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A method for determining activity coefficients by molecular dynamics simulations is5

presented. It is an extension of the OPAS method (osmotic pressure for the activity of6

the solvent) developed in previous work for studying the solvent activity in electrolyte7

solutions. That method is extended here to study activities of all components in8

mixtures of molecular species. As an example, activity coefficients in liquid mixtures9

of water and methanol are calculated for 298.15 K and 323.15 K at 1 bar using10

molecular models from the literature. These dense and strongly interacting mixtures11

pose a significant challenge to existing methods for determining activity coefficients12

by molecular simulation. It is shown that the new method yields accurate results13

for the activity coefficients which are in agreement with results obtained with a14

thermodynamic integration technique. As the partial molar volumes are needed in15

the proposed method, the molar excess volume of the system water + methanol is16

also investigated.17
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I. INTRODUCTION18

Chemical potentials or related properties like activities or activity coefficients are needed19

for the determination of phase equilibria, and therefore their computation is a commonly en-20

countered task in molecular simulation studies. Most methods for determining the chemical21

potential in molecular simulations are based on particle insertion. Often, the test particle22

method of Widom1 is used. However, in dense systems, that method tends to fail because of23

extremely high energies upon insertion of the ’ghost’ particles. To overcome this difficulty,24

different elaborate sampling schemes have been suggested, e.g. the gradual insertion or ther-25

modynamic integration techniques2,3. But still, for dense and strongly interacting systems,26

long simulations are usually required, and method-specific simulation parameters have to be27

determined by trial-and-error beforehand. Despite this, the methods may still turn out to28

be unfeasible.29

In this work, a new approach for obtaining activity coefficients in the liquid phase in molec-30

ular dynamics simulations is presented. It builds on previous work of our group in which the31

OPAS method (osmotic pressure for the activity of the solvent)4,5 was developed based on32

ideas described by Murad and co-workers6–9. In its previous version4,5, the OPAS method33

was developed for determining the solvent activity in electrolyte solutions. In the present34

work, it is extended for determining activities of all species in mixtures of molecular species,35

similar to the approach of Crozier and Rowley10. To demonstrate the feasibility and accu-36

racy of the new method, it is applied to determine activity coefficients in binary mixtures37

of water and methanol at 298.15 K and 323.15 K and 1 bar.38

Binary mixtures of water and methanol have been the subject of many experimental and39

simulation studies. On the one hand, this is due to the importance of these substances40
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in many applications. On the other hand, as both water and methanol are strongly polar41

and hydrogen bonding, their mixture has often been used as a test case for thermodynamic42

models. The current version of the Dortmund Data Bank11 lists more than 10,000 experi-43

mental data points for this system. Especially vapor-liquid equilibria and excess properties44

have been studied by many groups in a wide range of conditions. Mixtures of water and45

methanol have also been studied extensively using molecular simulation (e.g. in Refs. 10,12–41).46

In most of these studies, the structure of the solution is investigated. Some publications also47

address hydrogen bonding statistics12,13,18,28,29,38,41, excess properties18–21,27,33,34,36,38–41 and48

transport properties16,18,21,22,32,39,41. In contrast, the number of molecular simulation stud-49

ies of the vapor-liquid equilibrium or the related activity coefficients in the liquid phase is50

small10,23,26,35, due to the fact that these properties are difficult to compute accurately in51

molecular simulations for dense liquid mixtures with strong interactions. Activity coefficients52

are derivatives of the free energy, so that they cannot be obtained by standard sampling53

and instead, special algorithms have to be designed for their calculation. As outlined above,54

most of the common algorithms to do so are based on particle insertions, which become very55

cumbersome for systems of strongly interacting particles.56

In the present work, it is shown that the proposed extension of the OPAS method enables57

an accurate calculation of activity coefficients, even in challenging mixtures such as water +58

methanol. Since partial molar volumes are needed in the evaluation of the OPAS simulation59

results, the molar excess volume of the mixture is also investigated. To demonstrate the60

viability of the extended OPAS approach, we compare its results to results obtained with a61

thermodynamic integration technique.62

The paper is structured as follows: In Section II, we briefly describe the employed molecular63

models. The rest of Section II is devoted to the derivation and presentation of the exten-64
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sion of the OPAS approach. This includes a procedure for obtaining partial molar volumes.65

In Section III, these volumetric properties are discussed first. Then, the OPAS simulation66

results are presented and compared to the results from thermodynamic integration, before67

we conclude in Section IV.68

II. MOLECULAR MODELS AND SIMULATION METHODS69

A. Molecular Models70

In the present study, the TIP4P/2005 water model42 and a methanol model from previous71

work of our group43 are used. Both are known to give good predictions of pure component72

properties. Both models are rigid and non-polarizable and consist of Lennard-Jones (LJ)73

sites and partial charges. The potential is therefore74

U = ULJ + UCC

=
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Here, a, b, c and d denote sites, i and j denote molecules, ε0 is the vacuum permittivity,75

εijab and σijab are the Lennard-Jones energy and size parameters, rijab and rijcd are site-site76

distances, and qic and qjd are the magnitudes of the partial charges.77

To describe the interaction between unlike LJ sites, the Lorentz-Berthelot combining rules78

are used:79

σijab =
σiiaa + σjjbb

2
, (2)

εijab =
√
εiiaaεjjbb. (3)
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B. Computation of Activity Coefficients with the OPAS Method80

The OPAS method was developed in previous work with the aim of computing activities81

in electrolyte solutions. It is only introduced briefly here, for details, the reader is referred82

to our previous publications4,5.83

OPAS simulations are molecular dynamics simulations of the osmotic equilibrium between84

a pure component phase (′) and a mixture phase (′′) which are in contact via a virtual85

semipermeable membrane. There is only one permeable component i. The membrane is86

realized in the simulation by applying an external force field on all molecules but those of87

component i to keep them inside the mixture phase (′′), so that the phase (′) contains pure i.88

The osmotic pressure Π, which is the pressure difference between the two phases, is sampled89

as the membrane force per area.90

In OPAS simulations, the temperature T and the pressure p′ of the pure component phase91

are specified. The simulation results are the osmotic pressure Π and the composition of92

the mixture phase x. The goal is the computation of the activity coefficient γi(T, p
′, x) of93

the permeable component i at the specified temperature T and pressure p′ as well as the94

composition of the mixture phase x.95

In the following, it is shown how γi(T, p
′, x) is obtained. Normalizing the chemical potentials96

according to Raoult and rearranging the equilibrium condition for the osmotic equilibrium97

described above yields98

µpure
i (T, p′′)− µpure

i (T, p′) = −RT ln ai(T, p
′′, x). (4)

Herein, µi and ai are the chemical potential and activity of the permeable component i, and99

R is the universal gas constant. Combining Eq. (4) with100
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µi(T, p
′, x) = µpure

i (T, p′) +RT ln ai(T, p
′, x) (5)

µi(T, p
′′, x) = µpure

i (T, p′′) +RT ln ai(T, p
′′, x) (6)

yields

µi(T, p
′′, x)− µi(T, p

′, x) = −RT ln ai(T, p
′, x). (7)

Using Π = p′′ − p′ this leads to

p′+Π∫

p′

vi(T, p, x) dp = −RT ln ai(T, p
′, x). (8)

Splitting the activity ai into the mole fraction xi and the activity coefficient γi finally yields

the desired relation

ln γi(T, p
′, x) = − 1

RT

∫ p′+Π

p′
vi(T, p, x) dp− lnxi. (9)

In Eq. (9), T and p′ are specified, and Π and xi are OPAS simulation results. Additionally,101

the partial molar volume vi(T, p, x) is needed for the determination of the activity coefficient,102

and an integration over the pressure has to be carried out. In the present work, vi was103

determined from the molar excess volume vE as described in Section II C.104

The relation between the activity and the osmotic pressure, cf. Eq. (9) has also been exploited105

in a recent paper by Smith et al.44. They, however, proceed in the opposite direction: A106

relation similar to Eq. (9) is employed to calculate the osmotic pressure in an electrolyte107

solution from knowledge of the solvent activity.108

To obtain the N activity coefficients in a mixture of N components, N independent OPAS109

simulation runs have to be carried out. In each run, a different component i is treated as110

the permeable component, while all others cannot permeate the membrane. By the present111

method, the mixture phase composition x is not specified directly. Rather, the composition112
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is a simulation result. However, the initial conditions of the run can generally be chosen113

such that the final result for the composition is close to any desired value. The OPAS114

simulation runs are extremely simple, fast and robust compared to simulations employing115

particle insertion methods.116

C. Computation of Molar Excess Volumes117

The molar excess volume vE of a mixture of N components is defined as:

vE = v −
N∑

i=1

xiv
pure
i , (10)

where v is the molar volume of the mixture and vpure
i are the pure component molar vol-

umes. The molar excess volume is a function of temperature, pressure and composition:

vE = vE(T, p, x). In the present work, only binary mixtures of two components i and j are

studied, so that Eq. (10) becomes

vE = v − xivpure
i − xjvpure

j . (11)

The molar excess volume is computed here by performing a series of simulations at different118

compositions in the NpT ensemble and applying Eq. (11). As the osmotic pressures obtained119

in OPAS simulations can reach very high values, cf. Section III B, such simulations are carried120

out at several isobars up to elevated pressures. For each isobar, the molar excess volumes121

can be correlated by a Redlich-Kister type expression:122

vE = xixj

(
A0 +

∑

k

Ak(xi − xj)k
)
, k = 1, 2, ... , (12)

where A0 and the Ak are fitting parameters. Adjusting Eq. (12) to the NpT simulation123

results is a standard polynomial regression. From that correlation, the partial molar volume124

vi of component i can be obtained as125
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vi =

(
∂V

∂ni

)

T,p,nj 6=i

= vpure
i + vE + xj

(
∂vE

∂xi

)

T,p,nj 6=i

(13)

where

(
∂vE

∂xi

)

T,p,nj 6=i

= (xj − xi)
(
A0 +

∑

k

Ak(xi − xj)k
)

+ 2xixj

(∑

k

Akk(xi − xj)(k−1)

)
, k = 1, 2, ... . (14)

D. Details on the Simulations in the System Water + Methanol126

In the present study, binary mixtures of water and methanol were considered. The aim127

was to determine activity coefficients at p′ = 1 bar and either T = 298.15 K or T = 323.15 K128

over a wide concentration range. Details of the OPAS simulations and the standard NpT129

simulations for obtaining molar excess volumes are given in the Appendices A 1 and A 2,130

respectively. To validate the results for the activity coefficients determined with the OPAS131

method, they were also determined from independent simulations employing a thermody-132

namic integration technique3,45. Technical details of these simulations are given in Appendix133

A 3.134

III. RESULTS AND DISCUSSION135

Simulation results of the NpT simulations for obtaining the molar excess volumes are136

given in Table I, and the OPAS simulation results are given in Table II. Table III con-137

tains the results of the simulations using thermodynamic integration to validate our OPAS138

computations. In all tables, numbers in parentheses indicate the simulation uncertainties139

in the last given digit. The uncertainties for vE were determined from error propagation of140

the simulation results for ρ via Eq. (11). The uncertainties in the evaluation of γi from the141
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OPAS results were then estimated by using the simulation results for vE disturbed by their142

uncertainties in the correlation fitting, cf. Eq. (12), combined with error propagation of the143

uncertainty of Π. The uncertainties in the evaluation of γi from the simulations employing144

thermodynamic integration were estimated by error propagation of the simulation results145

for µ̃i, cf. Eq. (A2) in Appendix A 3.146

Since the focus of the present work is to demonstrate the viability of the OPAS method, we147

discuss the comparison of the model predictions to experimental data only briefly.148

A. Molar Excess Volumes and Partial Molar Volumes149

First, the molar excess volumes of binary mixtures of water and methanol are discussed.150

The molecular simulation results are compared to correlations of experimental data for the151

two temperatures studied here in Fig. 1. The results of the predictive simulations with the152

Lorentz-Berthelot rules capture the trends of the experimental data reasonably. The location153

of the minimum in vE at approximately equimolar composition is predicted correctly, how-154

ever, its magnitude is underestimated by about 20%. The experimental data show that the155

difference between the two temperatures is almost negligible, and the molecular simulation156

results also capture this feature well. Quantitative agreement with the experimental data157

can probably be achieved by introducing an adjustable parameter in the mixing rules20,27.158

In the present work, however, our main concern is demonstrating the viability of the OPAS159

method for computing activity coefficients, and quantitative agreement with the experimen-160

tal data is less important, so that we refrain from fitting binary interaction parameters.161

Similar simulations were carried out at higher pressures. The simulation data were described162

by Redlich-Kister correlations, cf. Eq. (12). The results are shown in Fig. 2, the fit param-163

eters are reported in Table I. Up to pressures of about p = 10 MPa, the pressure effect on164
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the partial molar volumes is small, but it becomes increasingly important at the elevated165

pressures. There, the partial molar volumes of both water and methanol exhibit a maxi-166

mum. Comparing the two different temperatures, the curves are qualitatively similar. The167

main difference is a vertical shift of the curves resulting from the temperature dependence168

of the pure component molar volumes, which are in good agreement with the molar volumes169

computed from equations of state for both studied temperatures, cf. Fig. 2. A more detailed170

comparison of the partial molar volumes obtained from the simulations to experimental data171

is presented in the Supplementary Material.172

B. Osmotic Pressures and Activity Coefficients173

The osmotic pressures obtained by OPAS simulations at the two studied temperatures,174

using either water or methanol as the permeable component, are shown in Fig. 3. Simula-175

tions were carried out here for mole fractions above about 0.1 of the permeable component i176

in the mixture phase. At lower mole fractions of the permeable component, the statistics for177

the undisturbed mixture phase becomes poor for the present scenario. Fig. 3 shows that the178

osmotic pressure rises to very high values at low concentrations of the permeable component.179

Comparing the simulation results at the two temperatures shows that the temperature de-180

pendence of the osmotic pressures is very small. When evaluating activity coefficients from181

the OPAS simulations, the osmotic pressures are the upper bounds for the integration over182

the pressure in Eq. (9).183

In order to evaluate the OPAS simulations to get activity coefficients, the partial molar184

volume of the respective permeable component was evaluated analytically at the composi-185

tion of interest from the Redlich-Kister type correlations presented in Fig. 2. The resulting186

series of values at different pressures vi(p) was then fit to a polynomial of second degree.187
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This polynomial was integrated over the pressure in order to obtain the activity coefficients188

according to Eq. (9). The results are shown in Fig. 4 for both studied temperatures. The189

error bars for the activity coefficient obtained with the OPAS method are within symbol190

size. The OPAS data are smooth for both temperatures, and in the Supplementary Material,191

it is shown that the numbers for γW and γMeOH obtained from independent OPAS simula-192

tions are thermodynamically consistent. For T = 323.15 K, activity coefficients were also193

determined from sampling the chemical potential by thermodynamic integration in NpT194

simulations. The results are presented in Fig. 4, right panel, and in Table III. The data195

obtained by thermodynamic integration scatter much more strongly than those from the196

OPAS method, even though very long simulations were carried out, cf. Appendix A 3. At197

T = 298.15 K, thermodynamic integration breaks down due to the increased density. In198

contrast, the increased density at low temperatures has no effect on the performance of the199

OPAS method. Taking into account the uncertainties in the results obtained from thermo-200

dynamic integration, both simulation techniques agree well.201

The data obtained from the investigated models qualitatively agree with the experimental202

results. However, together with the original Lorentz-Berthelot rules these models are not203

able to predict the activity coefficients quantitatively. Improvements could be achieved by204

parameter fitting, which is beyond the scope of the present work.205

IV. CONCLUSIONS206

An extension of the OPAS method is presented. It is based on the simulation of an osmotic207

equilibrium and enables accurate calculations of activity coefficients even in dense, strongly208

interacting mixtures. For every component i in the mixture, a set of OPAS simulations209

has to be carried out treating that component i as the permeable one. In the simulations,210
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the temperature T and the pressure p′ in the pure component phase are specified and the211

activity coefficient γi at the composition of the mixture phase and at T and p′ is determined.212

As high osmotic pressures are obtained, especially in simulations at high dilution of the213

respective permeable component, the pressure dependence of the activity coefficients has to214

be taken into account, so that the partial molar volume vi of component i in the mixture215

has to be known. It is obtained here from simple and inexpensive NpT simulations. The216

proposed procedure yields activity coefficients with low uncertainty and is very robust. It is217

an advantage of the method that its efficiency does not depend on the studied statepoint, so218

that it is applicable to systems of low temperature and high density without modifications.219

Furthermore, it may also be applied to solutions of polymers or proteins, for which algorithms220

based on particle insertion become very tedious. Using OPAS simulations, the activity of the221

solvent can be determined with high accuracy. The activity of the solute is then available222

from the Gibbs-Duhem equation, an approach applied successfully in our previous work on223

electrolyte solutions.224

SUPPLEMENTARY MATERIAL225

The supplementary material contains a comparison of the partial molar volumes from226

molecular simulation and experiment as well as a consistency check of the activity coefficients227

determined from independent OPAS simulation runs.228
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Appendix A: Simulation Details238

All simulations of the present work were carried out with an extended version of the239

molecular simulation program ms246. All simulations employed the velocity scaling ther-240

mostat, and electrostatic long-range interactions were calculated using the reaction field241

method47,48 with tinfoil boundary conditions. In all simulations, the electrostatic cutoff ra-242

dius was equal to the Lennard-Jones cutoff radius of 15 Å. In all molecular dynamics (MD)243

simulations, the time step was 1.2 fs, and the pressure was kept constant in MD NpT simu-244

lations using Andersen’s barostat. Statistical simulation uncertainties were estimated with245

the block average method by Flyvbjerg and Petersen49.246

1. OPAS Simulations247

OPAS MD simulations were carried out as in previous work4,5, using 4000 particles. At248

first, simulations in a modified NpT ensemble were carried out, in which equilibration and249

production took 2,000,000 and 5,000,000 time steps, respectively. The resulting box volume250

V was then used for a run in the NV T ensemble, in which equilibration and production251

took 2,000,000 and 10,000,000 time steps, respectively.252
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2. Simulations for Molar Excess Volumes253

Conventional MD simulations were carried out in the NpT ensemble with 1000 particles.254

Equilibration and production took 100,000 and 2,000,000 time steps, respectively.255

3. Simulations using Thermodynamic Integration256

The chemical potential of both components was sampled with thermodynamic integration

in Monte Carlo (MC) simulations in the NpT ensemble with 1000 particles, employing an

adaptive sampling technique with non-linear scaling as proposed by Kristóf and Rutkai45

(using 100 bins from 0.2 ≤ λ ≤ 1, with a maximum λ displacement per attempt of 0.1 and

the exponent d = 4). These simulations yield the reduced residual chemical potential

µ̃i = [µi − µid
i (T )]/(RT ), (A1)

where µid
i (T ) is the part of the ideal chemical potential of component i that only depends

on temperature. Activity coefficients are obtained from

ln γi = µ̃i − µ̃pure
i − lnxi. (A2)

The fluid was equilibrated for 50,000 MC loops, before sampling was carried out for 9,600,000257

MC loops. Each MC loop consisted of NNDF/3 steps, where NNDF indicates the total number258

of mechanical degrees of freedom of the system, plus one attempt to resize the box according259

to the Metropolis acceptance criterion.260
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FIG. 1. Molar excess volume of water-methanol mixtures at p = 1 bar. Open circles show re-400

sults from predictive molecular simulations, dotted lines show a Redlich-Kister correlation to these401

results. Statistical uncertainties are within symbol size. The solid lines are correlations to experi-402

mental data by Coquelet et al.50.403
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FIG. 2. Partial molar volumes of water (top) and methanol (bottom) in water-methanol mixtures405

obtained from Redlich-Kister correlations fit to molecular simulation results for the molar excess406

volumes. Colored lines correspond to different pressures (from top to bottom): (-) p = 0.1 MPa,407

(-) p = 10 MPa, (-) p = 50 MPa, (-) p = 100 MPa, (-) p = 300 MPa. The open squares colored408

accordingly are molar volumes of pure water and pure methanol computed from the equations of409

state by Wagner and Pruss51 and by de Reuck and Craven52, respectively.410
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TABLE I. Densities and parameters of Redlich-Kister correlations, cf. Eq. (12), fit to molar excess424

volumes for binary mixtures of water and methanol.425

ρ(T = 298.15 K) / mol l−1 T = 298.15 K

xMeOH / mol mol−1 Parameters for vE / cm3 mol−1

p / MPa 0 0.25 0.5 0.75 1 A0 A1 A2

0.1 55.21(1) 43.16(1) 34.92(1) 28.968(6) 24.519(4) −3.2292 −0.0916 0.0372

10 55.48(1) 43.384(9) 35.126(8) 29.203(6) 24.766(5) −2.9315 −0.0829 −0.1153

50 56.47(1) 44.149(9) 35.907(6) 30.021(5) 25.602(4) −2.1386 0.0819 −0.0695

100 57.59(1) 45.012(8) 36.757(6) 30.850(5) 26.417(3) −1.6183 0.2426 0.1887

300 61.194(8) 47.756(6) 39.197(5) 33.136(4) 28.600(2) −0.5657 0.3927 0.2493

ρ(T = 323.15 K) / mol l−1 T = 323.15 K

xMeOH / mol mol−1 Parameters for vE / cm3 mol−1

p / MPa 0 0.25 0.5 0.75 1 A0 A1 A2

0.1 54.69(1) 42.259(9) 33.973(7) 28.123(6) 23.758(5) −3.0137 0.0507 −0.2649

10 54.93(1) 42.517(8) 34.228(8) 28.390(5) 24.048(4) −2.7153 −0.0796 −0.2904

50 55.896(9) 43.378(7) 35.138(6) 29.310(4) 24.989(3) −1.9799 −0.0070 0.0629

100 56.99(1) 44.314(6) 36.047(5) 30.205(4) 25.862(3) −1.4650 0.1003 0.0757

300 60.538(6) 47.157(5) 38.641(4) 32.639(3) 28.169(2) −0.5199 0.3133 0.2183
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TABLE II. Results of OPAS simulations and deduced activity coefficients. The upper block shows426

results of simulations with methanol as the permeable component, the lower block shows results of427

simulations with water as the permeable component.428

T = 298.15 K T = 323.15 K

xMeOH / mol mol−1 Π / MPa γMeOH xMeOH / mol mol−1 Π / MPa γMeOH

0.2163(5) 60.6(3) 1.84(1) 0.2192(6) 62.5(3) 1.84(1)

0.3484(5) 45.7(3) 1.407(6) 0.3525(5) 46.4(2) 1.42(6)

0.4907(5) 33.4(2) 1.198(4) 0.4919(4) 34.2(2) 1.212(4)

0.6442(2) 23.3(2) 1.067(3) 0.6463(2) 23.9(1) 1.072(2)

0.8126(1) 12.1(1) 1.009(2) 0.8129(1) 12.4(1) 1.014(2)

0.9605(1) 2.382(5) 1.0011(8) 0.9606(1) 2.33(5) 1.0039(8)

xMeOH / mol mol−1 Π / MPa γW xMeOH / mol mol−1 Π / MPa γW

0.8779(8) 218.0(5) 2.18(1) 0.8862(8) 224.1(5) 2.46(1)

0.7901(8) 140.9(4) 1.946(7) 0.7866(8) 151.0(5) 1.896(7)

0.5098(7) 56.9(4) 1.376(4) 0.5159(7) 58.9(3) 1.410(3)

0.2235(4) 25.8(2) 1.069(2) 0.2262(4) 26.0(2) 1.085(2)

0.0407(1) 5.36(9) 1.0025(7) 0.0408(1) 5.72(9) 1.0028(7)
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TABLE III. Reduced residual chemical potentials and activity coefficients of water and methanol429

at T = 323.15 K and p = 1 bar obtained from thermodynamic integration.430

xMeOH / mol mol−1 µ̃MeOH µ̃W γMeOH γW

0 − −10.40(6) − 1

0.2 −8.68(6) −10.60(7) 1.9(1) 1.03(7)

0.4 −8.20(6) −10.72(8) 1.5(1) 1.22(9)

0.6 −8.05(6) −10.79(9) 1.18(7) 1.7(1)

0.8 −7.92(6) −11.44(8) 1.01(6) 1.8(1)

1 −7.71(6) − 1 −
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