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Abstract Curved fluid interfaces are investigated on the nanometre length scale
by molecular dynamics simulation. Thereby, droplets surrounded by a metastable
vapour phase are stabilized in the canonical ensemble. Analogous simulations
are conducted for cylindrical menisci separating vapour and liquid phases under
confinement in planar nanopores. Regarding the emergence of nanodroplets during
nucleation, a non-equilibrium phenomenon, both the non-steady dynamics of
condensation processes and stationary quantities related to supersaturated vapours
are considered. Results for the truncated and shifted Lennard-Jones fluid and
for mixtures of quadrupolar fluids confirm the applicability of the capillarity
approximation and the classical nucleation theory.
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1 Introduction

The influence of curvature on the properties of a nanodroplet, as opposed to an
interface that is planar (on the molecular level), is hard to capture experimentally.
Yet it is important for refrigeration and energy technology as well as meteorology to
understand fluid interfaces with extremely high curvatures because they characterize
the onset of condensation and boiling processes.

Beginning in the 1930s with the work of Verschaffelt [1], researchers became
aware of the necessity of taking the internal structure of fluid interfaces into account.
They increasingly looked beyond the picture of a discrete dividing surface as
postulated by Gibbs [2]. In the subsequent years, this led to the theoretical work
of Guggenheim [3] and Tolman [4] which, nonetheless, was mostly still based on
effective radii and hence on discretization.

Today, molecular dynamics (MD) simulation provides a means of accessing the
internal structure and the non-equilibrium behaviour of vapour-liquid interfaces
directly, on the basis of physically sound but algebraically simple effective pair
potentials. For the truncated and shifted Lennard-Jones (LJ�TS) potential [5]
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with a cutoff radius of rc D 2:5 � , which constitutes a reliable model for the
noble gases and methane [6], fluid phase boundaries have been simulated by several
groups in the recent past [6–10]. Molecular simulation is particularly suitable for
investigating metastable states, cf. Fig. 1. Virial isotherms that accurately describe
the conditions of fluid phase coexistence at planar or curved interfaces
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which were correlated to the present data, are given in Table 1. Therein, p is the
pressure, T is the temperature, � is the density, and the convention k D 1 is used.
On this basis, the present work regards both equilibrium and non-equilibrium phe-
nomena for vapour-liquid interfaces of the LJ�TS fluid. Nucleation in supersaturated
vapours is considered for mixtures of quadrupolar fluids as well. For a more detailed
exposition, the reader is pointed to four recent articles [10–13].

2 Curved Fluid Interfaces in Equilibrium: Theory

The Tolman [4] approach to curved vapour-liquid interfaces is based on comparing
different effective radii of a droplet, namely the Gibbs adsorption radius R�, for
which the interfacial excess density is zero, and the Laplace radius RL from
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Fig. 1 Isotherms in a pressure-volume diagram for the LJ�TS fluid as determined by canonical
MD simulation at temperatures of T D 0:65 (down triangles), 0:75 (diamonds), 0:85 (upward
triangles), and 0:95 " (squares) as well as the saturated states (bullets) according to Vrabec et al.
[6] in comparison with the present fifth-order virial expansion (continuous and dotted lines), cf.
Table 1 and Eq. (2). Results in the vicinity of the spinodal line are not shown here, and no such
values were used for adjusting the virial coefficients, to ensure that only states unperturbed by
nucleation were taken into account

Table 1 Virial coefficients for the LJ�TS fluid as determined from a fit to the MD simulation
results shown in Fig. 1 and to the saturated vapour and liquid densities determined by Vrabec et al.
[6]. The spinodal densities .�0/

# and .�00/
# for liquid and vapour, respectively, were determined

from the virial expansion, cf. Eq. (2)

T �b2 b3 �b4 b5 �0 �00 .�0/
#

.�00/
#

0:65 11:7675 44:5866 96:9625 71:4351 0:813 0:00406 0:660 0:0592

0:7 9:77572 34:176 76:4866 59:4954 0:787 0:00728 0:636 0:0740

0:75 8:43697 27:7315 62:373 50:3464 0:759 0:0124 0:613 0:0886

0:8 7:33394 21:854 41:1349 40:3329 0:730 0:0198 0:588 0:103

0:85 6:48592 18:3318 40:0252 34:6962 0:699 0:0304 0:564 0:119

0:9 5:44587 12:3036 25:0989 23:6305 0:664 0:0446 0:532 0:134

0:95 4:97043 10:0411 17:1387 16:0653 0:622 0:0648 0:499 0:149

1 4:67665 9:83155 15:6063 13:8778 0:571 0:0962 0:466 0:174

� D 1

2
RL.p{ � p/; (3)

i.e. the Laplace equation in terms of the surface tension � and the pressure p{ inside a
droplet containing { molecules under equilibrium conditions. The deviation between
these radii, the Tolman length
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ı D R� � RL; (4)

characterizes the curvature dependence of the surface tension [4]. The capillarity
approximation, which postulates the droplets to be spherical and incompressible
with a curvature independent surface tension, assumes ı to be zero.

According to the formalism employed by Buff [14] and Kondo [15], the surface
tension becomes minimal if it is evaluated with respect to RL. It can be shown that
this assertion is only valid if the interfacial area F is proportional to R2

L. However,
both mechanical and thermodynamic equilibrium conditions for a droplet containing
{ molecules imply

RL D 2

�
@V{

@F

�
N;V;T

; (5)

where V{ and V are the volumes occupied by the droplet and the system as a whole,
respectively. This only agrees with F � R2

L if curvature effects cancel out.
For cylindrical interfaces, the surface tension varies with the radius according to

��
@ ln RL
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��1

D ı

RL
C ı2

2R2
L

; (6)

an expression that is similar and analogous to Tolman’s equation for droplets, where
RL is defined to be positive for convex and negative for concave menisci. By
combining the Young equation [16] with an expansion of � to first order in 1=RL,
the contact angle # of a fluid confined in a planar nanopore is obtained as

cos # D
�

�1
��s

C ı1
Rmin

��1

: (7)

Therein, �1 is the surface tension of the planar vapour-liquid interface, ı1 is
the Tolman length in the planar limit, and the pore diameter is 2Rmin, while ��s

indicates the difference between the specific surface energies of the substrate when
it is in contact with the vapour and the liquid, respectively.

3 Curved Fluid Interfaces in Equilibrium: MD Simulation

Using the ls1 mardyn MD program [19], equilibrium states involving droplets and
cylindrical menisci were simulated for the LJ�TS fluid.

Vapour-droplet equilibrium MD simulations were conducted for droplets con-
taining on the order of 100 to 1,000 molecules in the canonical ensemble, where
such equilibria can be stable – as opposed e.g. to the grand canonical ensemble
where this corresponds to a free energy maximum. The droplet size was evaluated
according to a version of the cluster criterion of ten Wolde and Frenkel [20] with
the connectivity radius R` D 1:5 � and coordination numbers j � 4 defining the



Static and Dynamic Properties of Curved Vapour-Liquid Interfaces 77

Fig. 2 Droplet size {? over
the supersaturation ratio S�

(in terms of the chemical
potential) for vapour-droplet
equilibria of the LJ�TS fluid
(bullets) from the present
work, (down triangles)
according to Vrabec et al. [6],
(upward triangles) according
to Napari et al. [17], and
following the capillarity
approximation (continuous
lines) as well as the
Laaksonen et al. [18] model
(dashed lines)

liquid phase. The present results correspond to moderately supersaturated vapours,
cf. Fig. 2, and are consistent with the results of Vrabec et al. [6] on larger droplets as
well as the study of Napari et al. [17] covering vapours at pressures that approach the
spinodal line. In the intermediate regime, the droplet size in equilibrium generally
agrees well with the capillarity approximation.

Cylindrical interfaces were investigated by simulating liquid slabs, cf. Fig. 3,
confined between two planar and layered walls represented by coupled harmonic
oscillators. The equilibrium positions of the wall atoms were aligned according
to a hexagonal structure with an interatomic distance of 0:3816 � , corresponding
to the bond length in graphite expressed in terms of the � parameter value for
methane. Both the fluid-fluid and the fluid-wall interactions were modelled by the
LJ�TS potential, employing equal size parameters �fw D � in both cases, while the
dispersive energy between fluid molecules and wall atoms

"fw D �"; (8)

was systematically varied. The arithmetic mean of the saturated vapour and liquid
densities was selected as a criterion for detecting the phase boundary. A circle was
adjusted to the resulting profile at distances between 2 and 11 � from the wall, cf.
Fig. 4, and the tangent to this circle at a distance of 1 � from the wall was examined
to determine the contact angle. Qualitatively, the contact angles obtained by the
present MD simulations are captured by Eq. (7), assuming a proportionality law for

��s D K� .�0 � �00/.� � �0/; (9)
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Fig. 3 Simulation snapshots
for the reduced fluid-wall
dispersive energy � of 0:09

(left) and 0:16 (right) at a
temperature of 0:73 ". The
upper half is reproduced in
the bottom to illustrate the
effect of the periodic
boundary condition

Fig. 4 Vapour-liquid
interface profiles for the
reduced fluid-wall dispersive
energy � of 0:07 (upward
triangles), 0:10 (squares),
0:13 (circles), and 0:16 (down
triangles) at a temperature of
0.82 "

cf. Fig. 5. The magnitude of the fluid-wall dispersion for which # becomes rect-
angular (�0 D 0:118) was found to be temperature independent.

4 Homogeneous Vapour to Liquid Nucleation: Theory

The foundations of the classical nucleation theory (CNT), concerning the first step
of a first-order phase transition in the bulk of a metastable phase, were laid by
Volmer and Weber [21] as well as Farkas [22]. On the basis of the capillarity
approximation, the free energy of formation �A of a droplet containing { molecules
in the thermodynamic limit (i.e. for an infinitely large vapour phase at a constant
supersaturation ratio) evaluates to

@A

@{
D �1

@F

@{
�

�
� � �{ C p{ � p

�0

�
; (10)

in differential terms, where �{ and p{ are the chemical potential and the pressure
inside the droplet, respectively, while � and p refer to the vapour. In the { ! 1
limit, the rightmost term of Eq. (10) yields an effective chemical potential difference
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Fig. 5 MD simulation results for # over T with a reduced fluid-wall dispersive energy of � D 0:07

(diamonds), 0:09 (circles), 0:1 (down triangles), 0:11 (open squares), 0:13 (black squares), 0:14

(triangles), and 0:16 (bullets) as well as following the proportionality law (lines), cf. Eq. (7), with
�0 D 0:118, ı1.T / from a correlation based on the data of Vrabec et al. [6], and a reduced
fluid-wall surface energy difference of K� D 7 �", cf. Eq. (9)

��e D � � �s.T / C ps.T / � p

�0 ; (11)

that accounts for the ‘pressure effect’ [23] of the vapour – which may include the
contribution of an inert carrier gas. Note that �s.T / and ps.T / do not depend
on { since these quantities characterize the saturated bulk fluid. As visualized
in Fig. 6, the presence of a carrier gas increases the free energy barrier �A? of
a nucleation process, i.e. the maximum of �A reached for a critical droplet in
(unstable) equilibrium with the vapour, corresponding to the conditions discussed
above.

From the analysis of a random walk over {, the probability for a droplet
containing ` molecules to eventually reach macroscopic size can be determined as

Q .`/ D
R `

1
exp .2�A=T / d {R 1

1
exp .2�A=T / d {

; (12)

while the nucleation rate, i.e. the number of macroscopic liquid drops formed by
homogeneous nucleation per volume and time unit, is

J D CNT � N 0zF ?

V
exp

���A?

T

�
; (13)

according to CNT. In this expression, T refers to the rate at which vapour monomers
collide with an interface (per surface area), N 0 is the number of monomers in the
system, F ? is the surface area of a critical droplet, and V is the system volume. The
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Fig. 6 Free energy of formation according to CNT for CO2 droplets in supersaturated vapours at
T D 250:2 K with S� D 2:72 and CO2 mole fractions of y0 D 1 (continuous lines), 1=2 (dashed
lines), and 1=3 (dotted lines), reaching a maximum for the critical droplet (squares). Note that in
the thermodynamic limit, i.e. in a macroscopic system, the Gibbs, Helmholtz, and Landau free
energies of formation for small droplets converge

correction factors C, N, and z were introduced by Farkas [22], Feder et al. [24], and
Zel’dovič [25], respectively. The overall pressure effect on J following Eq. (13), as
discussed by Wedekind et al. [23], defines the carrier gas correction factor W.

5 Homogeneous Vapour to Liquid Nucleation: MD Simulation

Nucleation in supersaturated vapours was studied by simulating systems containing
between 100,000 and 17,000,000 molecules, exploiting the excellent scalability of
the ls1 mardyn program on massively parallel computing platforms [26].

The method of Yasuoka and Matsumoto [27], where droplet formation rates
are evaluated during the stage of a condensation process that corresponds to
nucleation (rather than relaxation or droplet growth), was applied to the canonical
ensemble. In these simulations, the vapour pressure decreased over time due to the
transfer of molecules from the vapour to the dispersed liquid phase. Furthermore,
steady state quantities, pertaining to nucleation only, were investigated with a new
simulation method. This method combines the grand canonical ensemble with
McDonald’s dæmon [28], an intelligent being whose interventions eliminate the
droplets containing more than ` molecules; see Fig. 7 for a comparison between
these approaches. Results for the LJ�TS fluid (shown in Fig. 8) agree well with
CNT, using a temperature independent value for the empirical correction factor C
introduced by Farkas [22].

Canonical ensemble MD simulations were also conducted for multi-component
systems containing nitrogen, oxygen, and argon – at the ratio prevalent in the
earth’s atmosphere – as well as carbon dioxide with a greater partial density than
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Fig. 7 Number of droplets
per volume over simulation
time for droplets containing
{ > 10, 25, 50, and 100

molecules in a canonical
ensemble MD simulation of
the LJ�TS fluid at T D 0:7 "

and � D 0:03421 ��3 in
comparison with the
aggregated number of dæmon
interventions per volume in a
grand canonical MD
simulation with T D 0:7 ",
S� D 2:8658, and ` D 51

Fig. 8 Nucleation rate of the
LJ�TS fluid over
supersaturation from the
present MD simulations of
the grand canonical ensemble
with McDonald’s dæmon
(black circles) as well as
according to CNT with
C D 200 (dashed lines) and
the Laaksonen et al. [18]
model (dashed dotted lines)
at temperatures of T D 0:45,
0:65, 0:7, 0:85, 0:9, and 0:95

". The supersaturation ratio is
given in terms of the chemical
potential of the vapour phase

at saturation. The molecular models employed for this purpose, introduced by
Vrabec et al. [29], are well-established with respect to fluid phase equilibria [29–
31]. For these systems, the analysis of the carrier gas effect according to Wedekind
et al. [23] is confirmed qualitatively by the determined droplet formation rates J`,
given in Table 2, although significant quantitative deviations are present at high
temperatures.

6 Conclusion

From the preceding analysis of curved vapour-liquid interfaces and homogeneous
nucleation it can be concluded that CNT is able to capture both the nucleation
rate and the critical droplet size for the considered systems, i.e. the LJ�TS fluid
and a quaternary mixture of quadrupolar and unpolar fluids. The main criticism
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Table 2 Droplet formation rate from Yasuoka-Matsumoto (YM) canonical ensemble MD sim-
ulation as well as critical droplet size (in molecules), Wedekind factor W, and the prediction
J=QCNT.`/ for the droplet formation rate according to CNT with C D 1, in dependence of
temperature (in units of K), supersaturation ratio (with respect to the partial density of carbon
dioxide) and YM threshold size ` (in molecules) for the quaternary system CO2 C N2 C O2 C Ar.
The mole fraction y0 of carbon dioxide in the supersaturated vapour is indicated in the table, while
the composition regarding the other fluids corresponds to the earth’s atmosphere. The rates are
given in units of m�3s�1 and where no nucleation was detected, JCNT instead of J=QCNT is shown
in the last column
T �=�00 y0 ` J` {? W J=QCNT

238:4 2:80 1=2 50 1:5 � 1033 66 0:03 2:6 � 1031

85 1:6 � 1032 3:3 � 1030

1 50 5:6 � 1032 41 1 9:9 � 1031

85 2:1 � 1032 7:6 � 1031

3:08 1=2 50 5:5 � 1033 65 0:02 3:1 � 1031

150 3:1 � 1032 3:9 � 1030

1 50 6:3 � 1033 39 1 1:6 � 1032

150 2:9 � 1032 1:3 � 1032

3:36 1=3 — � 1031 127 4:2 � 10�6 1:1 � 1027

1=2 50 1:1 � 1034 65 0:02 8:7 � 1030

300 3:2 � 1032 4:2 � 1030

1 50 6:7 � 1033 37 1 2:1 � 1032

300 1:4 � 1033 1:8 � 1032

250:2 2:34 1=2 50 1:1 � 1034 140 1:9 � 10�4 1:8 � 1033

100 1:1 � 1033 7:8 � 1029

1 50 1:3 � 1033 54 1 3:9 � 1032

100 3:4 � 1032 1:4 � 1032

2:53 1=2 85 7:4 � 1033 143 1:0 � 10�4 3:9 � 1030

200 7:4 � 1032 3:1 � 1028

1 85 2:2 � 1033 52 1 1:9 � 1032

200 7:7 � 1032 1:9 � 1032

2:72 1=3 — � 1031 879 4:3 � 10�25 2:3 � 108

1=2 75 1:3 � 1034 150 4:2 � 10�5 1:8 � 1031

250 1:6 � 1033 1:7 � 1028

1 75 4:8 � 1033 50 1 2:6 � 1032

250 1:4 � 1033 2:5 � 1032

usually made of CNT is that it applies the capillarity approximation to small droplets
where significant curvature effects should be expected. However, a deviation from
capillarity is implicit in the prefactor C which empirically accounts for its overall
influence on the nucleation rate. This corresponds to stating that the capillarity
approximation overestimates the free energy barrier by T ln C.

The physical foundation of this approach is more robust than it might seem at first
sight. By combining recent simulation results on the equilibrium vapour pressure
of droplets, cf. Fig. 2, it becomes apparent that curvature effects are significant
in the immediate vicinity of the spinodal line for the vapour, corresponding to
{? < 100, while they are virtually undetectable for droplets containing more than
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1,000 molecules. Thus, the deviation from Eq. (10) regarding the magnitude of �A?

is dominated by an integral over the free energy of formation for extremely small
droplets. At supersaturation ratios sufficiently distant from spinodal conditions,
this contribution does not depend on S and can be represented by �T ln C with
a constant value of C.
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