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aFraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
bLaboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern,

Germany

Abstract

To ensure the quantitative precision and reliability of molecular simulations,

force field models of molecular fluids need to be adjusted to e.g. experimental

data. An optimal agreement for different properties is often not achieved by

a single model parametrization. Applying multicriteria optimization, based on

the evaluation and analysis of the Pareto set solves this problem. The Pareto

set contains all optimal compromises between multiple conflicting objectives.

Its computation and suitable visualization enables the end user to freely choose

a model parametrization, tailored to his particular application scenario.

We apply multicriteria optimization to the two-center Lennard-Jones plus

point quadrupole model class (2CLJQ), which has four adjustable parameters.

The Pareto set is determined and analyzed for ten real fluids: Ethane, ethylene,

acetylene, fluorine, chlorine, bromine, perfluoroethylene, perchloroethylene , ni-

trogen, and oxygen. Thereby, two multicriteria optimization scenarios are con-

sidered, based on two criteria (saturated liquid density and vapor pressure) and

three criteria (saturated liquid density, vapor pressure, and surface tension),

respectively. It is shown that literature models for these fluids can be further

improved in these criteria. We visualize our results by self-organizing patch

plots, which facilitate the representation of the entire Pareto set and its corre-
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sponding model parametrizations. We developed this plot technique to present

Pareto optimal solutions and present it for the first time.

Keywords: optimization, force field models, united-atom, Lennard-Jones,

multicriteria, visualization
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1. Introduction

Molecular simulations of fluids contribute to solving problems in physics, bi-

ology, chemistry, and engineering. They rely on the choice of suitable molecular

force fields. Adjusting the force field parameters, aiming at an accurate repre-

sentation of different thermophysical properties is a multicriteria optimization

problem. Different properties normally cannot simultaneously be optimized

without a trade-off, i.e. the objectives are conflicting and a single optimal so-

lution cannot be determined. The goal of multicriteria optimization based on

Pareto is to identify the Pareto set, which represents best possible compromises

between conflicting objectives. A solution is defined to be Pareto optimal if a

further improvement in one objective can only be achieved at the expense of

at least one other objective. The Pareto set is a subset of all feasible solutions

in the objective space. To each Pareto optimal point in the objective space

corresponds one parametrization in the parameter space, representing a Pareto

optimal model. Hence, identifying the Pareto set does not yield one model, but

a set of optimal models from which a user can choose the one best fitting a

particular application scenario.

It is attractive to use multicriteria optimization for the parametrization of

molecular models. In a preceding work, the Pareto optimal Lennard-Jones mod-

els for argon and methane were identified by brute force evaluation of 200× 200

parameter combinations [1]. The same procedure was used by Werth et al. [2]

to identify Pareto optimal parameters for representing carbon dioxide with a

two-center Lennard-Jones plus pointquadrupole force field model. The grid in

the parameter space employed by Werth et al. [2] was 60× 60× 60× 60. This

brute force enumeration is only feasible for scenarios in which the evaluation of

the objective functions is not expensive and the number of parameters is not

high. This is rarely the case for optimizations of molecular models. A more

efficient strategy to approximate the Pareto set is necessary. Apart from [1]

and [2], we are only aware of one other work in which multicriteria optimiza-

tion was used in the context of developing force field models. Mosthagim et
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al. [3] developed Pareto sets by Particle Swarm Optimization with a focus on

intramolecular potentials fitted to ab initio data.

In the present work, we determine the Pareto set by a combination of the

sandwiching and hyperboxing algorithm [4]. The algorithm aims at efficiently

approximating the Pareto set for a predefined approximation quality.

Multicriteria optimization is applied to the parametrization of the two-center

Lennard-Jones plus point quadrupole (2CLJQ) potential model in two opti-

mization scenarios. The 2CLJQ potential model has four parameters, which

are adjusted to optimize first two and then three different objective functions.

However, for both optimization tasks, the Pareto optimal parameter sets are

evaluated regarding four functions. They describe the quantitative agreement

between the simulation data and the experimental data for the saturated liquid

density, the vapor pressure, the surface tension, and the critical temperature.

For simplicity, we refer to the saturated liquid density only as liquid density in

the following.

In the first optimization scenario the conflicting objective functions for the

liquid density and the vapor pressure are used (two-criteria scenario). Previous

works show, that model parameters adjusted to the liquid density and the vapor

pressure are suitable to predict e.g. caloric or further thermodynamic properties

[5, 6]. In the second scenario, the surface tension is included as an example

for a third objective function (three-criteria scenario). For both scenarios the

Pareto set is determined for ten different fluids: ethane (C2H6), ethylene (C2H4),

acetylene (C2H2), fluorine (F2), chlorine (Cl2), bromine (Br2), nitrogen (N2),

oxygen (O2), perfluoroethylene (C2F4), and perchloroethylene (C2Cl4). The

obtained Pareto optimal solutions are also compared to the performance of

available molecular models from the literature. The discussed literature models

were specifically developed for the use in molecular simulations. Molecular

models obtained by theoretical studies as e.g. perturbation theory [7, 8] were

not taken into account.

In the main text, first the results for the two-criteria scenario are discussed

for all fluids. The results for the three-criteria scenario are then discussed for
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acetylene and used for a comparison with those of the two-criteria scenario as

a representative for all studied fluids. Finally, a brief summary of a comparison

between the two- and three-criteria scenario for all fluids is given. The Pareto

optimal solutions for both optimization tasks for all studied fluids can be found

in the Supplementary Material.

We also introduce a novel technique for simultaneously visualizing the Pareto

set in the objective space, the corresponding Pareto optimal model parameter

space as well as additional functions, which were not included in the multicri-

teria optimization as an objective function. It is based on self-organizing maps

(SOM), which are also referred to as Kohonen maps in the literature. With a

SOM an interpolation of a high-dimensional data set can be displayed in low-

dimensional maps [9, 10]. Hunger and Huttner [11] used SOM to gain insight

into the dependence of their single-criteria optimization on parameters specify-

ing a force field description for tripod metal templates. SOMs have been used

before in a few studies in the literature to represent results from multicrite-

ria optimizations [12, 13]. The drawback of SOMs is, that they do not only

represent the given input data set, but an interpolation, also resulting in an

approximation of the data set. Thus we enhanced the SOM and used it as a

projection method for a given data set, in our case the Pareto set. Furthermore,

by combining them with Voronoi diagrams [14], we achieved that only the ex-

act Pareto optimal solutions are displayed. We refer to the representation as

self-organizing patch plot (SOPP). It is a visualization specifically adapted to

display any Pareto set.

By displaying the Pareto sets in the novel SOPP a comprehensive overview

over the optimal solutions is gained. It enables assessing how good simultaneous

representations of different properties of pure fluids by the 2CLJQ model can

be without having to refer to only one single solution for each studied fluid.

As many pure fluids are studied and similar results are obtained, the present

statements can probably be generalized: They allow an assessment of how good

the 2CLJQ model can be.

The methods presented have a much wider scope. They can be used for
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parametrizing molecular force fields in general and well beyond for parametrizing

any thermodynamic model.
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2. Multicriteria Optimization

A multicriteria optimization problem is characterized by multiple objective

functions fi(x) which have to be minimized simultaneously:

min f(x) = (f1(x), ..., fr(x)) ∈ Rr (1)

They span the objective space Rr and depend on the decision vector x ∈ Rq

where Rq is the design space. The solution to such a problem is a set of best

compromises: For any improvement in a single objective fi(x), a decline in at

least one other objective fk(x), i ̸= k has to be accepted. The set of all best

compromises is called the Pareto set. In the context of force field parametriza-

tion the design space is spanned by the parameters describing the model. Thus

we refer to it as parameter space in the subsequent text. Mapped to each point

in the parameter space, hence, to each model, is one point in the objective space.

For more information on multicriteria optimization see e.g. [15, 16, 17].

2.1. Sandwiching and hyperboxing algorithm

The Pareto set is a subset of all feasible points in the objective space and

needs to be approximated by a suitable numerical strategy. In the present work

the sandwiching and hyperboxing algorithm is used for determining suitable

approximations of the Pareto sets. This algorithm is basically taken from [4].

By scalarizations of the objective functions, single criterion optimization

problems are obtained. The solutions for these scalarizations belong to the

Pareto set. Thus by solving several single criterion optimizations a point-wise

approximation of the Pareto set is obtained. The sandwiching and hyperboxing

algorithm is used to subsequently identify suitable scalarizations to efficiently

approximate the Pareto set. The algorithm focuses on exploring the Pareto set

in regions, where the curvature of the Pareto set is highest and starts by identify-

ing the extreme compromises, i.e. at first the minimum of each objective function

is located. The sandwiching algorithm then alternately finds inner and outer

approximations for the Pareto set, thereby assuming the Pareto set is convex.

The sandwiching algorithm is applied, until a specified approximation quality is
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reached. Then, if regions of non-convex behavior are identified, the non-convex

regions are approximated with the hyperboxing algorithm. The sandwiching

algorithm uses the weighted sum scalarization (see e.g. [17]), whereas the hyper-

boxing algorithm uses a scalarization proposed by Pascoletti and Serafini [18].

A brief sketch of the concept of the sandwiching and hyperboxing algorithm in

a chemical engineering context can be found in Bortz et al. [19]. To solve the

single criterion optimization tasks with which the Pareto set is approximated,

we employ the Quasi-Newton solver NLPQLP of Schittkowski [20].

During the multicriteria optimization numerical problems may occur. De-

pending on the choice and settings of the single criterion solver, the sandwiching

and hyperboxing algorithm may identify solutions as Pareto optimal, which are

not. Thus we additionally check the Pareto sets for Pareto optimality by com-

paring the solutions to each other and sort out solutions, which are not Pareto

optimal.

For further numerical details see Appendix A.
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3. Molecular model

The two-center Lennard-Jones plus pointquadrupole (2CLJQ) potential con-

sists of two identical Lennard-Jones sites, which are a distance L apart and which

are described by energy and size parameters ϵ and σ, respectively. Furthermore,

there is a pointquadrupole with the quadrupole moment Q placed at the geo-

metrical center of the molecule. Hence, the 2CLJQ model has four parameters:

ϵ, σ, L, and Q. The potential function u2CLJQ is composed of a sum of two parts

and depends on the distance rij between the centers of mass of two molecules i

and j and their orientations ωi and ωj :

u2CLJQ (rij ,ωi,ωj) = u2CLJ (rij ,ωi,ωj) + uQ (rij ,ωi,ωj) (2)

The first part u2CLJ describes the Lennard-Jones potential for the four

Lennard-Jones sites

u2CLJ (rij ,ωi,ωj) = −4ϵ
2∑

a=1

2∑
b=1

[(
σ

rab

)6

−
(

σ

rab

)12
]

(3)

where rab is the site-site distance between two Lennard-Jones sites.

The second part uQ describes the interaction of the pointquadrupoles

uQ (rij ,ωi,ωj) =
3

4

Q2

|rij |5
f(ωi,ωj) (4)

where the function f(ωi,ωj) depends only on the orientations of the molecules

i and j. Detailed information about the 2CLJQ potential can e.g. be found in

Gray and Gubbins [21].
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4. Data basis and optimization task

4.1. Data basis

The experimental and simulation data sets are taken from the literature. For

representing the experimental data, temperature dependent correlations from

the DIPPR data bank [22] are used. The following uncertainties are reported:

For the liquid density the uncertainties are < 1 % for N2, O2, F2, Cl2, C2H6,

and C2H4 and < 3 % for Br2, C2H2, C2F4, and C2Cl4. For the vapor pressure

the uncertainties are < 1 % for N2, O2, Cl2, C2H6, C2H4, and C2H2 and < 3 %

for F2, Br2, C2F4, and C2Cl4. For the surface tension the uncertainties are < 3

% for N2, Cl2, Br2, C2H6, C2H4, C2H2, and C2Cl4, < 1 % for O2 and F2 and

< 5 % for C2F4. The values for the critical temperatures are also taken from

the DIPPR data bank [22]. The uncertainties are < 3 % for N2, O2, F2, Cl2,

and Br2, < 0.2 % for C2H6, C2H4, C2H2, and C2Cl4 and < 1 % for C2F4.

The simulation data for the liquid density and the vapor pressure are taken

from Stoll et al. [23] and for the surface tension from Werth et al. [24]. These

authors report correlations in reduced units dependent on the reduced model

parameters Q∗ = Q/
√
ϵσ5 and L∗ = L/σ, and the reduced temperature T ∗ =

kT/ϵ, where k is Boltzmann’s constant. The empirical correlations for the re-

duced liquid density ρ∗ = ρσ3, the reduced vapor pressure p∗ = pSσ3/ϵ, and

the reduced surface tension γ∗ = γσ2/ϵ are based on simulations of 30 indi-

vidual fluids and valid in a range of 0 ≤ Q∗ ≤ 2 and 0 ≤ L∗ ≤ 0.8 along the

vapor-liquid coexistence curve for temperatures about 0.55 T ∗
C < T ∗ < 0.95 T ∗

C.

The statistical uncertainties reported for the liquid density are below 0.1 % for

low temperatures and up to 3 % near the critical temperature. For the vapor

pressure they are up to 20 % for low temperatures and about 2 % for higher

temperatures. The correlations for both properties are reported to represent

the simulation data within their uncertainties in most cases. For the surface

tension the relative mean deviation between the correlation and the simulation

results is 1.9 %. Also, the correlation is reported to agree with the simulation

data within the statistical uncertainties.
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The reduced critical temperature T ∗
C is also taken from Stoll et al. [23] as

a correlation dependent on the reduced model parameters Q∗ and L∗. The

reduced critical temperatures are estimated to be accurate up to the second

decimal place by Stoll et al. [23]. The correlation is reported to fit the critical

temperature within 0.5 % in most cases.

4.2. Optimization task

To evaluate the quality of a specific 2CLJQ model the correlations of the

simulation data in reduced units are transferred to physical units with the cor-

responding values for the energy parameter ϵ and the length parameter σ. For

each model a mean relative deviation function δO for each property O over

different temperatures Tj , j = 1, . . . , N is evaluated. The objective space is

spanned by the deviation functions for the chosen thermophysical properties.

In this work, the objective function fi for one property O has the following

form:

(δO)
2
=

1

N

N∑
j=1

(
Oexp (Tj)−Osim (ϵ, σ, L,Q, Tj)

Oexp (Tj)

)2

(5)

Ten equidistant temperatures between 0.55 T exp
C and 0.95 T exp

C are used to

evaluate the mean relative deviation, with a maximal temperature Tmax.

To ensure feasible parameter combinations, the following constraints are set:

0 < L < σ

0 < kTmax/T
∗
C(Q

∗, L∗) < ϵ

0 < Q

(6)

Additionally, the objective functions are constrained to ensure staying in

a region of interest. This is demonstrated in Fig. 1 which shows the mean

relative deviation for the liquid density δρ′ versus the vapor pressure δpS for

C2F4 obtained for a two-criteria optimization task without constraints in the

objective functions (left side) and with constraints in the objective functions

(right side). In the unconstrained case, solutions with mean relative deviations

in the liquid density of up to 12 % and in the vapor pressure of up to 180 %

are found. These solutions represent compromises for which the quality of the

11



representation of one property is optimal, whereas it is poor for the second. In

this work, we are not interested in these compromises and therefore choose to

individually constrain our objective functions such that:

(δρ)
2

< (0.02)
2(

δpS
)2

< (0.1)
2

(δγ)
2

< (0.2)
2

(7)

These choices reflect experiences from previous work on the attainable quality

of representations with molecular models. In all cases, they are well above the

expected limits and the desired quality, respectively.

We first conduct a multicriteria optimization of two objective functions,

i.e. the mean relative deviation for the liquid density and the vapor pressure

(two-criteria scenario). The resulting Pareto optimal models are also evaluated

regarding their mean relative deviation in the surface tension and the relative

deviation in the critical temperature, calculated as

δTC =
T exp
C − T sim

C

T exp
C

(8)

In a next step, the multicriteria optimization of three objective functions

is investigated in which the surface tension is additionally considered together

with the two other properties (three-criteria scenario). Again, the Pareto opti-

mal models are also evaluated regarding their relative deviation in the critical

temperature.
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5. Self-organizing patch plot

We propose a new technique, the self-organizing patch plot (SOPP), to dis-

play Pareto sets, the corresponding parameters as well as additional functions

evaluated for those parameters. The basic idea is, that for each of those quanti-

ties a separate diagram is provided. The diagrams each consist of a square area

divided in a specific patch structure, which is identical in all diagrams. Each

patch in this structure is assigned a data vector representing one specific Pareto

optimal point. The vector components consist of the values in the quantities

specific for this Pareto point, i.e. the objective function values, its corresponding

parameters and the function values of the additional functions. Thus, the num-

ber of patches equals the number of Pareto solutions and the number of vector

components equals the number of quantities of interest and thus the number of

diagrams. In the different diagrams the patches are colored according to their

value in the quantity assigned to the diagram, where the value is stored in the

vectors assigned to the patches. The patch structure is unique for the Pareto

data set and constructed such that the assigned vectors of neighboring patches

are similar to each other in all vector components.

For the two- and three-criteria scenario results, eight quantities are consid-

ered: the four model parameters σ, ϵ, L and Q, the mean relative deviation in

the liquid density, vapor pressure and surface tension, as well as the relative

deviation in the critical temperature. Therefore eight diagrams are needed to

fully display the results of one optimization scenario for one fluid (cf. Section 6).

A SOPP using results of the two-criteria scenario for O2 is exemplarily shown

for the σ values on the right side in Fig. 2. Furthermore Fig. 2 shows the steps

of how to create a SOPP. In the subsequent text, the steps consistently are first

explained in a general form and then directly related to our specific application,

before proceeding with the explanation of the next step of how to generate the

SOPP. In total the process is explained in four steps.

Step 1 to generate a SOPP is to prepare a self-organizing map (SOM) for

the quantities of interest. The SOM aims at representing the topology of a
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high-dimensional discrete data set and arranging its representation in a low

dimensional space. The concept to display this representation with a SOM is

similar to the one introduced for the SOPPs: a number of diagrams, which is

equal to the number of qualities, is prepared. The representation of an input

data set is given as an discrete output data set, arranged in a low dimensional

output space. To each location in this output space a vector with the values

in the quantities of interest is assigned. The output data set has more data

points than the input data set and interpolates the input data. Therefore it is

not an exact representation, but an approximation of the input data. Further

information about SOMs can e.g. be found in [9, 10].

For the two- and three-criteria scenario eight diagrams are necessary to fully

display the approximation of the results with a SOM. We prepare our SOMs

with a MATLAB implementation of Azzopardi [25], for which the detailed in-

formation can be found in the Supplementary Material. The output space is

a two-dimensional grid. In Fig. 2 exemplarily the σ values of the representa-

tion are shown. Each grid point is colored according to its value in the vector

component representing σ.

Step 2. The goal during generating the SOPP is to dispose of the ap-

proximative information and instead map the exact input data into the low-

dimensional output space. This is achieved by first locating the best matching

unit (BMU) for each input data point in the output space. The BMU is simply

the vector in the output space that best matches the input vector regarding the

Euclidean measure. Once the BMU is identified, the vectors in the output space

are substituted by the exact input data vector and all residual output vectors

are discarded. The result is a projection of the exact input data vectors into

a low-dimensional output space. The advantage of using the SOM instead of

conventional linear projection is that the locations of the projected data in the

low-dimensional output space is generally non-overlapping, even though some

data points might share identical values in some vector components.

In Fig. 2, the BMUs of the Pareto data of the two-criteria scenario are

marked as black crosses in the SOM on the left side. Note, that the location of
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the BMU is not only dependent on the σ value, but on the similarity in all eight

components between the vector assigned to the grid point and the Pareto point

mapped to the BMU. To each location of the black crosses one exact Pareto

point with the full information in all eight quantities is mapped. The residual

information in the SOM is dispensable.

Step 3. The output space now only consists of the data vectors assigned

to the locations of the BMUs and has to be divided into patches, such that in

each patch one of the data vectors is included. This is done with a Voronoi

tessellation [14], which partitions a region in patches based on a set of so-called

seeds. The seeds are points in the considered region. All other points in the

region are each assigned to one seed, based on their distances to the seeds: The

set of all points that are closer to one seed than to any other seed form the

patch corresponding to this seed. The locations of the BMUs are taken as seeds

to generate a Voronoi diagram and the data vectors of the BMUs are mapped

to the corresponding patches.

In Fig. 2 in the center, the patches generated with the BMUs as seeds are

shown. The Voronoi diagrams were computed with the algorithm implemented

in MATLAB [26].

Step 4. Finally, the patches in the individual diagrams are colored in the

value of the corresponding quality.

As mentioned above, for the results of the two-criteria scenario for O2 this

is exemplarily shown for the σ values in Fig. 2 on the right side.

Further details can be found in the Supplementary Material.
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6. Results and discussion

First an overview of the results for the two-criteria scenario for all fluids

is given. Then the results for C2H2 are presented and discussed in more de-

tail for both the two- and three-criteria scenario. Finally, the results for both

optimization scenarios are briefly discussed for all studied fluids.

The full Pareto sets for all studied fluids are available in the Supplementary

Material.

6.1. Two-criteria scenario for all studied fluids

In Fig. 3 the Pareto set for each studied fluid for the two-criteria scenario

is shown in the objective space (black line). The mean relative deviation of

the vapor pressure is plotted over the mean relative deviation of the liquid

density. All Pareto sets show similar behavior and can roughly be divided in

three sections: Two sections represent extreme compromises. In the first, the

mean relative deviation of the liquid density is good, but that of the vapor

pressure is poor. In the second, the situation is reversed: The representation

of the vapor pressure is good and that of the liquid density is poor. The third

section connects the two others and is known as the ”Pareto knee”. In general,

solutions in the region of the Pareto knee are most attractive, as in the other

two sections only a minor deterioration in one objective has to be accepted to

considerably enhance the other. This is also true for our results, as the slope of

the Pareto set is either very large or almost zero in the other two sections.

Note, that the three sections are not necessarily detected equally well (e.g. for

Br2 one section is missing). In some cases this is due to numerical problems,

which are discussed in greater detail in the Appendix.

Fig. 3 also shows that with the 2CLJQ model, mean relative deviations in

the liquid density of about 0.1− 0.3 % are generally achievable. The respective

value for the vapor pressure is about 0.4−0.7 %. These numbers only hold if the

single property is optimized. The compromises upon simultaneously optimizing

both properties are somewhat worse: The solutions in the region of the Pareto

knee typically have deviations of about 0.5 % in the liquid density and 2 % in
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the vapor pressure. As an example, for each fluid a Pareto optimal solution

in the region of the Pareto knee is marked in Fig. 3 (•). The corresponding

numerical data is given in Table 1.

Fig. 3 also shows objective function values for some literature models of

the fluids studied in the present work, for which numerical data is given in

Table 2. The deviations indicated for the liquid density, the vapor pressure,

the surface tension and the critical temperature for the literature models are

obtained by evaluating Eqs. 5 and 8 for the parameters of these models under

the same conditions as in the multicriteria optimization scenarios from this work

(cf. Section 4.2). Not all models from Table 2 are depicted in Fig. 3, as some

are out of the considered range and too far from the Pareto set.

When comparing these literature models to the results from the present

work, it should be considered, that they were not necessarily optimized for the

simultaneous representation of the liquid density and the vapor pressure, even

though these properties are obviously important and are generally included in

fits. The comparison shows that only in some cases the literature models lie close

to the Pareto set and only rarely in the preferred region of the Pareto knee. This

indicates that multicriteria optimization opens room for improvements in the

parametrization of molecular models as compared to conventional optimization

strategies based on a single objective function, even if that function includes

different properties. A more detailed study of the literature models is presented

in the Supplementary Material.

6.2. Two- and three-criteria scenario for C2H2

In Figs. 4 and 5 the results for C2H2 for the two- and three-criteria scenarios

are shown in self-organizing patch plots. They relate the values of the deviations

of the four different properties liquid density, vapor pressure, surface tension

and critical temperature to the values of the parameters for the Pareto optimal

models.

The results for the liquid density and the vapor pressure of the two-criteria

scenario were already discussed above. The Pareto optimal models of the two-
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criteria scenario (Fig. 4), optimized for the simultaneous representation in the

liquid density and the vapor pressure have mean relative deviations in the surface

tension of 20 − 35 % and relative deviations in the critical temperature of up

to almost ±2 %. Including the surface tension in the optimization leads to

improvements (cf. Fig. 5). Under the given constraints in the three-criteria

scenario the mean relative deviation of the surface tension can be lowered to

approximately 15 %. While the relative deviation in the critical temperature is

consistently good, the improvement in the surface tension is only at the expense

of accepting significantly increased deviations in the liquid density and the vapor

pressure of about 2 % and 10 %, respectively. It should be noted that values for

the mean relative deviation of the surface tension well below 5 % can be reached,

but only if very large deviations in the liquid density and vapor pressure are

accepted. However in this work, these Pareto optimal solutions are excluded

by the imposed constraints on the objective functions (cf. Eqs. 7). Under these

constraints the 2CLJQ model can simultaneously represent the liquid density

and vapor pressure of C2H2 well, but this does not hold for the simultaneous

representation of these two properties together with the surface tension.

The variations of the Pareto optimal model parameters for C2H2 are dis-

cussed in the region of the Pareto knee. They are about ±0.5 % in σ, below 0.1

% in ϵ, ±3.5 % in L, and ±2 % in Q for the two-criteria scenario and about ±2

% in σ, ±12 % in ϵ, ±15 % in L, and ±3.5 % in Q for the three-criteria sce-

nario. A significantly larger parameter variation is necessary to consider Pareto

optimal solutions for three objective functions. For C2H2 the SOPPs reveal an

inverse correlation between σ and L and between ϵ and Q.

The results for the quadrupole moment Q and the elongation L for C2H2 can

be compared to experimental results from the literature. For the quadrupole

moment of C2H2 experiments lead to values of Q = (6.03 − 7.61) DÅ [27, 28,

29]. The quadrupole moments gained for C2H2 from our optimizations are

about Q = 5 DÅ and thus somewhat lower. The C ≡ C bond length is 1.203

Å [30], which compares reasonably to our value of about L = 1.3 Å. This

shows that the 2CLJQ parameters determined with the present method are
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effective parameters and should not be misinterpreted as physical quantities of

real molecules. Nevertheless it is comforting to see that an adjustment of the

parameters of that simple model to thermodynamic data leads to numbers of

these parameters which are quite close to results of direct measurements of the

related physical properties.

6.3. Two- and three-criteria scenario for all studied fluids

The results for the other substances studied here are similar as for C2H2.

For all fluids, the two-criteria scenario yields good models for the liquid density

and at the same time for the vapor pressure (cf. Fig. 3). The mean relative

deviations for the surface tension obtained with these models are about 10− 30

%. By including the surface tension in the optimization, better results for the

surface tension (6 − 20 %) are obtained but the possible improvements in the

representation of the surface tension are only moderate while the loss in quality

for the liquid density and vapor pressure is grave. Although this finding is

interesting in itself, it is more important, that this can be shown and justified

by using the comprehensive knowledge gained in the multicriteria optimization.

The inverse correlation between σ and L found for C2H2 can be generalized

for all studied fluids: large values in σ lead to small values in L and vice versa.

Although this is not unexpected, as both parameters relate to the size of the

molecule, analyzing the Pareto sets shows this behavior explicitly: In Fig. 6

the Pareto sets of the two- and three-criteria scenarios for all studied fluids

are plotted in a σ-L-diagram. Correlating the data linearly yields σ0 = L +

(2.68 ± 0.4)σ, with a constant value σ0 specific for the individual fluid. The

correlation indicates, that the repulsive interactions could within certain limits

be either described by a two-center Lennard-Jones model with elongation L or

by a Lennard-Jones model with size σ0. This knowledge could also be used to

speed up parameter fitting for the 2CLJQ model.

The inverse correlation between ϵ and Q found for C2H2 cannot be gener-

alized and is only found for some studied fluids (cf. Supplementary Material).

Even though both parameters describe the attractive interactions, the fact that
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no general trend is observed shows that it is reasonable to model the different

types of attractive interactions (dispersion, polarity) separately.
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7. Conclusions

In the present work, multicriteria optimization is applied to determine pa-

rameters of the 2CLJQ model for two and three objectives based on various

thermophysical data (liquid density, vapor pressure and surface tension). A

combination of sandwiching and hyperboxing is used for approximating the

Pareto sets for ten real fluids.

The work shows that multicriteria optimization of molecular force field mod-

els is a promising approach. It gives an overview of what a model can yield in

representing the various properties of a given fluid. If many fluids are studied,

like in the present work, an overview is obtained, which quality of representa-

tion of the experimental data can be expected from the model in more general

terms. All this is not possible with single criterion optimization which always

yields just one result.

A novel method is introduced for presenting the Pareto set in the objective

space and at the same time its picture in the design space: The self-organizing

patch plot. It is a useful tool for exploring the Pareto optimal solutions and

for choosing one solution which is most suitable to study a chosen application.

Good choices often lie in the region of the so-called Pareto knee.

Furthermore, our results show, that with the 2CLJQ model the liquid den-

sity and the vapor pressure of many fluids can be well described. It is however

not possible to obtain a good fit for the liquid density, the vapor pressure, and

the surface tension simultaneously. The studied properties are only examples.

Other properties can be included in the multicriteria optimization straightfor-

wardly. A comparison with models from the literature shows that multicriteria

optimization opens space for improvements.

The broad studies of the present work were only possible, because correla-

tions for both simulation and experimental data were available. The available

algorithms for determining Pareto sets are efficient and could probably be im-

proved further. Pareto sets could therefore be determined on large computing

facilities in the near future also if direct molecular simulations are needed.

21



The methods presented here can be applied and are attractive for optimizing

parameters of any thermodynamic model.
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in the vapor pressure δpS plotted over the mean relative deviation in the liquid density δρ′

(black line). Models proposed in Table 1 (•). Performance of literature models (cf. Table 2):
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Table 1: Selected compromises for the studied fluids for the two-criteria (I) and
the three-criteria (II) scenario.
Fluid Scenario σ/ Å (ϵ/k) K L / Å Q / DÅ δρ′/% δpS/% δγ/% δTc/%
O2 I 3.1339 41.7 0.9053 0.81 0.35 1.08 16.78 -0.63

II 3.089 45.05 1.0578 0 2 1.85 9.23 0.02
N2 I 3.3232 34.88 1.035 1.34 0.32 0.91 17.41 -0.53

II 3.2621 38.21 1.1895 0 0.71 0.85 14.05 -0.54
F2 I 3.0278 38.76 0.9088 1.35 0.32 0.59 18.08 -0.83

II 2.8582 48.94 1.2943 0 0.45 8.92 6.07 0.05
Cl2 I 3.4111 160.84 1.9203 3.6 0.5 2.44 11.22 -0.9

II 3.3894 169.67 2.0056 0 2 3.8 6.99 -1.06
Br2 I 3.6759 204.62 1.8879 6.33 0.02 0.88 10.35 -0.25

II 3.4166 280.39 2.6404 0 0.57 5.04 6.07 -0.5
C2H6 I 3.4818 138.56 2.4161 1.45 0.52 2.2 22.44 -1.58

II 3.4623 143.11 2.5577 0 2 4.9 13.72 -0.82
C2H4 I 3.7639 76.95 1.2531 4.22 0.4 1.56 26.34 -0.7

II 3.7126 81.99 1.4421 4.4 2 3.71 15.83 0.3
C2H2 I 3.5819 79.89 1.2976 5.08 0.63 2.14 27.97 -1.08

II 3.7504 59.71 0.9659 5.73 1.99 3.15 18.6 1.27
C2F4 I 4.2875 57.35 1.1295 8.28 0.5 0.62 28.08 1.98

II 4.2228 69.78 1.3216 7.82 1.19 1.27 15.12 -1.02
C2Cl4 I 4.6997 211.1 2.5535 15.67 0.21 0.74 29.41 -1.87

II 5.0852 132.45 1.5922 18.36 1.3 2 14.95 0.92
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Table 2: Performance of literature models for objective and evaluation functions
(Eqs. 5 and 8) considered in this work .
Fluid Ref. σ/ Å (ϵ/k) K L / Å Q / DÅ δρ′/% δpS/% δγ/% δTc/%
O2 [31] 3.1062 43.183 0.9699 0.8081 0.26 1.63 15.63 -0.5
N2 [33] 3.308 36.67 1.0883 − 1.14 6.35 26.26 -1.7

[34] 3.314 35.3 1.101 1.48 2.62 6.64 7.67 0.91
[34] 3.31 37.3 1.09 − 2.36 16.57 45.46 -3.4
[35] 3.31 36 1.0897 − 2.14 6.13 7.09 0.19
[31] 3.3211 34.897 1.0464 1.4397 0.24 1.3 16.68 -0.39

F2 [32] 2.825 52.8 1.4266 − 0.57 1.97 13.38 -0.89
[33] 2.832 53.47 1.4302 − 1 9.66 26.03 -2.17
[31] 2.8258 52.147 1.4129 0.892 0.29 2.5 14.38 -0.73

Cl2 [32] 3.353 173.5 2.0386 − 0.91 2.02 10.1 -1.5
[33] 3.332 178.3 2.0992 − 1.34 2.37 12.82 -1.86
[31] 3.4016 160.86 1.9819 4.2356 0.18 4.97 12.11 -0.36

Br2 [32] 3.538 257.2 2.2289 − 3.53 21.52 44.71 -4.93
[31] 3.5546 236.76 2.1777 4.8954 0.03 3.03 9.31 -0.4

C2H6 [36] 3.64 112.2 1.8382 − 1.49 14.54 16.9 -1.2
[37] 3.825 100.6 1.54 − 2.94 8.1 38.63 -3.73
[38] 3.52 137.5 2.45 − 4.47 5.27 9.34 -0.55
[39] 3.75 98 1.54 − 0.22 27.79 6.84 0.06
[40] 3.93 114 1.54 − 6.68 69.72 206.93 -19.31
[41] 3.775 104.1 1.53 − 5.7 22.83 77.33 -6.94
[42] 3.506 137.5 2.349 − 1.61 9.02 36.19 -3.05
[31] 3.4896 136.99 2.3762 0.8277 0.57 2.24 22.04 -1.6

C2H4 [36] 3.63 91.4 1.48 − 1.05 12.29 23.05 -1.2
[31] 3.7607 76.95 1.2695 4.331 0.32 2.23 25.98 -0.61

C2H2 [31] 3.5742 79.89 1.2998 5.073 0.75 2.62 27.92 -1.02
C2F4 [31] 3.8611 106.32 2.2394 7.0332 1.04 6.16 17.13 -1.01
C2Cl4 [31] 4.6758 211.11 2.652 16.143 0.64 4.57 22.58 -1.01

31



Appendix A. Numerical details

Appendix A.1. Approximation quality sandwiching and hyperboxing

The sandwiching and hyperboxing algorithm measures the quality of the

approximated Pareto set by comparing an inner and outer approximation. The

difference between those approximations can be calculated by different types of

quality measures. In this work the chosen quality measure is outerNadir, which

gives a relative deviation between the inner and outer approximation related

to the Nadir point. The Nadir point is a fixed reference point used by the

sandwiching and hyperboxing algorithm to find the Pareto set. A predefined

approximation quality can be set as a stopping criterion: If so, the sandwiching

and hyperboxing algorithm stops, when the approximation of the Pareto set

reaches this quality. In this work the approximation quality was set to 10−5 for

the two-criteria scenario and to 10−2 for the three-criteria scenario.

Appendix A.2. Solver settings NLPQLP

The NLPQLP solver is used to solve the single criterion optimization tasks

identified by the sandwiching and hyperboxing algorithm. In this work, the

termination quality for the NLPQLP algorithm is set to 10−11 for both opti-

mization scenarios. For all studied fluids the model parameters from Vrabec et

al. [31] are taken as starting values for the single criterion optimizations.

Appendix A.3. Numerical effort

The numerical effort can be characterized by the number of points needed

to approximate the Pareto set with the specified quality and by the number of

function calls of the NLPQLP solver to find one point of the Pareto set. For the

two-criteria scenario on average over all studied fluids 142 points are needed to

approximate the Pareto set. For the three-criteria scenario less Pareto points

are calculated: On average only 57 points are needed, because a lower termi-

nation quality was set for the three-criteria scenario. The number of function

calls by the NLPQLP on average over all studied fluids and Pareto points are

7.6 for the two-criteria scenario and 41.2 for the three-criteria scenario. The
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significantly higher number of function calls for the three-criteria scenario indi-

cates the difficulties of simultaneously optimizing the three considered objective

functions under the given constraints.

Appendix A.4. Numerical problems

As already mentioned in the main text, the approximation of the Pareto

set constructed by the sandwiching and hyperboxing algorithm may include

solutions which are not Pareto optimal. Two reasons can be given for this

behavior. Firstly, the choice of the termination criterion of the NLPQLP can

be responsible. If it is fulfilled, the single criterion optimization terminates, but

might not yet be in the true minimum for the current scalarization. To prevent

this, the termination criterion can be lowered further. Then increased number

of iterations have to be accepted. The second reason for not Pareto optimal

solutions can be, that the objective function resulting from the scalarization for

the single criterion optimization task is not necessarily convex, as assumed by

the NLPQLP solver. Instead of finding the global minimum, the algorithm may

get stuck in a local minimum. This can lead to large differences between the

approximated and the true Pareto set. To avoid local minima e.g. the NLPQLP

solver can be restarted with different starting values or different solver settings.

Also, a different solver can be used, e.g. one with a global instead of a local

optimization strategy. A further option is to check the parameter space in a

region of interest by a brute force enumeration e.g. used in [1].

In this work, all Pareto sets were checked by comparison. Not Pareto optimal

solutions were excluded. In the two-criteria scenario, for the fluids C2H2 and

C2Cl4 no erroneous solutions were found. The average ratio of non-Pareto

optimal solutions is 8.6 %. In the three-criteria scenario erroneous solutions

were only found for Cl2, Br2, C2F4, and C2Cl4. The average ratio of non-Pareto

optimal solutions is 1 %.
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