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Abstract. Grand canonical molecular dynamics (GCMD) is applied to vapor to liquid nucleation.
With a variant of Maxwell's demon, proposed by McDonald, all droplets exceeding a certain size
are removed so that the nucleation rate and further properties of the process can be sampled in a
steady-state simulation over a long time. A series of GCMD simulations with McDonald’s demon
is carried out for the truncated and shifted Lennard-Jones fluid. The results are in agreement with
other simulative methods and confirm that the classical nucleation theory underpredicts the
nucleation rate for high supersaturations.
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INTRODUCTION

Significant shortcomings of the classical nucleation theory (CNT) are known for a long
time. Among them is the assumption that in many respects, emerging droplets have the
same thermodynamic properties as the saturated bulk liquid. A more accurate theory of
homogeneous nucleation, which is sought after, would increase the reliability for
applications such as the analysis of heterogeneous and ion-induced nucleation processes
in the atmosphere [1].

The basic assumptions of CNT are not valid for nanoscopic droplets. Their properties
are hard to investigate experimentally, but are well accessible by molecular simulation.
Similarly, the spinodal line can be detected with, e.g., Monte Carlo (MC) simulation
methods [2], whereas in experiments, nucleation processes with a low free energy
barrier can hardly be discriminated from spontaneous spinodal decomposition.
Nanoscopic droplets in equilibrium with a supersaturated vapor can be simulated to
obtain droplet properties [3]. Moreover, molecular dynamics (MD) [4] as well as MC
[5] simulation of supersaturated systems with a large number of particles are useful for
the study of very fast nucleation processes directly. Hence, molecular simulation
methods are crucial for the development of nucleation theory.
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Extending previous studies [3, 4], the present work regards the vapor to liquid
nucleation on the basis of the truncated and shifted Lennard-Jones (tsLJ) fluid.
Nucleation kinetics and steady-state properties of the near-spinodal supersaturated
vapor were investigated by combining grand canonical molecular dynamics (GCMD)
[6, 7], and an “intelligent being” that continuously removes droplets above a given
threshold size: McDonald’s demon [8, 9].

SIMULATION METHOD

The condensation process originates from a supersaturated vapor state and is initially
manifested by the spontaneous formation of clusters which grow over time by addition
of monomers or coalescence with other clusters. Scientifically, the most interesting step
of condensation is the droplet formation up to the critical size. In a closed system, this is
an instationary process, as the vapor is depleted by the emerging liquid proto-phase.

Equilibrium simulations are useful to investigate single droplets surrounded by
supersaturated vapor. However, they are unable to reproduce kinetic and non-equi-
librium properties of nucleation processes, such as the overheating of droplets. On the
other hand, direct MD simulations of nucleation in the canonical ensemble [10] sample
nucleation properties — e.g., the nucleation rate — in an instationary way. The idea
behind the present approach is to simulate the production of droplets up to a given size
for a specified state at constant supersaturation. Particles are inserted into the system to
replenish the vapor phase and droplets above a threshold size are extracted from the
system. In this way, nucleation is studied by a quasi-steady-state simulation.

For the present simulations, the Stillinger criterion [11] was used to define the liquid
phase, and droplets were determined as biconnected components [4]. Alternating with
canonical ensemble MD steps, monomers were inserted into and deleted from the
system probabilistically, with the usual grand canonical acceptance criterion. The
acceptance probability for an insertion at random coordinates is given by
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is the residual chemical potential, while w;,((7) is the solely temperature dependent ideal
contribution to the chemical potential and o is the size parameter of the Lennard-Jones
potential. The acceptance probability for the deletion of a random particle is analogous,
with —u; instead of .

The behavior of McDonald's demon is determined by the intervention threshold size
0. For very small values of 0, the intervention rate J, of the demon is much higher than
the nucleation rate J at the given supersaturation. If 8 equals the critical droplet size V',
we have J, = 2J, because a critical droplet has equal probabilities of complete vapor-
ization and growth to macroscopic size (but eventually, one of these options occurs for

each droplet). Therefore, J and J, are of the same order of magnitude for 8 >v".



THEORETICAL APPROACHES

The free energy of droplet formation is the same for the grand canonical and the
isothermal-isobaric ensemble [12]. It has a maximum AQ" for the size v" of the critical
droplet. The difference between the saturated chemical potential u,(7) at the
temperature 7 and the chemical potential u of a vapor can be expressed in terms of the
supersaturation S = exp((u — ) / (kT)).

In CNT, it is assumed that the density p' and the chemical potential u, of the
saturated bulk liquid apply to droplets as well. The droplet surface tension y, = (dG/
0A),r is approximated by the tension y of the planar vapor-liquid interface, and all
droplets are treated as spheres. Including the Zeldovich factor f; and the thermal non-
accomodation factor fyr [13], the nucleation rate is
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where N, is the number of vapor molecules in the system, A is the thermal wavelength,
and h is the Planck constant. It turns out that CNT significantly overestimates the free
energy of droplet formation [14]. While for bubbles, the approximation y, = y was found
to be fairly accurate by some authors [15], it is unsuitable for small droplets [16].
Values of y, as low as 0.4y were found in equilibrium MD simulations [3], leading to a
surface property corrected (SPC) modification [4] of CNT. The SPC modification
assumes a non-spherical surface and determines the droplet surface tension from a fit of
the Tolman equation [16] to equilibrium MD simulation results.

A different approach is given by the scaling model of Hale [17]. It predicts
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where the proportionality constant only depends on properties of the critical point.
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SIMULATION RESULTS

The supersaturation is shown in Fig. 1 (left) as a function of the supersaturated vapor
density, determined from GCMD simulations with McDonald's demon, at constant
temperatures of 0.7 and 0.85 ¢/k, where ¢ is the energy parameter of the Lennard-Jones
potential. These values agree well with the metastable vapor pressure isotherm of the
tsLJ fluid, obtained from MD simulation in the canonical ensemble, where the
supersaturation is calculated by integrating the Gibbs-Duhem equation.

With a temporal delay between 100 ps and 1 ns, the intervention rate reaches a
constant value. The results agree very well with nucleation rates obtained from
canonical ensemble MD simulations [4]. Thus, the applicability of the new method is
established by comparison with results from NVT simulations.

CNT is known to overestimate the nucleation rate of the tsLJ fluid [4]. The
intervention rate confirms this result, cf. Fig. 1 (right). The SPC modification and the
Hale scaling model are significantly more accurate in the present case.
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Figure 1. Left: density dependence of the supersaturation for tsLJ vapor, obtained from GCMD
simulation with McDonald's demon (squares) and by integration of the Gibbs-Duhem equation using data
from canonical ensemble MD simulation with 7 = 0.7 &k (dashed line) and 0.85 ¢/k (solid line). Right:
nucleation rate over supersaturation for the tsLJ fluid at temperatures of 0.65, 0.7, and 0.85 ¢/k, according
to CNT (solid lines), the SPC modification (dashed lines), and the Hale model (dotted lines), in
comparison with results from GCMD simulation with McDonald's demon (circles).
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