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Activity Coefficients from Molecular Simulations using the OPAS Method

Maximilian Kohns,»'® Martin Horsch,! and Hans Hasse!
University of Kaiserslautern, Laboratory of Engineering Thermodynamics,

Erwin-Schrodinger Str. 44, D-67663 Kaiserslautern, Germany

A method for determining activity coefficients by molecular dynamics simulations is
presented. It is an extension of the OPAS method (osmotic pressure for the activity of
the solvent) developed in previous work for studying the solvent activity in electrolyte
solutions. That method is extended here to study activities of all components in
mixtures of molecular species. As an example, activity coefficients in liquid mixtures
of water and methanol are calculated for 298.15 K and 323.15 K at 1 bar using
molecular models from the literature. These dense and strongly interacting mixtures
pose a significant challenge to existing methods for determining activity coefficients
by molecular simulation. It is shown that the new method yields accurate results
for the activity coefficients which are in agreement with results obtained with a
thermodynamic integration technique. As the partial molar volumes are needed in
the proposed method, the molar excess volume of the system water + methanol is

also investigated.
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I. INTRODUCTION

Chemical potentials or related properties like activities or activity coefficients are needed
for the determination of phase equilibria, and therefore their computation is a commonly en-
countered task in molecular simulation studies. Most methods for determining the chemical
potential in molecular simulations are based on particle insertion. Often, the test particle
method of Widom! is used. However, in dense systems, that method tends to fail because of
extremely high energies upon insertion of the ’ghost’ particles. To overcome this difficulty,
different elaborate sampling schemes have been suggested, e.g. the gradual insertion or ther-
modynamic integration techniques®?. But still, for dense and strongly interacting systems,
long simulations are usually required, and method-specific simulation parameters have to be
determined by trial-and-error beforehand. Despite this, the methods may still turn out to
be unfeasible.

In this work, a new approach for obtaining activity coefficients in the liquid phase in molec-
ular dynamics simulations is presented. It builds on previous work of our group in which the

)4 was developed based on

OPAS method (osmotic pressure for the activity of the solvent
ideas described by Murad and co-workers®®. In its previous version®®, the OPAS method
was developed for determining the solvent activity in electrolyte solutions. In the present
work, it is extended for determining activities of all species in mixtures of molecular species,
similar to the approach of Crozier and Rowley!’. To demonstrate the feasibility and accu-
racy of the new method, it is applied to determine activity coefficients in binary mixtures
of water and methanol at 298.15 K and 323.15 K and 1 bar.

Binary mixtures of water and methanol have been the subject of many experimental and

simulation studies. On the one hand, this is due to the importance of these substances
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in many applications. On the other hand, as both water and methanol are strongly polar
and hydrogen bonding, their mixture has often been used as a test case for thermodynamic
models. The current version of the Dortmund Data Bank!! lists more than 10,000 experi-
mental data points for this system. Especially vapor-liquid equilibria and excess properties
have been studied by many groups in a wide range of conditions. Mixtures of water and
10,1241y

methanol have also been studied extensively using molecular simulation (e.g. in Refs.

In most of these studies, the structure of the solution is investigated. Some publications also

12,13,18,28,29,38,41 18-21,27,33,34,36,38-41

address hydrogen bonding statistics , excess properties and

16,18,21,22.,32,39.41 " Tp contrast, the number of molecular simulation stud-

transport properties
ies of the vapor-liquid equilibrium or the related activity coefficients in the liquid phase is
smalll?:2326:35 " due to the fact that these properties are difficult to compute accurately in
molecular simulations for dense liquid mixtures with strong interactions. Activity coefficients
are derivatives of the free energy, so that they cannot be obtained by standard sampling
and instead, special algorithms have to be designed for their calculation. As outlined above,
most of the common algorithms to do so are based on particle insertions, which become very
cumbersome for systems of strongly interacting particles.

In the present work, it is shown that the proposed extension of the OPAS method enables
an accurate calculation of activity coefficients, even in challenging mixtures such as water +
methanol. Since partial molar volumes are needed in the evaluation of the OPAS simulation
results, the molar excess volume of the mixture is also investigated. To demonstrate the
viability of the extended OPAS approach, we compare its results to results obtained with a
thermodynamic integration technique.

The paper is structured as follows: In Section II, we briefly describe the employed molecular

models. The rest of Section II is devoted to the derivation and presentation of the exten-
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sion of the OPAS approach. This includes a procedure for obtaining partial molar volumes.
In Section III, these volumetric properties are discussed first. Then, the OPAS simulation
results are presented and compared to the results from thermodynamic integration, before

we conclude in Section IV.

II. MOLECULAR MODELS AND SIMULATION METHODS

A. Molecular Models

In the present study, the TIP4P /2005 water model?? and a methanol model from previous
work of our group®® are used. Both are known to give good predictions of pure component
properties. Both models are rigid and non-polarizable and consist of Lennard-Jones (LJ)

sites and partial charges. The potential is therefore

U= ULy + Ucc
-1 N n%J n?-] - 12 o nze n? 1
= Z Z Z 4Ezjab ( Z]ab) . ( l]ab) + Z Z ch%d (1)
i=1 j=i+1 a=1 b=1 Tijab Tijab =1 d=1 47T€0 Tijed

Here, a, b, ¢ and d denote sites, ¢ and j denote molecules, gy is the vacuum permittivity,
€ijab a0d 054 are the Lennard-Jones energy and size parameters, 74, and r;;c4 are site-site
distances, and ¢;. and g;q are the magnitudes of the partial charges.

To describe the interaction between unlike LJ sites, the Lorentz-Berthelot combining rules

are used:

Oiiaa + Ojjbb
Oijab — T7 (2)

€ijab = \/€iiaa€;jjbb- (3)
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B. Computation of Activity Coefficients with the OPAS Method

The OPAS method was developed in previous work with the aim of computing activities
in electrolyte solutions. It is only introduced briefly here, for details, the reader is referred
to our previous publications®?.

OPAS simulations are molecular dynamics simulations of the osmotic equilibrium between
a pure component phase (') and a mixture phase (”) which are in contact via a virtual
semipermeable membrane. There is only one permeable component i. The membrane is
realized in the simulation by applying an external force field on all molecules but those of
component i to keep them inside the mixture phase ("), so that the phase (") contains pure i.
The osmotic pressure II, which is the pressure difference between the two phases, is sampled
as the membrane force per area.

In OPAS simulations, the temperature 7" and the pressure p’ of the pure component phase
are specified. The simulation results are the osmotic pressure II and the composition of
the mixture phase z. The goal is the computation of the activity coefficient ~;(7,p’, z) of
the permeable component i at the specified temperature 7" and pressure p’ as well as the
composition of the mixture phase z.

In the following, it is shown how ~;(7T’, p’, z) is obtained. Normalizing the chemical potentials

according to Raoult and rearranging the equilibrium condition for the osmotic equilibrium

described above yields

/qure(Ta p//> . ﬂfure (T7 p/) = —RTIn a; (Tu p//7 2) . (4)

Herein, p; and a; are the chemical potential and activity of the permeable component i, and

R is the universal gas constant. Combining Eq. (4) with

5
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pi(T,p' z) = (T, p') + RT Ina; (T, p', ) (5)

wi(T,p", x) = pd™ (T, p") + RT'Ina; (T, p", ) (6)

yields
,MZ(Ta pllag) - NZ(T’ p/ag) - _RT ln ai(Ta plal)' (7)
Using II = p” — p’ this leads to

p'+II

/ vi(T,p,z) dp = —RT Ina;(T,p', z). (8)

/

p

Splitting the activity a; into the mole fraction x; and the activity coefficient ~; finally yields

the desired relation

1 p’+11

BT ’ vi(T,p,x) dp — In ;. (9)

In 7@<T7 p/7£) = -

In Eq. (9), T and p’ are specified, and II and z; are OPAS simulation results. Additionally,
the partial molar volume v;(7), p, z) is needed for the determination of the activity coefficient,
and an integration over the pressure has to be carried out. In the present work, v; was
determined from the molar excess volume v* as described in Section 11 C.

The relation between the activity and the osmotic pressure, cf. Eq. (9) has also been exploited
in a recent paper by Smith et al.**. They, however, proceed in the opposite direction: A
relation similar to Eq. (9) is employed to calculate the osmotic pressure in an electrolyte
solution from knowledge of the solvent activity.

To obtain the N activity coefficients in a mixture of N components, N independent OPAS
simulation runs have to be carried out. In each run, a different component i is treated as
the permeable component, while all others cannot permeate the membrane. By the present

method, the mixture phase composition z is not specified directly. Rather, the composition
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is a simulation result. However, the initial conditions of the run can generally be chosen
such that the final result for the composition is close to any desired value. The OPAS
simulation runs are extremely simple, fast and robust compared to simulations employing

particle insertion methods.

C. Computation of Molar Excess Volumes

The molar excess volume v¥ of a mixture of N components is defined as:

N
v = — Z zop e, (10)
i=1

pure
%

where v is the molar volume of the mixture and v are the pure component molar vol-
umes. The molar excess volume is a function of temperature, pressure and composition:
v® = vB(T,p,z). In the present work, only binary mixtures of two components i and j are
studied, so that Eq. (10) becomes

E _ _ ,...,bure ,,bure
v =0 —x; ziv; (11)

The molar excess volume is computed here by performing a series of simulations at different
compositions in the NpT ensemble and applying Eq. (11). As the osmotic pressures obtained
in OPAS simulations can reach very high values, cf. Section III B, such simulations are carried
out at several isobars up to elevated pressures. For each isobar, the molar excess volumes

can be correlated by a Redlich-Kister type expression:

o = w4 (A(] + ZAk(xz - x])k> k=1,2,..., (12)
k
where Ay and the Ay are fitting parameters. Adjusting Eq. (12) to the NpT simulation

results is a standard polynomial regression. From that correlation, the partial molar volume

v; of component 7 can be obtained as
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ov o™
'Ui:(a ) VP P +x](; ) (13)
nl T7p7n]7£L xz T7p7nj#t

(8UE> =(z;—x) A —l—ZA xj
— A 0 k -
axi T,p,nj?sz J
+ 2372'1']' <Z Akk’(l’l — l’j)(k_l)> s k= 1,2, e s (14)
k

where

D. Details on the Simulations in the System Water + Methanol

In the present study, binary mixtures of water and methanol were considered. The aim
was to determine activity coefficients at p’ = 1 bar and either 7' = 298.15 K or T' = 323.15 K
over a wide concentration range. Details of the OPAS simulations and the standard NpT
simulations for obtaining molar excess volumes are given in the Appendices A1 and A 2,
respectively. To validate the results for the activity coefficients determined with the OPAS
method, they were also determined from independent simulations employing a thermody-

namic integration technique®*®. Technical details of these simulations are given in Appendix

A3.

ITIT. RESULTS AND DISCUSSION

Simulation results of the NpT' simulations for obtaining the molar excess volumes are
given in Table I, and the OPAS simulation results are given in Table II. Table III con-
tains the results of the simulations using thermodynamic integration to validate our OPAS
computations. In all tables, numbers in parentheses indicate the simulation uncertainties
in the last given digit. The uncertainties for v* were determined from error propagation of

the simulation results for p via Eq. (11). The uncertainties in the evaluation of 7; from the

8
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OPAS results were then estimated by using the simulation results for ¥ disturbed by their
uncertainties in the correlation fitting, cf. Eq. (12), combined with error propagation of the
uncertainty of II. The uncertainties in the evaluation of 7; from the simulations employing
thermodynamic integration were estimated by error propagation of the simulation results
for fi;, cf. Eq. (A2) in Appendix A 3.

Since the focus of the present work is to demonstrate the viability of the OPAS method, we

discuss the comparison of the model predictions to experimental data only briefly.

A. Molar Excess Volumes and Partial Molar Volumes

First, the molar excess volumes of binary mixtures of water and methanol are discussed.
The molecular simulation results are compared to correlations of experimental data for the
two temperatures studied here in Fig. 1. The results of the predictive simulations with the
Lorentz-Berthelot rules capture the trends of the experimental data reasonably. The location
of the minimum in v® at approximately equimolar composition is predicted correctly, how-
ever, its magnitude is underestimated by about 20%. The experimental data show that the
difference between the two temperatures is almost negligible, and the molecular simulation
results also capture this feature well. Quantitative agreement with the experimental data
can probably be achieved by introducing an adjustable parameter in the mixing rules?®2".
In the present work, however, our main concern is demonstrating the viability of the OPAS
method for computing activity coefficients, and quantitative agreement with the experimen-
tal data is less important, so that we refrain from fitting binary interaction parameters.
Similar simulations were carried out at higher pressures. The simulation data were described

by Redlich-Kister correlations, cf. Eq. (12). The results are shown in Fig. 2, the fit param-

eters are reported in Table I. Up to pressures of about p = 10 MPa, the pressure effect on
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the partial molar volumes is small, but it becomes increasingly important at the elevated
pressures. There, the partial molar volumes of both water and methanol exhibit a maxi-
mum. Comparing the two different temperatures, the curves are qualitatively similar. The
main difference is a vertical shift of the curves resulting from the temperature dependence
of the pure component molar volumes, which are in good agreement with the molar volumes
computed from equations of state for both studied temperatures, cf. Fig. 2. A more detailed
comparison of the partial molar volumes obtained from the simulations to experimental data

is presented in the Supplementary Material.

B. Osmotic Pressures and Activity Coefficients

The osmotic pressures obtained by OPAS simulations at the two studied temperatures,
using either water or methanol as the permeable component, are shown in Fig. 3. Simula-
tions were carried out here for mole fractions above about 0.1 of the permeable component i
in the mixture phase. At lower mole fractions of the permeable component, the statistics for
the undisturbed mixture phase becomes poor for the present scenario. Fig. 3 shows that the
osmotic pressure rises to very high values at low concentrations of the permeable component.
Comparing the simulation results at the two temperatures shows that the temperature de-
pendence of the osmotic pressures is very small. When evaluating activity coefficients from
the OPAS simulations, the osmotic pressures are the upper bounds for the integration over
the pressure in Eq. (9).

In order to evaluate the OPAS simulations to get activity coefficients, the partial molar
volume of the respective permeable component was evaluated analytically at the composi-
tion of interest from the Redlich-Kister type correlations presented in Fig. 2. The resulting

series of values at different pressures v;(p) was then fit to a polynomial of second degree.

10
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This polynomial was integrated over the pressure in order to obtain the activity coefficients
according to Eq. (9). The results are shown in Fig. 4 for both studied temperatures. The
error bars for the activity coefficient obtained with the OPAS method are within symbol
size. The OPAS data are smooth for both temperatures, and in the Supplementary Material,
it is shown that the numbers for yw and y\eon obtained from independent OPAS simula-
tions are thermodynamically consistent. For T = 323.15 K, activity coefficients were also
determined from sampling the chemical potential by thermodynamic integration in NpT
simulations. The results are presented in Fig. 4, right panel, and in Table III. The data
obtained by thermodynamic integration scatter much more strongly than those from the
OPAS method, even though very long simulations were carried out, cf. Appendix A 3. At
T = 298.15 K, thermodynamic integration breaks down due to the increased density. In
contrast, the increased density at low temperatures has no effect on the performance of the
OPAS method. Taking into account the uncertainties in the results obtained from thermo-
dynamic integration, both simulation techniques agree well.

The data obtained from the investigated models qualitatively agree with the experimental
results. However, together with the original Lorentz-Berthelot rules these models are not
able to predict the activity coefficients quantitatively. Improvements could be achieved by

parameter fitting, which is beyond the scope of the present work.

IV. CONCLUSIONS

An extension of the OPAS method is presented. It is based on the simulation of an osmotic
equilibrium and enables accurate calculations of activity coefficients even in dense, strongly
interacting mixtures. For every component i in the mixture, a set of OPAS simulations

has to be carried out treating that component ¢ as the permeable one. In the simulations,

11
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the temperature 7' and the pressure p’ in the pure component phase are specified and the
activity coefficient ~; at the composition of the mixture phase and at 7" and p’ is determined.
As high osmotic pressures are obtained, especially in simulations at high dilution of the
respective permeable component, the pressure dependence of the activity coefficients has to
be taken into account, so that the partial molar volume v; of component ¢ in the mixture
has to be known. It is obtained here from simple and inexpensive NpT simulations. The
proposed procedure yields activity coefficients with low uncertainty and is very robust. It is
an advantage of the method that its efficiency does not depend on the studied statepoint, so
that it is applicable to systems of low temperature and high density without modifications.
Furthermore, it may also be applied to solutions of polymers or proteins, for which algorithms
based on particle insertion become very tedious. Using OPAS simulations, the activity of the
solvent can be determined with high accuracy. The activity of the solute is then available
from the Gibbs-Duhem equation, an approach applied successfully in our previous work on

electrolyte solutions.

SUPPLEMENTARY MATERIAL

The supplementary material contains a comparison of the partial molar volumes from
molecular simulation and experiment as well as a consistency check of the activity coefficients

determined from independent OPAS simulation runs.
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Appendix A: Simulation Details

All simulations of the present work were carried out with an extended version of the

246

molecular simulation program ms2*°. All simulations employed the velocity scaling ther-

mostat, and electrostatic long-range interactions were calculated using the reaction field

d*"*® with tinfoil boundary conditions. In all simulations, the electrostatic cutoff ra-

metho
dius was equal to the Lennard-Jones cutoff radius of 15 A. In all molecular dynamics (MD)
simulations, the time step was 1.2 fs, and the pressure was kept constant in MD NpT' simu-

lations using Andersen’s barostat. Statistical simulation uncertainties were estimated with

the block average method by Flyvbjerg and Petersen.

1. OPAS Simulations

OPAS MD simulations were carried out as in previous work®®, using 4000 particles. At
first, simulations in a modified NpT ensemble were carried out, in which equilibration and
production took 2,000,000 and 5,000,000 time steps, respectively. The resulting box volume
V' was then used for a run in the NV'T ensemble, in which equilibration and production

took 2,000,000 and 10,000,000 time steps, respectively.
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2. Simulations for Molar Excess Volumes

Conventional MD simulations were carried out in the NpT ensemble with 1000 particles.

Equilibration and production took 100,000 and 2,000,000 time steps, respectively.

3. Simulations using Thermodynamic Integration

The chemical potential of both components was sampled with thermodynamic integration
in Monte Carlo (MC) simulations in the NpT ensemble with 1000 particles, employing an
adaptive sampling technique with non-linear scaling as proposed by Krist6f and Rutkai®®
(using 100 bins from 0.2 < A < 1, with a maximum A displacement per attempt of 0.1 and

the exponent d = 4). These simulations yield the reduced residual chemical potential

fui = [ — 1 (T)]/(RT), (A1)

where pi4(T) is the part of the ideal chemical potential of component i that only depends

on temperature. Activity coefficients are obtained from

~pure

Invy, =p; — " — Ina;. (A2)

The fluid was equilibrated for 50,000 MC loops, before sampling was carried out for 9,600,000
MC loops. Each MC loop consisted of Nxpr/3 steps, where Nypr indicates the total number
of mechanical degrees of freedom of the system, plus one attempt to resize the box according

to the Metropolis acceptance criterion.
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FIG. 1. Molar excess volume of water-methanol mixtures at p = 1 bar. Open circles show re-
sults from predictive molecular simulations, dotted lines show a Redlich-Kister correlation to these
results. Statistical uncertainties are within symbol size. The solid lines are correlations to experi-

mental data by Coquelet et al.?°.
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FIG. 2. Partial molar volumes of water (top) and methanol (bottom) in water-methanol mixtures
obtained from Redlich-Kister correlations fit to molecular simulation results for the molar excess
volumes. Colored lines correspond to different pressures (from top to bottom): (-) p = 0.1 MPa,
(-) p = 10 MPa, (-) p = 50 MPa, (-) p = 100 MPa, (-) p = 300 MPa. The open squares colored
accordingly are molar volumes of pure water and pure methanol computed from the equations of

2

state by Wagner and Pruss®® and by de Reuck and Craven®?, respectively.
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a2 FIG. 3. Osmotic pressures obtained in OPAS simulations using water as the permeable component
a3 (blue) or methanol as the permeable component (red), dotted lines are guides to the eye. Statistical

a4 uncertainties are within symbol size.
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415

s FIG. 4. Activity coefficients of methanol (red) and water (blue) in water-methanol mixtures at
a7 p = 1 bar. The open circles show simulation results obtained with the OPAS method. Statistical
a1 uncertainties of the OPAS simulation results are within symbol size. In the right panel, the open
a9 squares show simulation results using the same molecular models, but obtained from sampling the
a0 chemical potential with thermodynamic integration. Solid lines show NRTL fits to the experimental

w1 data of Kooner et al.’3 (left panel) and by Bernatova et al.>* (right panel).
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22 TABLE I. Densities and parameters of Redlich-Kister correlations, cf. Eq. (12), fit to molar excess

425

volumes for binary mixtures of water and methanol.

p(T = 298.15 K) / mol 17}

T =298.15 K

TMeoH / mol mol ™!

Parameters for v / cm® mol™!

p / MPa 0 0.25 0.5 0.75 1 Ao Ay Ag
0.1 55.21(1) [43.16(1) |34.92(1) [28.968(6) |24.519(4) ||—3.2292 |—0.0916 | 0.0372
10 55.48(1) |43.384(9) |35.126(8) |29.203(6) [24.766(5) ||—2.9315 |—0.08290 |—0.1153
50 56.47(1) |44.149(9) |35.907(6) {30.021(5) {25.602(4) ||—2.1386 0.0819 |—0.0695
100 57.59(1) |45.012(8) |36.757(6) |30.850(5) |26.417(3) || -1.6183 | 0.2426 | 0.1887
300 61.194(8) |47.756(6) |39.197(5) [33.136(4) |28.600(2) ||—0.5657 | 0.3927 | 0.2493
p(T = 323.15 K) / mol 17} T = 323.15 K

TMeon / mol mol ™! Parameters for v® / cm® mol™!
p/MPa| 0 0.25 0.5 0.75 1 Ao Ay Ay
0.1 54.69(1) |42.259(9) |33.973(7) |28.123(6) [23.758(5) ||—3.0137 | 0.0507 |—0.2649
10 54.93(1) |42.517(8) |34.228(8) [28.390(5) |24.048(4) ||—2.7153 |—0.0796 |—0.2904
50 55.896(9) [43.378(7) |35.138(6) [29.310(4) [24.989(3) ||—1.9799 |—0.0070 0.0629
100 56.99(1) |44.314(6) |36.047(5) |30.205(4) |25.862(3) ||-1.4650 | 0.1003 | 0.0757
300 60.538(6) |47.157(5) |38.641(4) [32.639(3) {28.169(2) ||—0.5199 0.3133 0.2183
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TABLE II. Results of OPAS simulations and deduced activity coefficients. The upper block shows

results of simulations with methanol as the permeable component, the lower block shows results of

simulations with water as the permeable component.

T =298.15 K T =32315K

rymeon / mol mol~t| II / MPa YMeOH |TMeon / mol mol~t| II / MPa | ~weon
0.2163(5) 60.6(3)  |1.84(1) |0.2192(6) 62.5(3)  |1.84(1)
0.3484(5) 45.7(3)  |1.407(6) |0.3525(5) 46.4(2)  |1.42(6)
0.4907(5) 33.4(2)  |1.198(4) |0.4919(4) 34.2(2)  |1.212(4)
0.6442(2) 23.3(2)  |1.067(3) |0.6463(2) 23.9(1)  |1.072(2)
0.8126(1) 12.1(1)  [1.009(2) |0.8129(1) 12.4(1)  [1.014(2)
0.9605(1) 2.382(5) |1.0011(8) |0.9606(1) 2.33(5)  |1.0039(8)
TMeon / mol mol~t| II / MPa YW 2Meon / mol mol~t| II / MPa YW
0.8779(8) 218.0(5)  |2.18(1) |0.8862(8) 224.1(5)  |2.46(1)
0.7901(8) 140.9(4) 1.946(7) [0.7866(8) 151.0(5) 1.896(7)
0.5098(7) 56.9(4)  |1.376(4) |0.5159(7) 58.9(3)  |1.410(3)
0.2235(4) 25.8(2)  |1.069(2) [0.2262(4) 26.0(2)  |1.085(2)
0.0407(1) 5.36(9)  |1.0025(7) |0.0408(1) 5.72(9)  |1.0028(7)
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20 TABLE III. Reduced residual chemical potentials and activity coefficients of water and methanol

a0 at T = 323.15 K and p = 1 bar obtained from thermodynamic integration.

TMeoH / mol mol ™!

[iMeOH fiw YMeOH YW
0 - ~10.40(6) |- 1
0.2 ~8.68(6) |—10.60(7) | 1.9(1) | 1.03(7)
0.4 ~8.20(6) [—10.72(8) | 1.5(1) | 1.22(9)
0.6 —8.05(6) |—10.79(9) | 1.18(7) | 1.7(1)
0.8 ~7.92(6) [—11.44(8) | 1.01(6) |1.8(1)
1 ~7.71(6) | - 1 ~
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