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ABSTRACT

The influence of the surface curvature 1/R on the surface tension  γ of small droplets at equilibrium with a 
surrounding vapour, or small bubbles at equilibrium with a surrounding liquid, can be expanded as γ(R) = γ0 –
2δ0/R + O(1/R2), where R = RL is the Laplace radius and γ0 is the surface tension of the planar interface, with 
zero curvature. According to Tolman's law, the first-order coefficient in this expansion is obtained from the  
planar limit δ0 of the Tolman length, i.e., the deviation δ = Re – RL between the equimolar radius Re and RL. 
Here, Tolman’s law is generalized such that it can be applied to any notion of the dividing surface, beside the  
Laplace radius, on the basis of a generalization of the Gibbs adsorption equation which consistently takes the  
size dependence of interfacial properties into account.
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1. INTRODUCTION

The surface tension of small droplets or bubbles at the nanometre length scale has a significant influence on the 
formation of dispersed phases by homogeneous nucleation (Mokshin and Galimzyanov, 2012). It is also crucial  
to understand droplet or bubble growth, decay, coalescence, and the coupling between heat and mass transfer at 
curved interfaces (Sumardiono and Fischer, 2007). The capillarity approximation is often employed: Thereby, 
the surface tension of a nanodroplet or nanobubble is assumed to be identical with the macroscopic value (Feder 
et al., 1966), which is attained in the limit of zero curvature, i.e., infinite droplet radius, or for a planar interface,  
which can be measured experimentally and is known at a good precision for most fluids.

However, the capillarity approximation is not exact; the surface tension is known to depend on the size of the  
nanodispersed phase.  An expression for  the size dependence  of the surface  tension, Tolman's  law (Tolman, 
1949) is widely used. It relates the curvature dependence of the surface tension to a characteristic length scale,  
the Tolman length  δ,  which is determined from the deviation between the equimolar radius and the Laplace 
radius.  A  simplified  version  of  this  law,  suggested  by  Tolman  (1949)  himself,  considers  only  a  linear 
contribution of the curvature  to the surface  tension and neglects all  higher-order  terms. It  should be noted, 
however, that the linearized version of Tolman's law was found to be insufficient for many typical applications, 
since  the  Tolman length,  which  controls  the  magnitude  of  the  linear  term,  is  extremely  small  for  droplets 
(Homman et al., 2014) as well as bubbles (Min and Berkowitz, 2019). Das and Binder (2011) observed that the  
most relevant  contribution may come from the second-order  term,  and a contribution proportional  to  cubic 
curvature was postulated by Malijevský and Jackson (2012). For the hard-sphere fluid confined by hard walls, 
significant second-order, but negligible higher-order curvature contributions were found (Davidchack and Laird, 
2018). For atomic nuclei, Cherevko et al. (2015) determined a Tolman length of the order of δ ≈ 10-15 m. 

The present work discusses how the formulation of Tolman's law relates to the boundary conditions employed to 
describe the state of the system, and how differences between notions (i.e., definitions) of the spherical dividing 
surface affect the way in which Tolman's law needs to be formulated. Considering the size dependence of the 
surface tension for spherical dividing surfaces by the Gibbs approach to interfacial thermodynamics, where the 
position of a formal two-dimensional dividing surface can be specified freely, a generalized version of Tolman's 
law is obtained, which can be combined with any notion of the dividing surface. 
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2. INTERFACIAL THERMODYNAMICS

2.1 Notion of the dividing surface

Interfacial thermodynamics following Gibbs (1878) is based on the definition of a dividing surface, a strictly  
two-dimensional object  at which two discrete parts of the volume, containing two coexisting phases,  are in  
contact  with  each  other.  Here,  we  consider  spherical  interfaces,  with  a  dispersed phase  α inside  and  a 
surrounding phase β outside. The interface does not occupy any volume, so that the overall volume of the system 
can be decomposed into the contributions from these two parts, V = Vα + Vβ, without having to account for any 
excess or deviation expression. The two phases are assumed to be at thermodynamic equilibrium, and they are  
both assumed to be fluid phases (vapour-liquid or liquid-liquid equilibrium).

Since  in  reality,  at  the  molecular  length  scale,  the  boundary  region  between  two  fluid  phases  exhibits  a  
continuous transition from one side to the other, multiple conventions can be applied to determine where exactly 
the dividing surface is located. Accordingly, the volumes ascribed to each of the two phases (and many other  
properties) are not uniquely determined by the thermodynamic state of the system. For one and the same system 
at a given thermodynamic state, they depend on the choice of the dividing surface notion ν, which is a modelling 
decision to denote this, such quantities will be labelled with an index ν. Due to volume balance, as above,

V  =  (Vα)ν + (Vβ)ν.                                                                       (1)

Overall properties, such as the total volume of the system V, are unaffected by the choice of ν and therefore do 
not carry ν as an index. For a spherical dividing surface, which is characterized by the radius Rν, an interfacial 
area Aν = 4π(Rν)2 and a volume (Vα)ν = 4π(Rν)3/3 are ascribed to the dispersed phase α.

2.2 Properties of single-phase reference systems

For  a  system with  n components  and  a  single  phase,  any  combination  of  n+1 intensive  properties  is  here 
understood to uniquely determine all intensive properties, irrespective of the size of that system, in agreement 
with the  equation of state for the  macroscopic homogeneous bulk phase. By implication, this means that all 
finite-size  effects  are ascribed  to the interface.  In  this way,  the Gibbs approach  differs  from small-systems 
thermodynamics inspired by Hill (1964), which does account for a size dependence of intensive properties for 
homogeneous systems. Promising efforts have been undertaken recently to accommodate Hill's thermodynamics 
within molecular modelling and simulation (Strøm et al., 2017), showing in particular that this does not add any 
generality to the Gibbs formalism in interfacial thermodynamics (Bedeaux and Kjelstrup, 2018). Here, therefore,  
the Gibbs approach is followed by construction, and no deviation from the macroscopic equation of state is 
assumed to occur for the equations of state applied to the homogeneous single-phase reference systems.

Following a common notational convention (Rowlinson and Widom, 1982), vectors such as μ contain properties 
associated with the n components, e.g., the chemical potentials μ1, …, μn. Coexisting phases at thermodynamic 
equilibrium have  the  same  temperature T and  chemical  potentials  μ;  these  are  n+1  values,  which  are  all 
intensive,  by  which  the  intensive  properties  of  a  reference  system for  the  phase  α uniquely  determine  all 
intensive properties of the reference system for the phase  β,  and vice versa.  This implies that the intensive 
properties of the homogeneous reference systems representing α and β are not influenced by the choice of notion 
for the dividing surface.  However,  the extensive properties of the reference systems do depend on  ν,  which 
controls the volumes ascribed to α and β; for any intensive property of one of the phases, e.g., the surrounding 
phase β, given by xβ (n.b., not influenced by the notion ν), the corresponding extensive property is

(Xβ)ν  =  (Nβ)ν xβ  =  ρβxβ (Vβ)ν,                                                               (2)

where  ρβ = 1/vβ is the density of the phase  β.  Therefore,  the extensive property (Xβ)ν needs to carry  ν as a 
subscript.

2.3 Properties ascribed to the interface and to nucleus formation

Interfacial excess quantities (e.g., the interfacial excess entropy) are determined by comparing a property of the 
actual  two-phase  system  (e.g.,  its  entropy)  with  the  value  obtained  by  summation  over  two  single-phase 
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reference systems, without an interface,  at the same temperature and chemical potentials. Generally, for any 
extensive property X, the corresponding interfacial excess quantity is defined by

(XE)ν  =  X – (Xα)ν – (Xβ)ν.                                                          (3)

While the value of (XE)ν generally depends on ν, the notion cannot have any influence on quantities defined by

ΔXX*  =  X – ρβxβV,                                                                        (4)

i.e., by comparing an extensive property X of the actual two-phase system to a state where the dispersed phase is  
absent and the surrounding phase β (at constant intensive properties) occupies the whole volume V of the system 
(Rehner and Gross, 2018). These quantities, denoted by ΔXX* for any extensive property X, characterize nucleus  
formation (i.e., dispersed-phase formation) at invariant μ, V, and T. By combining these definitions with Eq. (1), 
it can be seen that nucleus formation and interfacial excess quantities are related by

ΔXX*  =  (XE)ν + (ραxα – ρβxβ) (Vα)ν.                                                           (5)

For the grand potential  Ω, the change due to critical nucleus formation ΔXΩ* represents the free energy barrier 
that needs to be overcome for homogeneous nucleation; it controls the nucleation rate J ~ exp(–ΔXΩ*/kT).

3. SURFACE TENSION, ADSORPTION, AND TOLMAN’S LAW

3.1 Definitions of the surface tension

The surface tension can be defined as an excess quantity (per surface area)

σν  =  (ΩE)ν / Aν,                                                                          (6)

in terms of  the grand potential,  cf.  Eq. (3),  e.g.,  following Mu  et  al. (2018).  The value obtained from this 
definition will be referred to as the absolute surface tension, using the symbol σ (with a ν index, since the excess 
grand potential depends on the selected dividing surface).

Another approach to defining the surface tension is based on total differentials, e.g.,

dΩ  =  – pα d(Vα)ν – pβ d(Vβ)ν – S dT –  N dμ + γν dAν,                                             (7)

where p represents the pressure, S the entropy, and N the amount of substance (for all components). Following 
Rowlinson and Widom (1982), this can be transformed to

d(ΩE)ν  =  – (SE)ν dT – (NE)ν dμ + γν dAν.                                                       (8)

The quantity γν from Eqs. (7) and (8) is called the differential surface tension. The two definitions given above 
are in agreement (σν = γν) if the dividing surface is positioned such that the Laplace equation holds (Rν = RL).

3.2 Gibbs adsorption equation

Tolman (1949) relied on the Gibbs adsorption equation to deduce Tolman's law. To reexamine Tolman's law 
within the formalism and notation established above,  is  is  therefore  necessary  to determine how the Gibbs 
adsorption equation can be generalized such that it can be applied to any notion of the dividing surface. In a  
homogeneous system, Ω = –pV, and hence, for the heterogeneous system consisting of the phases α and β plus 
the interface which contributes (ΩE)ν, the grand potential is

Ω  =  – pα(Vα)ν – pβ(Vβ)ν + (ΩE)ν.                                                             (9)

The pressures pα and pβ and the total grand potential Ω do not depend on the notion of the dividing surface, but 
the contributions ascribed to the phases and the interface do. By differentiation, with Eq. (6), this gives

dΩ  =  – pα d(Vα)ν – pβ d(Vβ)ν – (Vα)ν dpα – (Vβ)ν dpβ + σν dAν + Aν dσν.                              (10)

Moreover, the Gibbs-Duhem equation can be applied to the two homogeneous reference systems that represent  
the dispersed phase and the surrounding phase,

(Vα)ν dpα – (Sα)ν dT – (Nα)ν dμ  =  0,                                                      (11)
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(Vβ)ν dpβ – (Sβ)ν dT – (Nβ)ν dμ  =  0.                                                      (12)

If the three equations above are subtracted from Eq. (7), this simplifies to

– (SE)ν dT – (NE)ν dμ + (γν – σν) dAν  – Aν dσν   =  0,                                             (13)

which divided by the surface area Aν becomes the adsorption equation

dσν  =  –ζν dT – Γν dμ + (γν – σν) d ln Aν.                                                    (14)

Therein, ζν = (SE)ν /Aν is the (specific) surface entropy, and Γν = (NE)ν /Aν is the adsorption. Whenever γν and σν are 
equal, such as for the Laplace radius, the well-known isothermal expression for the Gibbs adsorption equation is 
obtained, (dσν)T = –Γν dμ. In general, the deviation from the standard form of the adsorption equation is given by 
(γν – σν) d ln Aν, the third term in Eq. (14).

3.3 Tolman’s law

The generalized Gibbs adsorption equation is now applied to the special case of a transition where only the 
chemical  potential  of  a  single  component  μi is  varied,  while  T and  all  μj≠i are  constant;  n.b.,  for  a  single-
component system, this corresponds to the case considered by Tolman (1949). Noting that d ln Aν = 2 d ln Rν 

while (Tolman, 1949)

dμi  =  dpα/ρi
α   =  dpβ/ρi

β  =  dΔXp/ΔXρi,                                                        (15)

where ΔXp = pα – pβ and ΔXρi = ρi
α – ρi

β, the adsorption equation simplifies to

dσν + Γi,ν (ΔXρi)-1 dΔXp  =  φν dRν                                                             (16)

with φν = 2(γν – σν)/Rν for a transition at constant μj≠i and T. Using the notation Λi,ν = Γi,ν (Rν  ΔXρi)-1 for Tolman's 
dimensionless adsorption expression, this becomes

dσν/Rν – φν d ln Rν + Λi,ν dΔXp  =  0.                                                         (17)

Following Tolman (1949),

Λi,ν  =  δi,ν /Rν + (δi,ν /Rν)2 + (δi,ν /Rν)3/3                                                       (18)

is obtained by determining the adsorption from a spherical density profile. The Tolman length

δi,ν  =  Re,i – Rν                                                                        (19)

is defined with respect to the equimolar radius Re in the case of a single component, following Tolman (1949); in 
the case of a mixture, Re,i refers to the dividing surface ν = νe,i at which the adsorption of the component i is zero, 
Γi,ν = 0. By Eq. (17), a generalized version of Tolman's law is given, which can be applied to any dividing  
surface and down to the smallest length scale. It should be noted that if φν = 0 (i.e., σν = γν), the standard form of 
Tolman's law holds exactly.

4. CONCLUSIONS

Care must be taken when concepts from macroscopic equilibrium thermodynamics are applied to small systems 
(Hill, 1964). This also holds for relations which are well established, such as the Gibbs adsorption equation. It  
was discussed here how a deviation between absolute and differential definitions of the surface tension affects 
this equation. A generalized Gibbs adsorption equation was derived which takes these effects consistently into 
account. On this basis, Tolman's law was generalized to arbitrary notions of the dividing surface. However, it is 
known from previous work that Tolman's law is inadequate empirically (Wilhelmsen et al., 2015). Since recent 
findings indicate that δ is very small or zero, and that the contribution to γ which is proportional to 1/R is very 
small (and could be entirely absent), such approaches will probably fail to capture γ(R) correctly. The challenge 
of developing rigorous methods to quantify the higher-order curvature contributions to the surface tension of 
small bubbles and droplets therefore remains a significant area of investigation.
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