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Abstract

A new version release (3.0) of the molecular simulation tool ms2 [Deublein et al., Comput. Phys.
Commun. 182 (2011) 2350 and Glass et al., Comput. Phys. Commun. 185 (2014) 3302] is pre-
sented. Version 3.0 of ms2 features two additional ensembles, i.e. microcanonical (NV E) and
isobaric–isoenthalpic (NpH), various Helmholtz energy derivatives in the NV E ensemble, thermo-
dynamic integration as a method for calculating the chemical potential, the six Maxwell-Stefan
diffusion coefficients of quaternary mixtures, statistics for sampling hydrogen bonds, the osmotic
pressure for calculating the activity of solvents, smooth-particle mesh Ewald summation as well as
the ability to carry out molecular dynamics runs for an arbitrary number of state points in a single
program execution.
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1. Introduction

Due to the continuous increase in computing power, the range of possible applications of
molecular modeling and simulation has become broader over time, proceeding from qualitative
basic research in soft matter physics to quantitative applications in chemical engineering. Reaching
agreement with the available experimental data, and predicting properties where experimental
data are rare or absent, molecular methods transform engineering data science [1, 2]. This progress
is driven by massively-parallel high performance computing with scalable codes [3] and by the
concurrent execution of large numbers of simulations [4] or of simulations which can be decomposed
into a large number of concurrent tasks [5–7].

The program ms2 (molecular simulation 2) was designed to compute thermodynamic properties
of pure fluids and mixtures by Monte Carlo (MC) and molecular dynamics (MD) simulation. Licences
are available without cost for all purposes which concern academic research and teaching [8]. The
previous two major releases of ms2 [9, 10] facilitate the simulation of vapor-liquid equilibria (VLE)
by Grand Equilibrium simulation and the computation of many thermodynamic bulk properties,
including linear transport coefficients, for molecular models consisting of Lennard-Jones interaction
sites, point charges and point multipoles. It has been shown that such models can reach a high
accuracy for a wide variety of thermodynamic properties for many molecular fluids [11–16], leading
to an increasing popularity of molecular methods in the engineering sciences [17–21].

Similar molecular simulation programs, which address multiple academic communities, include
CHARMM [22], DL POLY [23], ESPResSo [24], GIBBS [25], GROMACS [26], IMD [27], LAMMPS
[28], ls1 mardyn [29], NAMD [30], TINKER [31] and Towhee [32]. In comparison with these codes,
the aim of ms2 is to focus on applications of molecular modeling and simulation in fluid process
engineering, both industrial and academic. Hence, a high accuracy, short response times and the
suitability for coupling with equations of state [4, 33] and rigorous model optimization approaches
[34–36] have been priorities in developing both the code base as well as the toolset which is provided
jointly with it. The present work discusses the third major release of ms2 and its most important
innovations, which are presented in detail in the following sections.

2. Microcanonical and isobaric-isoenthalpic ensembles

An ensemble is the set of all theoretically possible microscopic configurations on the molecular
level under specific macroscopic constrains. The microcanonical (NV E) ensemble is the set of
all configurations that fulfill the condition of having the same number of particles N , volume V
and energy E, whereas the isobaric-isoenthalpic (NpH) ensemble represents a system at constant
number of particles N , pressure p and enthalpy H. Molecular dynamics (MD) mimics the time
evolution of a mechanical system by numerically solving Newton’s equations of motion for all
considered molecules. Because of the nature of this solution, the time is discredized and the method
yields microscopic configurations at discrete and consecutive time steps. The Monte Carlo (MC)
method is the application of statistical mechanics to describe molecular systems. With this approach,
microscopic configurations are generated by random numbers that are potentially accepted such
that only relevant and physically meaningful configurations are sampled [37]. The generation and
acceptance of these configurations is governed by specific probabilities that are ensemble-dependent
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Table 1: Comparison of the ensembles implemented in ms2 for methyl fluoride [41] in terms of temperature T , density
ρ, pressure p and potential energy u. Numbers in parentheses denote statistical uncertainties in the last digit that
were estimated with the block averaging method of Flyvbjerg and Petersen [42].

T ρ p u
K mol/l MPa kJ/mol

MD

NVT 300 1 2.090(2) -1048(3)
NpT 300 1.0015(7) 2.090 -1051(3)
NVE 300.0(1) 1 2.088(1) -1048(3)
NpH 300.0(1) 1.0003(2) 2.090 -1048(2)

MC

NVT 300 1 2.0880(2) -1051.6(2)
NpT 300 1.0019(2) 2.0880 -1053.6(3)
NVE 299.99(1) 1 2.0882(2) -1051.3(2)
NpH 300.06(2) 1.0010(1) 2.0880 -1051.7(2)

and described in the literature for essentially every relevant ensemble. For MC simulations, the
NV E and NpH ensembles were implemented in ms2 release 3.0 according to Refs. [38, 39]. For
MD simulations, the pressure is kept constant using Andersen’s barostat [40] in case of the NpH
ensemble. Because the solution of Newton’s equations of motion is approximate, the total energy of
the system E = K +U , which consists of a kinetic K (exclusively molecular momentum dependent)
and potential U (exclusively molecular position dependent) energy contribution, is not rigorously
conserved in a standard MD run mainly for numerical reasons. Therefore, the translational and
rotational momentum of every molecule is rescaled such that the total kinetic energy K fulfils
K = E−U , where the total energy E is specified and the potential energy U is calculated from the
current microscopic configuration. For a NpH ensemble run, the solution is analogous: Momenta
are rescaled such that the current kinetic energy K fulfils K = H − U − pV , where H and p
are specified, U and V are dependent on the current microscopic configuration. This extends the
ensembles available in ms2 to five: NV T , NV E, NpT , NpH and µV T , where µ is the chemical
potential.

For verification purposes, Table 1 contains numerical results for methyl fluoride modeled by
a quadrupolar two-center Lennard–Jones potential [41] at T = 300 K and ρ = 1 mol/l. Figure 1
shows the running averages of the calculated properties in Table 1 at the same state point.

3. Helmholtz energy derivatives in the microcanonical ensemble

The generalized calculation of the Helmholtz energy derivatives

Ar
nm = (1/T )nρm

∂n+mf r(T, ρ)/(RT )

∂(1/T )n∂ρm
, (1)

with the molar residual Helmholtz energy f r, the temperature T , the density ρ and the molar
gas constant R was introduced in ms2 also for the NV E ensemble up to the order n = 3 and
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Figure 1: Comparison of the ensembles implemented in ms2 for methyl fluoride [41] in terms of running averages for
temperature T , density ρ, pressure p and potential energy u.
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Table 2: Comparison of the residual Helmholtz energy derivatives Ar
nm of methyl fluoride [41] at T = 300 K and

ρ = 1 mol/l. Numbers in brackets denote statistical uncertainties in the last digit that were estimated with the
block averaging method of Flyvbjerg and Petersen [42]. Superscripts (1) and (2) indicate the two different entropy
definitions [45].

Ar
10 Ar

01 Ar
20 Ar

11 Ar
02

MD
NVT -0.420(1) -0.1620(6) -0.54(4) -0.40(2) 0.03(3)
NVE1 -0.418(1) -0.1622(4) -0.55(3) -0.37(1) 0.05(3)
NVE2 -0.418(1) -0.1621(4) -0.55(3) -0.37(1) 0.05(3)

MC
NVT -0.42158(8) -0.16290(8) -0.562(2) -0.391(2) 0.011(6)
NVE1 -0.42149(5) -0.16280(8) -0.560(2) -0.385(3) 0.024(6)
NVE2 -0.42133(5) -0.16274(8) -0.560(2) -0.385(3) 0.024(6)

m = 2. The total reduced Helmholtz energy f/(RT ) can be additively separated into an ideal
f o/(RT ) and a residual contribution f r/(RT ). The ideal contribution by definition corresponds
to the value of f/(RT ) when no intermolecular interactions are at work [43]. f o/(RT ) consists of
an exclusively temperature and an exclusively density dependent part. The latter is the trivial
term ln(ρ/ρref), whereas the former is non-trivial. A formalism that allows for the calculation of the
residual Helmholtz derivatives on the fly from a single simulation run per state point was published
by Lustig [44, 45] and was already introduced for the NV T ensemble in the preceding program
version. ms2 release 3.0 now yields these derivatives also for the NV E ensemble. However, in
contrast to NV T simulations, there are two numerical results for each calculated derivative Anm due
to the two possible entropy definitions in statistical mechanics [45]. In any case, these two different
sets of results must be identical in the thermodynamic limit (N −→∞). In practice, they already
agree within their statistical uncertainty for a simulation based on around a thousand molecules.
For verification purposes, Table 2 contains numerical results for methyl fluoride [41]. A detailed
description of the calculation of these derivatives can be found in Ref. [45]. Their conversion into
common thermodynamic properties is provided in the supplementary material of release 2.0 of ms2
[10] and in Ref. [43].

4. Thermodynamic integration

The previously described method of Lustig does not allow for the direct sampling of the
chemical potential and other entropic properties like Ar00. Such an effort requires techniques
based on free energy calculation, such as particle insertion and/or thermodynamic integration [37].
Widom’s particle insertion method [46] is a conceptually straightforward approach to calculate
the chemical potential with a low computational cost, both for pure substances and mixtures.
The total chemical potential µi of species i can be separated into an ideal (o) and a residual (r)
contribution in the same way as the Helmholtz energy is decomposed, cf. section 2: µi(T, ρ, xi) =
µo
i (T ) +RT ln(Ni/(V ρref)) +µr

i(T, ρ, xi), where Ni is the number of molecules of species i, ρ = N/V ,
xi = Ni/N and ρref is an arbitrary reference density. The expression µi − µo

i (T ) is often referred to
as the configurational chemical potential µconf

i . Widom’s method requires the frequent insertion of

6



an additional (i = N + 1) test particle into the simulation volume at a random position with a
random orientation. At constant temperature and constant pressure or volume the potential energy
Ui of this test particle, i.e. the interaction energy with all other ”real” N molecules, yields the
configurational chemical potential according to

µconf
i = µi − µo

i (T ) = −kBT ln
〈V exp (−Ui/kBT )〉

〈Ni〉
, (2)

where kB is Boltzmann’s constant. The test particle is removed immediately after the calculation of
its potential energy Ui, thus it does not influence the real molecules in the system in any way. In
contrast to the usual convention, the brackets <> have a dual meaning here: They stand for either
NV T or NpT ensemble averages as well as an integral over all possible positions and orientations
of the test particles added to the system. The density of the system has a significant influence on
the accuracy of this method. For state points with a very high density, test particles almost always
overlap with real molecules, which leads to a potential energy Ui → ∞ and thus to a vanishing
contribution to Eq. (2), resulting in poor statistics and often even to complete failure of sampling.

Thermodynamic integration is one solution to overcome the limitations of Widom’s particle
insertion method. The idea behind calculating the chemical potential by thermodynamic integration
is to avoid insertion of test particles in a challenging system A, but rather perform it in system B
for which this can be done without sampling problems. Because the chemical potential is a state
property, its difference µA,i − µB,i can be calculated along any path between states A and B, which
is represented by the scalar parameter λ. It can be shown [37] that the relation between λ and
µA,i − µB,i is

µA,i − µB,i =

∫ A(λmax)

B(λmin)

〈
∂Ui(λ)

∂λ

〉
dλ. (3)

The brackets <> in this equation denote NV T or NpT ensemble averages and Ui is the potential
energy of particle i that must be a part of the system in the same way as the other molecules are. The
only difference between particle i and all other molecules is that its interaction energy Ui(λ) is scaled
between states A(λmax) and B(λmin) with λ. As long as ∂Ui(λ)/∂λ can be calculated analytically
and sampled during simulation, the actual way of scaling Ui(λ) with λ can be chosen arbitrarily
because µi is a state property. The integration with respect to λ is carried out numerically. Assuming
that µB,i is practically zero or at least can successfully be calculated by Widom’s particle insertion
method for state B using Eq. (2), µA,i yields the configurational contribution to the total chemical
potential. The non-linear scaling Ui(λ) = λdUi for λmin ≤ λ ≤ 1 = λmax with an adaptive sampling
technique [47] was implemented for MC simulations with d and λmin being input parameters. This
adaptive technique allows for the sampling of the entire range of λmin ≤ λ ≤ 1 in a single MC run
with an arbitrary resolution for numerical integration. In addition to the standard NV T and NpT
ensemble MC moves, the simulation includes changes of λ controlled by a proper MC acceptance
criterion, ensuring visits at each discrete λ value in the range λmin ≤ λ ≤ 1. For MD simulations,
changes of λ are also carried out on the fly in a single simulation, but without any acceptance
criterion. A detailed description of the parameter setup is given in the supplementary material.
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Figure 2: Comparison of the residual chemical potential µr of methyl fluoride [41] at two different state points
calculated by ms2 using either Widom’s particle insertion or thermodynamic integration (TI).

Figure 2 shows the running averages for the residual chemical potential of methyl fluoride at two
different state points calculated by either Widom’s particle insertion or thermodynamic integration.
For high temperatures and low densities, the agreement between Widom’s particle insertion and ther-
modynamic integration is satisfactory. Widom fails, however, for dense and strongly interacting fluids.

5. Quaternary Maxwell-Stefan diffusion coefficients

ms2 employs the Green-Kubo formalism based on the net velocity correlation function to obtain
n× n phenomenological coefficients [48]

Lij =
1

3N

∫ ∞
0

〈 Ni∑
k=1

vi ,k(0) ·
Nj∑
l=1

vj ,l(t)
〉
dt, (4)

in a mixture of n components. Here, N is the total number of molecules, Ni is the number of
molecules of species i and vi,k(t) denotes the center of mass velocity vector of the k-th molecule of
species i at time t. Note that the phenomenological coefficients given in Eq. (4) are constrained by
[48] ∑

i

MiLij = 0 , (5)

where Mi is the molar mass of component i.
Starting from the phenomenological coefficients Lij, the elements of a (n− 1)× (n− 1) matrix

∆ can be defined as [48]
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∆ij = (1− xi)
(
Lij
xj
− Lin

xn

)
− xi

n∑
k=16=i

(
Lkj
xj
− Lkn

xn

)
, (6)

so that its inverse matrix B = ∆−1 is related to the Maxwell-Stefan diffusion coefficients Dij. In
the case of a quaternary mixture, the six Maxwell-Stefan diffusion coefficients are then given by [48]

D14 =
1

B11 + (x2/x1)B12 + (x3/x1)B13

, (7)

D24 =
1

B22 + (x1/x2)B21 + (x3/x2)B23

, (8)

D34 =
1

B33 + (x1/x3)B31 + (x2/x3)B32

, (9)

D12 =
1

1/D24 −B21/x2
, (10)

D13 =
1

1/D14 −B13/x1
, (11)

D23 =
1

1/D24 −B23/x2
. (12)

(13)

MD simulation runs for Lennard-Jones fluids were performed in order to test the validity of the
quaternary Maxwell-Stefan diffusion coefficients calculated with ms2. For this purpose, a quaternary
Lennard-Jones pseudo-mixture was created by giving different labels to identical molecules, dividing
them into four mole fractions (x1= 0.1, x2= 0.2, x3 = 0.3 and x4 = 0.4 mol mol−1). A system
containing 800 molecules was simulated in the dense liquid state and the resulting Maxwell-Stefan
diffusion coefficients were compared with the corresponding self-diffusion coefficient that all have to
be identical in the present case.

Fig. 3 shows the development of the calculated values of the six Maxwell-Stefan diffusion
coefficients with the number of time origins. As can be seen, the resulting values become independent
after around 104 time origins and then oscillate around their mean value. The higher statistical
uncertainties of D12 and D13 are due to the small number of species 1 molecules compared with the
number of molecules of the other species.

6. Hydrogen bonding

There is no definite characterization of a hydrogen bond between two molecules [49–51]. Rather,
the hydrogen (H) bond ‘is a structural motif and involves at least three atoms’ [52]. The International
Union of Pure and Applied Chemistry (IUPAC) defines the hydrogen bond as ‘an attractive
interaction between a hydrogen atom from a molecule or molecular fragment X–H in which X is
more electronegative than H, and an atom or a group of atoms in the same or a different molecule,
in which there is evidence of bond formation’ [51].
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Figure 3: Maxwell-Stefan diffusion coefficients Dij and the self-diffusion coefficient Di as a function of time origins
of a quaternary pseudo-mixture (ε = ε1 = ε2 = ε3 = ε4 and σ = σ1 = σ2 = σ3 = σ4) at kBT/ε = 0.728 and ρσ3 =
0.8442.

Energetic [49], geometric [53] and topological [50] hydrogen bonding criteria have been proposed
in the literature. Geometric criteria, which are not overly complex, are often based on the following
assumptions [54]:

• The interaction between two hydrogen bonded sites is highly directional and short ranged.

• A donor interacts at most with a single acceptor, an acceptor may interact with multiple
donors.

Accordingly, a class of geometric criteria for the evaluation of hydrogen bonding networks in fluids
was implemented in ms2. Thereby, the triangle between three charge sites, being part of two
different molecules, is evaluated to determine whether two sites constitute a hydrogen bond or not.
A molecule acts as a donor to another molecule, i.e. the acceptor, if the following conditions hold
[53–56], cf. Fig. 4:

• The distance between the donor and the acceptor is smaller than a threshold distance, i.e.
`AD or `DA.

• The distance between the acceptor sites of the acceptor and donor molecules is smaller than
a threshold distance, i.e. `AA.

• The angle between the acceptor-donor axis and the acceptor-acceptor axis is smaller than a
threshold angle, i.e. ϕDAA or ϕAAD.

Therein, `AD, `DA, `AA, ϕDAA and ϕAAD are parameters of the implemented class of hydrogen
bonding criteria. For methanol, e.g., Haughney et al. [53] proposed `AD = `DA = 2.6 Å, `AA = 3.5
Å and ϕAAD = ϕDAA = 30◦. Such geometric criteria have been applied to a variety of fluids, in
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particular to water [55–57], methanol-water mixtures [58, 59] or ethanol [54, 60, 61]. Hydrogen bonds
in sorbate-sorbent interactions can be treated analogously [62]. E.g., for hydrogen fluoride, a simpler
distance-based criterion can be used [63], which is also covered by the present implementation. A
detailed description of the parameter setup is given in the supplementary material.

O

H

R

O

H

R

Donor Molecule

Acceptor Molecule

Acceptor Site of Acceptor Molecule

Donor Site of Acceptor Molecule

Acceptor Site of Donor Molecule

Donor Site of Donor Molecule

ℓAA

ℓDA

ℓAD

ϕDAA

ϕAAD

Figure 4: Hydrogen bonding criteria implemented in the present release version of ms2.

To test the capabilities of the hydrogen bonding statistics implemented in ms2, a MD simulation
run of the ternary mixture water (w) + methanol (m) + ethanol (e) (xw = 0.33, xm = 0.33, xe =
0.34 mol mol−1) at T = 298.15 K and p = 0.1 MPa was carried out with 4000 molecules. In this
mixture all species can form hydrogen bonds with each other because all three molecules contain
hydroxyl groups. Thus the hydrogen atoms may act as donors and the oxygen atoms as acceptors
to form hydrogen bonds. Throughout, between like and unlike molecules, the geometric criteria of
Haughney et al. [53] were used. The results are listed in Table 3. The hydrogen bonding statistics
in ms2 not only indicates the amount of monomers (no bond), dimers (one bond), trimers (two
bonds) and tetramers (three bonds), but also provides information about which molecule species
are bonded.

7. OPAS Method

The OPAS (osmotic pressure for the activity of the solvent) method was implemented in ms2. It
is an alternative to e.g. the Widom’s particle insertion [46] or thermodynamic integration [64–66], for
calculating chemical potentials in the liquid phase by MD simulations. It is particularly well-suited
for studying the solvent activity of electrolyte solutions, but can in principle also be used for
mixtures of molecular species. Details and a thorough assessment of the method are presented in
Ref. [67], the method is only briefly outlined in the following.

The basic idea is a direct simulation of the osmotic equilibrium between a pure solvent phase and
a solution phase by introducing semi-permeable membranes into the simulation volume. These are
realized by an external force field that acts only on the solute molecules to keep them in the solution
phase. By sampling the total net membrane force per membrane area, the pressure difference
between the two phases, i.e. the osmotic pressure Π, is sampled. Assuming an incompressible
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Table 3: Hydrogen bonding statistics of the ternary mixture water (w) + methanol (m) + ethanol (e) (xw = 0.33,
xm = 0.33, xe = 0.34 mol mol−1) at T = 298.15 K and p = 0.1 MPa in relative terms.

water methanol ethanol
monomer 0.1% 0.9% 1.1%

dimer 1.2% 10.6% 11.5%
bonded to (w) 0.8% 3.5% 4.1%

(m) 0.2% 3.3% 3.6%
(e) 0.2% 3.8% 3.8%

trimer 7.8% 47.7% 42.6%
bonded to (w)(w) 2.8% 2.8% 2.8%

(w)(m) 1.9% 10.5% 8.9%
(w)(e) 2.0% 12.3% 10.2%

(m)(m) 0.3% 5.0% 4.9%
(m)(e) 0.4% 11.0% 10.3%
(e)(e) 0.4% 6.1% 5.5%

tetramer 25.8% 35.9% 36.8%
bonded to (w)(w)(w) 3.9% 15.6% 12.7%

(w)(w)(m) 4.9% 7.6% 7.8%
(w)(w)(e) 5.1% 7.7% 7.6%

(w)(m)(m) 2.7% 0.7% 1.3%
(w)(m)(e) 3.8% 1.7% 2.8%
(w)(e)(e) 2.8% 0.9% 1.5%

(m)(m)(m) 0.6% 0.2% 0.4%
(m)(m)(e) 0.7% 0.6% 1.1%
(m)(e)(e) 0.6% 0.7% 1.2%
(e)(e)(e) 0.7% 0.2% 0.4%

four or more bonds 65.1% 4.9% 8.0%
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solvent, the solvent activity is related to this osmotic pressure by

ln as = −Πvs
RT

, (14)

where vs is the molar volume of the pure solvent at the temperature T , which is straightforwardly
available from separate, standard molecular simulation runs. If an electrolyte solution is considered,
the activity coefficient of the salt can be obtained by performing OPAS simulations at various salt
molalities and applying the Gibbs-Duhem equation to the results for the solvent activity.

Fig. 5 shows molecular simulation results for the mean ionic activity coefficient of NaCl in
aqueous solution at T = 298.15 K and p = 1 bar. Therein, results obtained by different groups,
employing different computational approaches, are presented. Throughout, the molecular models
by Joung and Cheatham [68] for Na+ and Cl− ions together with the SPC/E water model were
used, and all simulation results are in mutual agreement.

0 1 2 3 4 5 6
-0.5

0.0

0.5

1.0

mNaCl / mol kg−1

ln
γ

N
aC

l

Figure 5: Mean ionic activity coefficient of NaCl over salt molality for aqueous NaCl solutions at T = 298.15 K and
p = 1 bar using the SPC/E + Joung-Cheatham [68] model combination. The colored lines represent simulation
results by different groups for that model combination (from top to bottom): OPAS simulations by Kohns et al. [67]
(red dashed line), free energy calculations by Benavides et al. [69] (violet densely-dotted line), gradual insertion of ion
pairs by Mester and Panagiotopoulos [65] (blue dashed-dotted line), and osmotic ensemble Monte Carlo simulations
by Moučka et al. [66] (green dotted line). The black solid line shows the correlation to experimental data by Hamer
and Wu [70].

8. Electrostatic long range corrections

The applicability of ms2 was extended to electrically charged molecules or ions. The long ranged
intermolecular interactions are considered by two well established approaches, Ewald summation
and smooth-particle mesh Ewald summation (SPME). Both are well known [37] and are thus
introduced here only briefly.
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In Ewald summation, the overall Coulombic potential acting in the simulation volume is
determined by a sum of two terms, i.e. the short range Coulombic contribution uc,short and the long
range Coulombic contribution uc,long

uc = uc,short + uc,long . (15)

The separation into these terms is achieved by the introduction of a fictive charge density
function ρscreen(r), which acts in the entire simulation volume.

Following the Ewald summation approach, for any configuration of molecules in the simulation
volume, each point charge of magnitude ql in the simulation volume is superimposed with one
countercharge of magnitude −ql. Due to the presence of this superimposed charge, the interaction
potential decays to zero within a distance that is reasonably short for molecular simulation and
can, hence, be explicitly considered by the short term contribution of the Ewald summation.

The second term in Eq. (15) determines the contribution that was subtracted due to the
introduction of the fictive charge density function. This term cannot be determined explicitly by
the evaluation of pairwise interactions, since the Coulombic potential at rlm = V 1/3/2, i.e. the
largest distance accessible in the molecular simulation volume V , is still a substantial part of the
potential energy of the system. In Ewald summation, this contribution is determined in Fourier
space from the negative charge distribution function −ρscreen(r). Since ρscreen(r) depends on the
molecular positions r, a Fourier transformation is performed for every configurational change in
the simulation volume.

The SPME is widely considered as an improved Ewald summation method. In this approach,
the concept of splitting the long range charge-charge interactions is fully employed. The difference
between both methods lies only in the calculation of the long range contributions. In the SPME
approach, the electrostatic field of ions in the simulation volume is described by a spline function
with a given functional form. For this given spline equation, the Fourier transformation is known
and has, hence, not to be determined in each simulation step. This accelerates the calculation of
the long range contribution and reduces simulation effort and time. The accuracy of the SPME
results is assumed to be equivalent to the Ewald approach. In ms2 release 3.0, the SPME method
was implemented in its original form wherein the splines are evaluated for all particles at a time,
making it specifically useful for MD simulations. Typical systems show an improved performance of
up to 21% in total computational time.

9. Vectorization

For the vectorization of loops it is essential how accessed data are distributed in physical
memory. Deducing this information automatically from the code can be very difficult for the
compiler, especially if there is indirection. In ms2, many arrays are accessed via array pointers
and the order of the underlying data is therefore obfuscated. The most relevant information is
wether or not data are contiguous in physical memory. To provide this information to the compiler
directly, array pointers can be given the attribute ”contiguous”. The Fortran standard specifies:
”The contiguous attribute specifies that [...] an array pointer can only be pointer associated with
a contiguous target.” This means that the array elements of a contiguous array pointer are not
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separated by any other data, potentially enabling a higher degree of vectorization. In ms2 release
3.0, array pointers associated with contiguous targets have been given the contiguous attribute.
The sequential performance gains and the resulting parallel performance gains achieved with this
optimization depend on the specific simulation scenario, but are on average very significant. For
MC and MD simulations, a suite of simulations was executed to evaluate the performance gains.
The suite covered the NpT and NV T ensembles, thermodynamic integration, Widom test particle
insertion, different thermostats, different pure fluids and mixtures. A total of 71 simulation runs
was performed. For MC simulations, the observed average reduction of runtime was more than 7%
and for MD simulations more than 20%.

10. Parallel ensemble calculations

ms2 was already parallelized in its initial version for distributed memory architectures using
the message passing interface (MPI) [9, 10]. The present release 3.0 adds an additional level of
parallelization for MD simulations. Different ensembles are independent of each other in the sense
that sampling different state points can be done concurrently. To achieve this, the processing
elements (PE) are split in disjunct groups and each group computes the ensembles assigned to it.
To enable this feature, the mpiEnsembleGroups option was introduced in the input file. The default
(if not set or set to 0) is to use a single ensemble group. A value of 1 will enable the new feature
and automatically set the number of ensemble groups to the minimum of the number of ensembles
and the number of PE, i.e. mpiEnsembleGroups=min(ensembles, PE). Otherwise, this option will
set the number of ensemble groups according to the specified integer value. The “coloring”, i.e. the
assignment of the PE to the ensemble groups, is done in continguous blocks. This is advantageous,
e.g. compared to a round robin fashion, if the processes have to be pinned to NUMA domains.

Another change applies to the restart capability of ms2. A checkpoint now consists of one restart
(*.rst) file for each ensemble group that can be restarted with the ms2 -r (or --restart) option.

To illustrate the new feature, a MD program execution for three ensembles with 24 processes
will serve as an example. Without the mpiEnsembleGroups option (or with mpiEnsembleGroups=0)
all 24 PE will in parallel calculate the first time step of the first ensemble, then the first time step
of the second ensemble and finally the first time step of the third one, before the second time step
is handled accordingly. Setting mpiEnsembleGroups=1 is equivalent to mpiEnsembleGroups=3 in
this example and three groups of eight PE each will calculate one ensemble in parallel concurrently.
The user may also directly specifiy the number of groups, but has to be aware that in this example
with mpiEnsembleGroups=2 one group will have to process two ensembles, while the other one
only processes a single one.

ms2 creates a MPI communicator for each of the ensemble groups with the MPI Comm Split
command, cf. Figure 6. Another MPI communicator contains the root processes of all groups
(Communicator R including subcommunicators rank 0 processes) to ease collective communication
on a higher level among the groups.

Even if the computation of different ensembles is embarrassingly parallel, an interaction between
the different ensemble groups through communicators remains, e.g. when the program receives a
signal to write a checkpoint and terminate. This signal may be received from an arbitrary single PE
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Figure 6: MPI ranks for 24 PE in 3 MPI groups, indicating communicator hierarchy of ms2.

(or non-isochronic from multiple PE). In the preceding releases of ms2, where ensembles were calcu-
lated consecutively with the single global communicator MPI COMM WORLD, a MPI Allreduce
spreads this information among all processes after every MD time step. This is still the case within
the ensemble groups. A collective communication of all PE beyond ensemble group boundaries for
every MD time step would implicitly synchronize all ensemble computations. However, this is not
satisfactory because computationally less intensive ensembles would be forced to wait for slower
ones to conclude their time step. The present implementation uses non-blocking communication
between the ensemble group roots through Communicator R to avoid this problem.

Before any MD time step iterations start, the root process executes a MPI Irecv call to receive a
potential terminate message, whereas all other processes execute a MPI Ibcast to obtain a potential
terminate message from the root, cf. Figure 7. During program execution, any process may trigger
termination by sending a message to the root, which will then broadcast the information to notify all
other processes. If no termination occurs during the iterations, the root will send a message to itself
and broadcast a non-termination message to all other processes to satisfy the outstanding receive
and broadcast (avoiding MPI Cancel). To take care of several processes sending a termination
message, a summation reduction determines the sum of all respective messages for the root process
to receive all of them. This technique can also be used hierarchically, replacing the MPI Allreduce
call within each subcommunicator. After termination, every ensemble group writes its own restart
(*.rst) file.
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Figure 7: Communication to distribute status information within a MD time step avoiding barriers. Thick solid
arrows indicate communication among PE (grey arrows for alternative possible receiving points). Dotted lines
between the PE indicate collective communication implicating a barrier. For mutually exclusive commands, the
second one is only executed if the first one was not triggered.
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