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The Tolman equation [1] 
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expresses the surface tension γ of a nanodroplet in terms of the surface tension of the 

planar interface γ0, the pressure difference between the coexisting fluid phases Δp and 

the Tolman length δ, defined as the deviation between two characteristic radii 
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the equimolar radius Re and the Laplace radius 2γ / Δp. At present, however, a striking 

disagreement prevails regarding the magnitude of the Tolman length and even its sign. 

In case of droplets, Tolman expected δ to be positive [1]. Nonetheless, more recent 

studies found δ to be negative [2] or equal to zero [3], while others claim that its sign is 

curvature dependent itself [4]. Thereby, only the mutual inconsistency of the employed 

assumptions and methods has been proven, while nothing quantitative is truly known 

about δ and the dependence of γ on the droplet radius. In the present work, the curvature 

dependence of the surface tension is related to the excess equimolar radius η, defined by 
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i.e. by the deviation between the equimolar radius Re of a droplet and its Laplace radius 

according to the capillarity approximation (γ = γ0). In line with an interpretation of the 

Tolman approach in the planar limit, i.e. Δp → 0, recently proposed by van Giessen and 

Blokhuis [2], Eqs. (1) to (3) imply that the Tolman length and the excess equimolar 

radius converge to values of equal magnitude and opposite sign 
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as the radius increases. The surface tension of nanodroplets can thus be discussed by 

following a new route that relies exclusively on calculations, e.g. by molecular 

simulation, of the density profile (yielding Re) and the chemical potential (yielding Δp). 

This avoids the intricacies of computing γ by means of a pressure tensor or effective 

variations of the surface area, as required by other molecular simulation methods. Here, 

droplets of the truncated-shifted Lennard-Jones (TSLJ) fluid are considered using 

molecular dynamics (MD) simulation in the canonical ensemble, with equimolar radii 

ranging between 6 and 16 times the size parameter ζ. From an analysis of these 

simulations, the deviation of the equimolar radius from capillarity (and, by 

consequence, the magnitude of the Tolman length) is found to be smaller than 0.5 ζ, cf. 

Fig. 1, which is consistent with data from previous work [5]. Other methodical 

approaches, which have led to contradicting claims in the past, are critically discussed. 

 
 

 
 

Figure 1. Parity plot of the equimolar radius Re with respect to the radius expected from the 

capillarity approximation, from the present canonical MD simulations of the TSLJ fluid at the 

temperatures T = 0.75 (▲) and 0.85 ε / kB (●), where ε is the energy parameter of the pair 

potential, in comparison with results of Vrabec et al. [5] at T = 0.75 (Δ) and 0.85 ε / kB (○). 

Deviations from the diagonal (–  –) correspond to η which in the planar limit evaluates to -δ. 
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