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Figure 1: Simulation snaphots for a smooth sur-fae with a redued �uid-wall dispersive energy
W of 0.09 (left) and 0.16 (right) at a tempera-ture of 0.73 ǫ/k. The upper half is reprodued inthe bottom to illustrate the e�et of the periodiboundary ondition.and longitudinal motion, adjusted to simulationresults for graphite with a resaled variant of theTerso� (1988) potential. Massively parallel MDsimulations were onduted with the program ls1mardyn, f. Bernreuther et al. (2009). A periodiboundary ondition was applied to the system,leaving a hannel with a diameter of 27 σ betweenthe wall and its periodi image, f. Fig. 1.The ontat angle was determined from thedensity pro�les by averaging over at least 800 psafter equilibration. A irle was adjusted to thepositions of the interfae in the bins orrespond-ing to distanes between 3 and 11 σ from the wall,and the tangent to this irle at a distane of 1 σfrom the wall was onsistently used to determinethe ontat angle.



A ontat angle � as opposed to total dewettingor wetting � appears only for a relatively narrowrange of W values. As the temperature inreasesand the vapor-liquid surfae tension dereases, theontat angle reahes more extreme values, lead-ing to the well-known phenomenon haraterizedby Cahn (1977) as rtiial point wetting, f. Fig. 2.This plot agrees qualitatively with the results ofGiovambattista et al. (2007) regarding the in�u-ene of the polarity of hydroxylated silia surfaeson the ontat angle formed with water.

Figure 2: MD simulation results and orrelationfor the ontat angle of the LJTS �uid on a smoothsurfae in dependene of the temperature with re-dued �uid-wall dispersive energyW values of 0.09(∆ / �), 0.10 ( / � �), 0.12 (• / �) as well as0.14 (∇ / · · ·). The entire range between triplepoint and ritial temperature is shown.For a onstant value W = 0.09 of the redued�uid-wall energy, orresponding to a ontat angleof about 110
◦ for moderate as well as low tem-peratures, the surfae shape and roughness wasvaried in further simulations, f. Fig. 3. The sta-bility of the Cassie state as well as the in�ueneof the surfae shape on dynami properties suhas the boundary slip length and slip veloity innanosopi Poiseuille �ow were studied by MDsimulation.The simulation results regard the length salebetween 1 and 100 nm and an be reliably extrap-olated to the harateristi system dimensions or-responding to typial superhydrophobi surfaes,e.g. about one miron in ase of the material man-ufatured by Steinberger et al. (2008). Thereby,the experimental point of view an be omple-mented by a theoretial treatment, applying thevariant of omputational �uid dynamis that isbest suited for the investigation of nanopatternedsurfaes: MD simulation.The authors would like to thank the GermanSiene Foundation (DFG) for funding SFB 716and M. Heitzig (Copenhagen), J. Harting (Eind-
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Figure 3: Left: Retangular elementary ell of apit grid with retangular pit for simulation withgaseous and liquid �uids. Right: Retangular el-ementary ell (prototype version) with ylindrialbore for simulation of streaming �uids.


