —18.8 —21.8 —18.6 —17.7

Table 2. Vapour to liquid nucleation rate at 7' = 0.45 ¢/kp from GCMD simulation with McDonald’s deemon. The theories
were evaluated with respect to the metastable vapour-liquid equilibrium at p, = 4.28 x 107° ¢/0® [16], and the vapour-liquid

surface tension v = 1.07 £/0? [16] was used.
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CONCLUSION

GCMD with McDonald’s deemon was established as a
method for steady-state simulation of nucleating vapours
at high supersaturations. A series of simulations was con-
ducted for the t. s. LJ fluid. CNT was found to underpre-
dict the nucleation rate below the triple point, whereas
LFK and HSL more accurately describe vapour to liquid
nucleation of the t. s. LJ fluid.
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JIOCJIIIKEHHS METOJIOM CTAIIIOHAPHOI MOJIEKVJISIPHOI JUHAMIKI
HYKJIEAIIIT IIPU TIIEPEXO/II IIAPA-PIJIMHA
3A JIOIIOMOT'OIO JJTEMOHA MAK-TOHAJIbJIA

M. Xopm, C. Mipomuivenko, f. Bpabert
Vuieepcumem Iladepbopha, Jlabopamopia mepmoouHamiky ma eRepsemusHuUT mexrHoio2il,
eya. Bapbypsep, 100, 33098 Iladepbopn, Himeuwwura

Haitinikasimum etanom KoHAeHCaIl € GOpMyBaHHs KJIACTEPIB axK 10 KPUTUIHOTO po3Mipy. B 3akputiit cucremi
1€ HeCTaIllOHAPHUI IPOIEC, OCKIIbKY Mapa 3HUKAE 31 36inbueHusM pijgkol dasu. Lle obmerxkye 3acTocyBaHHs IPsi-
Mol cuMysanii Mosiekyssipaol quHamiku (MJI) Hykiearl, 3MIHIOIOUM 3HAYHOIO MIPOO BJIACTHBOCTI IIAPH, TaK IO
MIBAJIKICTD HyKJIealil MiHSI€TbCS IPOTArOM HMacy CUMYJIAIii. ¥ miit ctarti obroBopeno Besmky kKamoniuny MJI i3
nemonoM Maxk-/lonanbca # 3aCTOCOBAHO TS JOCJIII2KEHHST HYKJTCAIIITHOI KIHETHKY CTAI[IOHAPHUX BJIACTUBOCTEMH
repeHacuveHol mapu. [jess HOBOro mifxo/y MoJIsira€ B CUMYJIALI] BUHUKHEHHSI KJIACTEPIB O IEBHOIO PO3MIpY JIst
neBHOTO nepeHacudenHsi. OTake, HyKJealis JOCIIPKYETbCs CTarioHapHuMu cuMysisanisimu. [IpoBeseno cepiro cu-
MYyJISIif s obpizanol ta 3cyuyTol Jlennaps-/l2xoHciBChbKOT pignHu, sika 7006pe onucye CHiBicHyBaHHS PiAKuX (a3
inepTHHX ra3iB Ta MertaHy. BusBieHo, mo KIacudHa TEOpisi HyKJIeallil MePeoIiHioe BUIbHY eHeprio hbopMyBaHHS
KJIACTEPIB Ta BIAXWIIAETHCS Ha JIBa ITOPSJIKU 338 BEJMYMHOIO BiJ MIBUJIKOCTI HyKJI€AIil HUXKYE BiJ| TPUKPUTHIHOL
TOYKY IIPU BUCOKUX [T€PEHACUICHHSIX.

4004-6



