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Abstract

Significant improvements are presented for the molecular dynamics code ls1 mardyn – a linked cell-based code

for simulating a large number of small, rigid molecules with application areas in chemical engineering. The changes

consist of a redesign of the SIMD vectorization via wrappers, MPI improvements and a software redesign to allow

memory-efficient execution with the production trunk to increase portability and extensibility. Two novel, memory-

efficient OpenMP schemes for the linked cell-based force calculation are presented, which are able to retain Newton’s

third law optimization. Comparisons to well-optimized Verlet list-based codes, such as LAMMPS and GROMACS,

demonstrate the viability of the linked cell-based approach.

The present version of ls1 mardyn is used to run simulations on entire supercomputers, maximizing the number of

sampled atoms. Comparing to the preceding version of ls1 mardyn on the entire set of 9216 nodes of SuperMUC,

phase 1, 27% more atoms are simulated. Weak scaling performance is increased by up to 40% and strong scaling

performance by up to more than 220%. On Hazel Hen, strong scaling efficiency of up to 81% and 189 billion molecule

updates per second is attained, when scaling from 8 to 7168 nodes. Moreover, a total of twenty trillion atoms is simulated

at up to 88% weak scaling efficiency running at up to 1.33 PFLOPS. This represents a fivefold increase in terms of the

number of atoms simulated to date.
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Introduction

Motivation and Overview

Molecular dynamics (MD) simulation is an important

tool in many fields, e. g., biology (Dror et al. 2012),

life sciences (Karplus and Lavery 2014), thermodynam-

ics (Niethammer et al. 2014), and materials science (Stein-

hauser and Hiermaier 2009). As a representative of N-body

problems, it is computationally intensive. Thus, MD simula-

tions are still limited to nano- and microscales. As hardware

becomes increasingly powerful and laboratory experiments

achieve higher resolution, a natural question is how to close

the gap between MD and experimental work in the future. In

light of this, important questions are:

• How large can a molecular simulation setup be chosen

and executed on current supercomputers?

• Which code optimization and parallel programming

techniques are most suited for this purpose?

The latter also needs to be considered in light of

rapidly evolving hardware architectures which renders

programmability, portability and extensibility of HPC

software a similarly important challenge. This paper

addresses these questions by describing the latest work on

optimizing the performance of ls1 mardyn, which is an

important tool for engineering applications (Niethammer

et al. 2014).

ls1 mardyn was used in the past to establish a short-

range MD world record simulation (Eckhardt et al. 2013),

sampling the trajectories of more than four trillion atoms

on the supercomputer SuperMUC, phase 1∗. Excellent

MPI-scalability on the entire machine, as well as an

optimal molecule memory representation were demonstrated

by Eckhardt et al. (2013). Nevertheless, several bottlenecks

were outlined - too many MPI ranks, global collective

MPI operations as well as the use of 128-bit SIMD. Here,

we demonstrate how to further boost performance of this

highly optimized code, by addressing these bottlenecks.

This was done through the introduction of SIMD wrappers

to easily switch between different vector lengths (that is

128-, 256- or 512-bit), as well as precision modes (single,

double or mixed). Two novel, memory-efficient OpenMP

shared-memory parallelization schemes for the linked cell

method were introduced, which retain Newton’s third law

optimization. On the MPI side, nonblocking communication

for global collectives was introduced as well as other minor

improvements. Since our work is closely related to Eckhardt

et al. (2013), we will refer to it as WR13. The present

large scale runs were performed on the Hazel Hen machine†.

In order to isolate the effect of our code changes from

changes to hardware (Hazel Hen versus SuperMUC), we

ran extensive experiments on SuperMUC, Phase 1, and

compared to available data from WR13.

The remainder of the paper is organized as follows.

In Section Short-Range MD, we introduce the short-range

MD method and the algorithm in ls1 mardyn. Sec-

tion Related Work: Short-Range Molecular Dynamics con-

tains a literature review. Section Implementation and Opti-

mization describes the aforementioned code improvements.

Section Results discusses performance on the PetaFLOP

platforms SuperMUC, Phase 1, Leibniz Supercomputing

Centre (LRZ), and Hazel Hen, High-Performance Comput-

ing Center Stuttgart (HLRS). We provide detailed perfor-

mance analyses at node- and multi-node level, up to full-

machine size runs on Hazel Hen. Two main algorithms

are most commonly used for short-range MD: linked cells

and Verlet lists. We show that SIMD-optimized linked

cells, despite their drawbacks, can compete with Verlet list

implementations for certain simulation scenarios. With this

scope, we provide a brief performance comparison with

the well-established community frameworks Gromacs and

LAMMPS. Section Conclusions and Outlook summarizes

this work and outlines future activities.

Short-Range MD

In short-range MD, the translational and rotational equations

of motion are numerically integrated. Considerations are

restricted to small, rigid molecules with pairwise interactions

that are explicitly evaluated within a specified cut-off radius

rc. Two well-established variants to implement the cut-off

procedure are linked cells and Verlet lists (Rapaport 2004).

Linked cells are used to sort molecules into a Cartesian

grid with cell sizes ≈ rc; cf. Figure 1 (a). Only interactions

between molecules in the same cell and in neighboring cells

need to be tested and evaluated. In the Verlet approach,

an interaction list is set up for every molecule, containing

all molecules within a sphere that has a slightly larger

radius r = rc + h, where h > 0. Depending on the value

of h and the conditions of the molecular system, this

list needs to be rebuilt after some time interval that is

larger than one time step ∆t, e.g. 20∆t. Both approaches

reduce the molecule interaction complexity from O(N2) to

O(N). Verlet lists significantly reduce the overall volume

for molecular interaction searches to the extended cut-off

sphere’s radius r, while yielding indirect molecule data

accesses due to the list approach. Linked cells yield a larger

volume for molecular interaction searches. However, sorting

the molecules into cells is cheap, aligned data access is

possible, and less memory is required because there is no

need to store any additional molecule neighbor relations. A

combination of both linked cells and Verlet lists is typically

recommended (Brown et al. 2011). However, ls1 mardyn

uses a linked cell approach only.

The leapfrog time integration scheme (Rapaport 2004) is

used to solve Newton’s equations of motion with a splitting

∗SuperMUC, Phase 1, (S1) at LRZ, Garching/Germany, consists of

9,216 nodes, each built up by two hyper-threading-capable, 8-core Intel

SandyBridge-EP Xeon E5-2680 processors. Running at a maximum of 2.7

GHz and using AVX, it provides a theoretical peak performance of 3.2

PFLOPS. For details, see Section SuperMUC Phase 1
†The Cray XC40 Hazel Hen machine (HH) at HLRS, Stuttgart/Germany,

consists of 7, 712 dual socket nodes, each featuring two 12-core Intel

Haswell Xeon E5-2680 v3 processors. HH runs at a peak performance of

7.4 PFLOPS and provides 964 TB of memory. For details, see Section Hazel

Hen
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of the velocity update
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where r denotes the position, v the velocity, f the force,

m the mass and ∆t the time step. The velocity update is

split into two half-steps, so that the position and velocity

can be sampled at the same physical time t, in order to

evaluate macroscopic quantities such as kinetic or potential

energy. This happens after step (3) and before step (1) of

the next iteration. The force evaluation takes place after step

(2). For multi-site molecules the rotational leapfrog variant

is used (Fincham 1992).

Most molecular interactions in the present simulations

are described by the Lennard-Jones (LJ) potential (Rapaport

2004)

U(rij) = 4ε

(

(

σ

rij

)12

−

(

σ

rij

)6
)

, (4)

with the energy and size parameters ε and σ of the molecular

model and the distance between molecules i and j given by

rij .

The interaction between two point charges is used in the

current work in the context of simulations of water and is

given by

Uqq =
1

4πε0

qiqj
rij

, (5)

where qi, qj are the charge magnitudes, rij is the distance

between them and 1

4πε0
is the Coulomb constant. The

interaction between two point-quadrupoles (Gray and

Gubbins 1984) was used in simulations of benzene in the

current work:

UQQ =
1

4πε0

3

4

QiQj

r5ij
(

1− 5
[

cos2 χ1 + cos2 χ2

]

− 15 cos2 χ1 cos
2 χ2

+ 2 [cosψ sinχ1 sinχ2 − 4 cosχ1 cosχ2]
2
)

, (6)

where Qi, Qj are the quadrupole magnitudes, rij is the

distance between them and χ1, χ2 and ψ are angles, which

describe the orientation of the point quadrupoles w.r.t.

the line connecting them. Dipole and mixed interactions

(charge-dipole, charge-quadrupole, dipole-quadrupole) are

also supported. For molecules with zero net charge (which

is the case in most ls1 mardyn application scenarios),

the Reaction Field method is used (Barker and Watts 1973;

Allen and Tildesley 1989). An implementation of the Fast

Multipole Method (Greengard and Rokhlin 1987) for ls1

mardyn is under development.

Related Work: Short-Range Molecular

Dynamics

HPC and Related Software Packages A pre-search

process to improve neighbor list performance at SIMD

level and a slicing scheme for OpenMP parallelism

were addressed by Hu et al. (2017b) and Wang et al.

(2016), focusing on the software Crystal MD and Intel

Xeon/Xeon Phi systems. Domain slices, however, need to

be sufficiently thick to enable OpenMP parallelism. This

restricts the efficient application of this method to locally

large domains. A SIMD approach for Intel architectures

using a reduced version of the LAMMPS package was

presented by Pennycook et al. (2013), showing speedups

of up to 5 for single precision runs on 256-bit SIMD

devices. Vectorization of the cut-off check is performed via

blending/masking: several interactions are evaluated in a

single vector instruction. If one of them needs to be excluded

because the cut-off condition is not fulfilled, its result is

masked to zero. A short-range MD implementation for host-

accelerator devices using LAMMPS with speedups in LJ

simulations (rc = 2.5σ, ρσ3 = 0.84) of 3-4 was described

by Brown et al. (2011). To improve SIMD performance in

Verlet list implementations, lists of particle clusters were

introduced by Páll and Hess (2013) and incorporated into

the Gromacs software. Improving data reuse and tuning

the cluster size to the SIMD hardware properties, speedups

of 1.5-3 compared to the traditional lists were obtained.

Parallelism in Gromacs at all levels (vectorization, shared

and distributed parallelism) was discussed by Abraham et al.

(2015). Gromacs further supports the use of GPUs, yielding

speedups of 3-5 compared to CPUs‡. Both LAMMPS and

Gromacs replicate force storage for OpenMP parallelization

of the force calculation, leading to T times the memory

overhead for running on T threads. An alternative approach

to directly computing the forces for every pair of particles is

given by the use of table lookups, followed by interpolation.

This approach was investigated, amongst others, by Eckhardt

(2014), who found it to be inferior for the potentials used in

this work.

The ls1 mardyn Package Vectorization leveraging the

linked cell approach has been developed in ls1 mardyn

for single-site (Eckhardt and Heinecke 2012) and multi-

site molecules (Eckhardt 2014). To enable memory-efficient

MD for extremely large MD scenarios, a sliding window

method was developed by Eckhardt and Neckel (2012),

which compresses and decompresses molecule data on-the-

fly during the linked cell traversal. A multi-dimensional,

OpenMP-based coloring approach c08 that operates on

the linked cell data structure was discussed by Tchipev

et al. (2015), showing good scalability on Intel Xeon and

Intel Xeon Phi architectures. k-d tree-based load balancing

within ls1 mardyn has recently been used by Seckler

et al. (2016) to evenly distribute the computational load of

the compute-intensive particle simulations on heterogeneous

hardware systems.

World Record History A simulation consisting of 5 billion

molecules was performed by Roth et al. (2000), pointing at

the limits of MD in the year 2000. In 2006, Kadau et al.

(2006) reported on a 320 billion atom run with the MD

code SPaSM. The first trillion atom run followed in 2008

(Germann and Kadau 2008), which was outperformed by

‡www.gromacs.org/GPU acceleration, as of Nov 2017

Prepared using sagej.cls



4 Journal Title XX(X)

a 4.125 trillion atom run (WR13) using ls1 mardyn on

the supercomputer SuperMUC, Phase 1 (Eckhardt et al.

2013). A two trillion atom simulation was recently carried

out using Crystal MD by (Hu et al. 2017a) on the second

fastest supercomputer TianHe-2§, as well as a four trillion

atom simulation on the fastest system Sunway TaihuLight (Li

et al. 2018). Comparing memory requirements of three MD

codes (Crystal MD, LAMMPS, IMD), Hu et al. found that

Verlet lists have a significant share of the total MD memory

requirements.

WR13 was achieved with a specifically optimized and

simplified branch of ls1 mardyn, which is a hindrance

to maintainability. Molecules were locally converted inside

the sliding window from a primary array-of-structures (AoS)

format to a structure-of-array (SoA) format in each time

step before the force calculation to exploit 128-bit AVX

instructions. In the AoS format, only 8 + 12 + 12 Bytes

were required to store an unsigned long unique ID,

single-precision position and velocity per molecule. In the

SoA format, 12 + 12 Bytes for position and force buffers

were allocated and efficiently reused during temporary

conversion. Non-symplectic explicit Euler time stepping

was employed. OpenMP parallelism was only used at the

hyperthreading level, with two threads working spatially

close within a slightly extended sliding window—at the cost

of frequent, but cheap on-core OpenMP synchronization.

MPI parallelization was based on a classical Cartesian

domain decomposition. Forces acting on molecules across

subdomain boundaries were computed by both processors.

Overall, 16 MPI ranks were started per node, which

meant that when running on the entire machine, around

25% of the RAM needed to be reserved for MPI buffers.

Global collective operations for computing the total potential

energy or temperature of the system were also found to

be a bottleneck. Employing still nascent technology at the

time, the force calculation was vectorized by hand via 128-

bit SSE intrinsics. This, however, proved to be cumbersome

when doing reimplementations for 256-bit AVX which had

been supported by the SuperMUC, Phase 1, SandyBridge

architecture already at that time.

The present work uses a fully functional integrated code

base of ls1 mardyn, including Verlet time integration,

three OpenMP schemes which can be changed at runtime,

a reduced memory mode (RMM) that can be switched on/off

at compile time, global collective operations and SIMD

vectorization for several particle interaction kernels.

Implementation and Optimization

Data Layout

Structure-of-Arrays In the non-RMM mode of ls1

mardyn (referred to as Normal), molecules are stored in

AoS format to ease programmability for users of the code,

who wish to program new application features themselves.

Unfortunately, this is suboptimal for SIMD. Moreover, the

hyperthreaded sliding window approach from WR13 with

SoA storage is not suited for a larger number of threads.

Low synchronization approaches, such as c08, require

threads to work on disjoint or spatially distant regions of a

MPI subdomain, requiring each thread’s data in SoA format

in order to exploit SIMD.

Therefore, permanent storage was switched to SoA format

in the RMM mode. To hide the internal structure and to

preserve code modularity, molecule data can be accessed

using iterators whose interface is independent of the storage

mode. Since multiple parts of the code base and the Normal

mode assume AoS storage and interfaces, we construct—

where needed—AoS objects in the RMM mode on-the-fly.

Other more time-critical routines, e. g., resorting molecules

which propagate from one linked cell to another, were

modified to make use of the permanent SoA storage.

Reduced Memory Mode (RMM) In ls1 mardyn, several

molecular properties, being necessary for the multi-site

molecules and multi-component applications, are stored in

the Molecule class. All properties that can be neglected

for single-site Lennard-Jones particles were removed in

WR13, yielding 32 Bytes per molecule. We follow the same

approach, but allow to switch between RMM and Normal

mode at compile time instead of using a specialized branch.

The memory requirements are listed in Table 1. The RMM

mode was implemented via polymorphism and conditional

compilation, the latter was kept to a minimum.

One SoA structure to hold the molecules is allocated per

linked cell and stored by reference in the cell (RMMCell).

The variables of the molecules contained in the same

RMMCell (position, velocity and unique ID) are stored

contiguously in a dynamic std::vector<char> with a

custom C++11 allocator to ensure proper alignment. Each

array is 64 Byte aligned and padded to fill a multiple of 64

Bytes. This ensures full cache lines at all times, prevents false

sharing and allows some tolerance for appending molecules,

which have propagated to the current cell. Within the array,

the variables are stored in the following order: x, y, z,

vx, vy, vz, uID. Padding with zeros at the end of the

x coordinates is inserted so that the y coordinates can be

loaded via aligned loads of the employed SIMD width. Care

was taken to reduce the total memory footprint of one linked

cell (sizeof(RMMCell)) down to 64 Bytes.

Time Integration

Since forces are not permanently stored in RMM mode and we

are no longer making use of a sliding window, a new solution

for implementing the leapfrog time integration is required.

Listings 1 and 2 illustrate our RMM solution and the Normal

approach for the leapfrog method.

The variables r i, v i and f i represent position, force

and velocity of particle i, while f ij denotes the force

between molecules i and j. dt m denotes the integration

factor ∆t/m. The scheme of Listing 2 leads to a larger

number of multiplications in the merged force calculation-

velocity update.

If fused multiply-add instructions are supported,

however, this can be executed efficiently and does not involve

more floating point rounding errors than in Listing 1. In

standard implementations of the leapfrog algorithm, the

velocity update is usually split into two halfsteps (factor 0.5

in Listing 1) so that macroscopic quantities such as energy

can be evaluated at the same time. The RMM scheme cannot

support this without additional computational effort.

§ www.top500.org, as of Nov 2017
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Normal RMM

Type double single double single

Position (x,y,z) 24 12 24 12

Quaternion (q0,q1,q2,q3) 32 16

Velocity (x,y,z) 24 12 24 12

Angular momentum (x,y,z) 24 12

Forces (x,y,z) 24 12

Torsional moment (x,y,z) 24 12

Virial (x,y,z) 24 12

Mass 8 4

Moment of inertia (x,y,z) 24 12

Inverse moment of inertia (x,y,z) 24 12

Unique ID (unsigned long) 8 8 8 8

Component pointer 8 8

SoA pointer 8 8

SoA index 32 32

Total 288 172 56 32

Table 1. Memory requirement (in Bytes) for one Molecule object in the modes Normal and RMM.

Listing 1: Normal mode

/ / v e l o c i t y h a l f−s t e p 1

v i = v i + dt m ∗ 0 . 5 ∗ f i

. . .

/ / p o s i t i o n u p d a t e

r i = r i + d t ∗ v i

. . .

/ / f o r c e c a l c u l a t i o n

f i = f i 1 + f i 2 + . . .

. . .

/ / v e l o c i t y h a l f−s t e p 2

v i = v i + dt m ∗ 0 . 5 ∗ f i

. . .

Listing 2: RMM mode

/ / p o s i t i o n u p d a t e :

r i = r i + d t ∗ v i

. . .

/ / f o r c e c a l c u l a t i o n and v e l o c i t y f u l l −s t e p :

v i = v i + dt m ∗ f i 1 + dt m ∗ f i 2 + . . .

SIMD Wrappers

The handwritten intrinsics kernel of ls1 mardyn was

realized via wrapper classes. The arithmetic operations

+,-,*,/ were implemented via class operators. Aligned

loads, stores, horizontal additions, etc. were implemented

as member functions. Taking care that all operations are

inlined by the compiler, the use of the wrappers results

in efficient and convenient coding. The current wrappers

support single and double precision using SSE3, AVX,

AVX2, KNC and AVX512 instruction sets as well as a “no-

vec” mode (referred to as “SOA” here).

Figure 1(a) illustrates the linked cell-based force

calculation. For every molecule, all interacting molecules

within a cut-off radius rc have to be identified and the

individual force contributions added. Molecules are loaded

in aligned chunks of the SIMD vectorization width (4 for

SSE, 8 for AVX). If the center of mass of a given molecule

falls within the cut-off radius, the force kernel is computed

for the whole chunk. Interactions beyond the cut-off radius

are masked out, cf. Listing 3 for a LJ example.

Listing 3: LJ kernel using SIMD wrappers

. . .

Rea lCalcVec r 2 i n v =

RealCalcVec : : r e c i p r o c a l m a s k ( c r 2 , fo rceMask ) ;

RealCalcVec l j 2 = s i g 2 ∗ r 2 i n v ;

RealCalcVec l j 4 = l j 2 ∗ l j 2 ;

RealCalcVec l j 6 = l j 4 ∗ l j 2 ;

RealCalcVec l j 1 2 = l j 6 ∗ l j 6 ;

RealCalcVec l j12m6 = l j 1 2 − l j 6 ;

RealCalcVec e p s 2 4 r 2 i n v = e p s 2 4 ∗ r 2 i n v ;

RealCalcVec l j 1 2 l j 1 2 m 6 = l j 1 2 + l j12m6 ;

RealCalcVec s c a l e = e p s 2 4 r 2 i n v ∗ l j 1 2 l j 1 2 m 6 ;

f x = c dx ∗ s c a l e ;

f y = c dy ∗ s c a l e ;

f z = c d z ∗ s c a l e ;

. . .

OpenMP-Parallel Force Calculation

An optimization of the force calculation that halves

computational effort is to exploit Newton’s third law (fij =
−fji). However, race conditions occur if two threads operate

on neighboring linked cells.

Scheme c08 Scheme c08 (Tchipev et al. 2015) avoids race

conditions using eight colors (i.e. synchronization steps) in

3D, cf. Figure 1(b).

Threads work in parallel on “packages” of cells, whose

lower left corner is of the same color. In Figure 1(b), while

processing cell 0, the interactions within the package of cells

0, 1, 9 and 10, which are marked with arrows, are computed.

After the work on one color is done, threads synchronize at

a barrier, before proceeding to the next color. After all colors

have been processed, every cell has interacted with all of its

direct neighbors, e. g., cell 48.

Using a schedule(dynamic, 1) scheduling to

assign packages to threads, the algorithm is somewhat

load imbalance tolerant at the cost of predictable memory

access patterns and NUMA-friendliness. The scheme has the

drawback that it is not cache-efficient because a package of

four/eight cells is discarded immediately after use and a new,

disjoint package of cells needs to be fetched. Effectively,

molecule data are streamed through the CPU eight times.

Prepared using sagej.cls
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Figure 1. (a) Linked cell force calculation, (b) c08 scheme, (c)

sli scheme. Shaded cells in (b) and (c) represent inner cells,

white cells represent halo cells. Interactions between two halo

cells are not computed.

This is often nonetheless acceptable because the force

computation is FLOP intensive.

Scheme sli To run at a single MPI process per dual-

socket node efficiently, we introduce a novel slicing scheme

sli. It essentially employs a one-dimensional domain

decomposition, requiring a thread to obtain only one

OpenMP lock from a neighboring thread, entailing extremely

low synchronization cost. The 3D cell-iteration space is

serialized into 1D and cut into T (number of threads) equal

chunks, see Figure 1(c). At the start of the iteration, T − 1
locks are generated and thread t sets lock number t− 1. As

soon as thread t has processed the first D − 1 dimensional

“slice”, it unsets lock t− 1 so that thread t− 1 can obtain it

for completing the last part of its iteration space. As soon as

thread t− 1 wants to access cells from t’s iteration space, it

attempts to set the lock number t− 1 and possibly waits until

it is released by thread t. Figure 1(c) shows an example for

a 9× 9 cell domain with 3 threads. Thread 1 works on cells

23 to 46 and sets lock 0 to prevent race conditions to cells

23-32. It waits for lock 1 to be released by thread 2, before

computing forces for cells 37-46.

This scheme assumes that the workload is constant

in all cells, although more load-balanced extensions are

conceivable. It is cache-efficient and NUMA-friendly. At

least 2T slices along the longest dimension of the domain

of each MPI rank are required. Moreover, a load imbalance

arises when a thread’s domain covers many halo cells (cf.

Figure 1(c)), as these interactions are skipped. This load

imbalance is largest for thread 0 because it skips the largest

number of halo-halo interactions. For nodewise, large-scale

runs (e.g., 4473 cells for 48 threads on Hazel Hen in

the present work), this provides ample amounts of work

without issues. For smaller and strong scaling scenarios,

however, this requirement sometimes proves to be severe. We

increased the number of MPI ranks per node in those cases,

although switching to other schemes is supported at runtime.

Extending the one-dimensional splitting to two or three

dimensions, while retaining the cheap synchronization of one

lock per thread, is not easily conceivable. It would likely

result in a need for much more locks per thread, which would

probably be more efficient to be done with a global barrier.

We point out that sli should also be applicable to other MD

packages, even those employing Verlet lists (unlike c08).

These codes usually sort molecules into bins to efficiently

construct neighbor lists (Brown et al. 2011). Due to this

spatial ordering, it can be computed when thread t begins

to access molecules in the bins of thread t+ 1 in order to

apply sli.

Scheme c04 We now introduce a D + 1-coloring variant

for D ≤ 3 dimensions and present some considerations for

D > 3. This is an important distinction versus the 2D colors

of c08 and suggests that potential generalizations to higher

dimensions might be even more beneficial. This scheme can

be understood in the following way: in one dimension, it is

the well-known red-black coloring. In Figure 2, we show the

implementations for D = 2 and D = 3. The D = 2 case in

Figure 2(a) can be thought of as a two-dimensional red-black

coloring on a Cartesian grid, with the diagonal links being

broken by the third color. The crux lies here in the fact that

the patches of the third color need to be “thick enough” to

break the diagonal links.

It turns out that the three-dimensional variant of the

scheme can be implemented again via “uniform” colors.

Figure 2(b) shows the shape of the building block for all

four colors. It represents 32 cells within a 43 bounding box,

removing all cells which touch an edge of the bounding box.

The centers of all building blocks in Figure 2(c) form a body-

centered cubic (bcc) lattice. If one considers the centers of

the bcc lattice as two three-dimensional Cartesian grids, the

c04 scheme can be interpreted as two, interleaved Cartesian

grids, each colored in a red-black fashion.

Comparing c04 to c08 and sli, c04 has an

intermediate number of synchronization steps and is

cache friendly. Here, we implemented c04 with a

schedule(dynamic, 1) scheduling, to also allow

Prepared using sagej.cls



Tchipev, Seckler et al. 7

(a)

(b)

(c)

Figure 2. (a) Three-color, two-dimensional variant of the c04

scheme, (b) one element of the c04 scheme contained in its

bounding box of 43 cells, (c) the c04 scheme.

tolerance for load-imbalance. This, of course, comes at the

cost of a potentially better NUMA-friendliness. Since c04

schedules a whole building block of 32 packages of cells, the

overhead of dynamic scheduling is, however, lower than in

c08 (which schedules only one package at a time).

Obviously, a drawback of c04 is the rather complicated

traversal pattern. Also, the handling of vertical boundaries

is not trivial, since any plane, orthogonal to the primary

axes, intersects building blocks of all colors in potentially

four different configurations. This was handled by always

traversing full building blocks and checking via if-

statements what should be computed and what not.

More significant gains of c04 over c08 could be

expected in applications with a higher dimensionality. The

current coloring scheme should extend to D dimensions

by comparing Figure 2(a) to a plane from (c) and

observing that the “+”-like elements have “grown” and

expecting alternating behavior for even and oddD. However,

alternative colorings with the same number of colors in

the same number of dimensions exist and may be more

obvious to generalize to higher dimensions. One possibility

is to increase the size of the blue squares in Figure 2(a)

to 3× 3, but retain the size of the “+”-like elements. All

“+”-like elements then become disjoint and can, thus, be

colored with the same color, leaving the third color for

the newly formed 1× 1 gaps along all edges of the blue

squares. In D > 2 dimensions, the first color is used for a

blue hypercube, with the observation that the size of the

hypercube needs to increase with D, in order to break all

emerging links. The remaining cells can then be colored

similarly to the – already constructed – coloring in D −

1 dimensions (again, observing that higher dimensional

analogues of lower dimensional shapes may need to be made

“thicker”).

Turning c08 and c04 into Memory-Buffer

Schemes

Before proceeding, we highlight that both c08 and c04

can be turned into memory-buffer schemes, yielding two

further possibilities. Let C be the number of colors and note

the following: if threads are allowed to work on different

colors independently (but still requiring only one thread per

building block), then, at most C threads may access the same

cell concurrently. The arising race conditions can then be

resolved by writing to C different buffers, giving a constant

memory overhead, independent of the number of threads.

This can potentially be much smaller than the total number of

threads, which can reach the order of one hundred for recent

Xeon Phi or even Xeon architectures. An implementation of

the resulting schemes is of interest, but beyond the scope of

the present paper.

Resorting Particles in Cells

Apart from the force calculation, most other routines

are relatively simple to be parallelized with OpenMP.

The position update is embarrassingly parallel. Packing

molecules from separate cells into contiguous buffers for

MPI exchange can be done with a parallel-prefix-sum-like

scheme. Resorting molecules, which have propagated from

one cell to another, however, is not straightforward. Even

after assuming that molecules can only propagate from one

cell to one of its neighbors, this operation has the same read-

write dependencies as the force calculation. Realizing this

without additional memory buffers (in the RMM mode) is

not straightforward. When applicable, we reused the sli

traversal for this purpose. Otherwise, c08 or c04were used.

Because the resorting of molecules into cells is not compute

intensive, the involved 8 traversals in c08, however, lead to a

noticeable overhead compared to resorting through sli (not

shown here). c04 fares better in that aspect.
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MPI Communication

The present domain composition uses the same partitioning

algorithm as WR13. As all considered scenarios (see

Section Scenario Description) are homogeneous, a Cartesian

grid is the best option to partition the simulated MD volume

and data.

Point-to-Point Communication Point-to-point communica-

tion was optimized by reducing the size of the transferred

messages. It is differentiated between molecules which

propagate from the domain of one process to another, and

molecules which are just copied to enable the local force

calculation with the halo regions. For the former, the full

molecule data need to be communicated. For the latter, only

information that is relevant for the force calculation (halo

atom position/12 Bytes) needs to be transferred.

Global Collectives Collective communication is required in

MD to gather statistical properties, such as temperature or

energy. These values tend to change rather slowly. Therefore,

we integrated a nonblocking scheme in ls1 mardyn based

on MPI-3 in which these values are not based on the current,

but the previous time step. A collective call, for which a value

of the previous time step is allowed, has to be identified by

a specific tag. The behavior of the collective calls of one

specific tag is as follows: in the first time step, no previous

collective call with that tag is available. Therefore, a normal

blocking collective operation is performed using the current

local values. Starting at the second time step, a collective

call with that tag has already completed. Thus, the current

local values are used to initiate a nonblocking collective

call. Starting at the third time step, a nonblocking collective

call from the previous time step is ongoing. The program

waits upon its completion and updates the global values

accordingly.

Results

We present analyses in FLOPS (floating point operations

per second), and MMUPS (million molecule updates per

second). The first metric is excellent to assess hardware

utilization and compare with results of WR13. The second

one is a system size independent metric frequently used in

MD.

Compute Systems

SuperMUC Phase 1 SuperMUC, Phase 1, (S1) at LRZ,

Garching/Germany, consists of 9, 216 nodes, each built up

by two hyper-threading-capable, 8-core Intel SandyBridge-

EP Xeon E5-2680 processors. Running at a maximum of

2.7 GHz and using AVX, it provides a theoretical peak

performance of 3.2 PFLOPS. The nodes are connected by

an Infiniband FDR10 interconnect in a fat tree topology. A

total of 288 TB of RAM is available, while only 216 TB are

typically usable for compute applications. All simulations

were performed with disabled turbo mode. Instead, a fixed

clock frequency was used.

Hazel Hen The Cray XC40 Hazel Hen machine (HH) at

HLRS, Stuttgart/Germany, consists of 7, 712 dual socket

nodes, each featuring two 12-core Intel Haswell Xeon E5-

2680 v3 processors. Each core runs at 3.3 GHz at maximum

and is capable of 2-way hyperthreading as well as AVX2. HH

is currently the 19th fastest supercomputer (as of November

2017)¶ with a peak performance of 7.4 PFLOPS (5.6

PFLOPS LINPACK) and provides 964 TB of memory (128

GB per node). The nodes are connected through the Aries

interconnect. All runs in this work were performed with

enabled turbo boost, unless mentioned otherwise.

Scenario Description

Except where noted, simulations were carried out with

the same simulation setup as in WR13, namely a system

consisting of single-site molecules, whose interactions were

modeled by the LJ potential. Molecules that can be simulated

with this kind of model include, e. g., argon. We used

the same density of ρσ3 = 0.78, the same cut-off radius

of rc/σ = 3.5 and the same time step of 1 fs as in the

world record run in 2013. Starting domains (before MPI

decomposition) were always cubic and periodic boundary

conditions were applied.

Node–Level Experiments

Sequential Performance Sequential performance was ana-

lyzed for a modest MD system of 18 · 106 LJ molecules

(ca. 750 MB of memory). Figure 3(a) shows that the

SIMD speedups increase with increasing rc. The number

of molecules per linked cell for rc/σ = 2.5, 3.5 and 5.0
are 12, 33 and 98. (Single precision) Vectorization width

is 4/8 for SSE/AVX. This explains why the SIMD gains

are higher with increasing rc: the loop trip count increases

considerably. As noted in WR13, the kernel in Listing 3 fea-

tures an addition-to-multiplication imbalance, chained mul-

tiplication operations, and—if used—floating point division.

This inhibits the use of superscalarity, but can be mitigated

by hyperthreading. For rc/σ = 5.0, we attained more than

20% of the theoretical S1 peak (8.7 out of 43.2 GFLOPS).

SSE performance was in very good agreement with Eckhardt

(2014). On HH, AVX2 only yields marginal improvement

over AVX, since the LJ model cannot exploit fused-multiply-

add.

Due to considerable vectorization gains, the MMUPS

decrease only slightly when going from rc/σ = 2.5 to

rc/σ = 3.5, despite a
(

3.5
2.5

)3
≈ 2.7 fold increase of the

number of floating point operations.

Strong Scaling OpenMP Fig. 4 shows the excellent strong

scaling behavior on one node in an experiment with 47 · 106

LJ molecules and rc/σ = 3.5. Turbo mode on HH was

switched off in this run. Hyperthreading was investigated

in a single-core experiment, pinning two threads on one

core and running sli. The gains of hyperthreading are two-

fold: hiding memory latency and helping instruction-level-

parallelism in Listing 3. Over 22% performance gains were

achieved on both S1 and HH, which is nearly two times

higher than in WR13.

Considering sli, the strong scaling efficiency is 99% at

8 cores on S1 (on the same socket) and drops to 97% when

going to 16 threads on both sockets due to emerging NUMA

accesses. When using the estimate of the hyperthreading

¶www.top500.org, as of Nov 2017
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Figure 3. (a) GFLOPS performance for varying rc (in σ) and SIMD modes. (b) MMUPS performance for varying rc. (c)

Comparison to WR13 on 8 nodes for rc/σ = 3.5.

1 2 4 8 16 32

0.9

1.1

0.88

1.08

1.04

Threads

M
M

U
P

S
p
er

co
re

ideal

sli

MPI
c08

HT
c04

(a)

1 2 4 8 16 32 64

0.9

1.1

1.3

1.09

1.34

1.24

Threads

M
M

U
P

S
p
er

co
re

ideal

sli

MPI
c08

HT
c04

(b)

Figure 4. Strong scaling on one node, given in MMUPS per compute core. (a) S1, (b) HH. One thread per core is used, except for

results achieved with 32/48 threads on S1/HH, corresponding to two threads per core (hyperthreading). Ideal performance behavior

in the hyperthreading regime is extrapolated from single-core hyperthreading results, indicated by the green curves. Turbo mode

was switched off on HH.

experiment to normalize parallel efficiency at 32 threads,

we arrive at 96%. On HH, the values are 97% at 12 cores,

95% at 24 cores and 93% at 48 threads. When switched on,

Turbo mode causes efficiency to drop to 86%, due to higher

CPU boost at one thread (19%) than at 48 threads (9%). The

gains of sli over c08 are highest at 16 and 24 threads,

reaching 13% and 25%. Because hyperthreading mitigates

remote NUMA accesses to a certain extent, the gains drop

to 8% and 15% at 32 and 48 threads. Finally, we point out

that, unlike c08, sli is now able to beat our pure MPI

implementation by 6-8%, which we consider a qualitatively

significant achievement. While they may seem small, these

differences are important when we push strong scaling to its

limits in runs on entire supercomputers in the following.

For this configuration, the c04 scheme delivers 4%/8%

lower performance than sli on S1/HH sequentially.

Section Scheme c04 highlighted some drawbacks and

potential reasons for this. c04, however, features the best

scaling, which allows it to overtake both c08 and the MPI

variant on both architectures. Ultimately, on the full node, it

delivers the second best performance - within 1% of the sli

values.

Before proceeding, we briefly consider a smaller,

load-imbalanced scenario, similar to scenarios arising in

direct vapor-liquid equilibrium simulations (Eckelsbach and

Vrabec 2015), namely a slab of liquid, surrounded by vapor

on both ends. Figure 5(a) shows a visualization of the

simulated domain. The ratio of liquid volume to vapor

volume was one to one. The scenario featured slightly over

350 000 single-site LJ molecules at a cut-off radius of

rc/σ = 3 contained within 28× 55× 28 linked cells. The

density of the liquid phase of the domain was ρσ3 = 0.6223
and 0.06482 in the vapor phase.

Figure 5(b) shows the obtained strong scaling on one S1

node. Since the present implementation of sli always cuts

along the longest dimension, a load imbalance arises in the

sli curve for more than two threads. Cutting along one of

the other dimensions would result in a perfect load balance,

but further decrease the number of threads with which the

scheme can be executed.

The low density vapor phase implies that the force

calculation is not FLOP-intensive in this region, so both

scheduling overhead, and data access become visible. At one

thread, sli and c04 fare better than c08 (5.5% and 4.5%,

respectively), which is due to data-reuse. With an increasing

number of threads, the gap between c04 and c08 rises to

7% at 8 threads, which is now due to scheduling. At 16

threads, emerging NUMA accesses penalize c08 harder, so

that the gap becomes 21%, which is then (again) mitigated

at 32 threads, bringing the gap down to 14%. Overall, the
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speedup of c04 is 13.7 at 16 threads and 14.3 at 32 threads,

which we consider appropriate values for load-imbalanced

scenarios simulated with the linked cell algorithm.

For the remainder of the paper we focus on sli and

sometimes on c08 when sli is not applicable.

Hybrid MPI-OpenMP Experiments Figures 6 and 7 show

the results on S1 and HH for hybrid MPI-OpenMP

scalings on 64 nodes. On both machines, we started from

approximately full RAM utilization (36 · 109 particles on

S1 and 190 · 109 on HH) and considered geometrically

scaled-down systems. Simulations on the chosen entire

systems (20) using many MPI ranks could not be performed

due to increasing halo-layer storage, highlighting the

higher memory efficiency achieved through our OpenMP

implementation.

The differences between the fastest and slowest scheme at

50% RAM are below 8% on both S1 and HH and rise only

up to 18% for smaller sizes. On S1, the best performance was

delivered by the configuration 8× 4, while 6× 8 worked

best on HH, although 48× 1 performed surprisingly well for

large system sizes.

We further analyzed the performance of the force

calculation for decreasing system size: it remained fairly

constant, suggesting that performance degradation is a

consequence of other operations (e.g., MPI communication

and related network latency).

Since the difference between the fastest scheme and the

“1 MPI rank per node” scheme at 100% memory utilization

is only 6%/5% on S1/HH, the weak scaling experiments

in the next sections made use of the latter (more memory

efficient) configuration. The general purpose behind strong

scaling is to solve problems as quickly as possible. Hence,

we decided to use the 8× 4 and 6× 8 configurations for the

strong scaling analyses.

Comparison to WR13 on 8 Nodes Figure 3(c) shows a

comparison between the present implementation in the 8×
4 configuration and WR13. A direct comparison can be

drawn for SSE mode and WR13, which is only about 7%

faster at high particle counts. The present implementation,

however, sustains performance at low counts better, where

SSE outperforms WR13 by about 33%. Comparing the AVX

version, it is around 43% faster at high counts and 74% at low

counts. Before proceeding, we point out that the performance

for low counts will become important when considering

strong scaling scenarios up to the entire machine. Then,

roughly ten times lower molecule counts than shown in

Figure 3(c) will come into play, suggesting even greater gains

compared to WR13.

Performance Comparison to LAMMPS and Gromacs We

compared the performance to LAMMPS, considering it as

a representative of a well-optimized Verlet list-based MD

code. The comparison in Figure 8 was carried out on one

node of S1.

For LAMMPS, the latest stable version

(11 Aug 2017) was used and compiled using

Makefile.intel cpu intelmpi. The tests were

run with the USER-INTEL package in single precision. The

LAMMPS input file in.intel.lj was used (and—where

noted—modified), featuring 512 000 single-site LJ atoms

at ρσ3 = 0.8442 and rc/σ = 2.5. For the Verlet lists,

the default settings of “skin radius” of h/σ = 0.3 and

the neigh modify settings of delay 0 every 20

check no were used, meaning that the list is rebuilt every

20 iterations and no check is performed whether it needs

to be updated more or less frequently. A similar input file

was created for ls1 mardyn with slightly more (524 288)

atoms.

A hybrid MPI-OMP analysis was performed to determine

the best configuration to run both codes on this scenario. The

MMUPS results are shown in Figure 8(a).

For this configuration, LAMMPS is the clear winner,

delivering a threefold higher MMUPS rate. The best

performance was delivered by the 16× 2 configuration with

Newton’s third law optimization turned on. Both the “on”

and “off” curves, however, deviate considerably from an

ideally flat curve, suggesting that the MPI implementation

outperforms the OpenMP one. These deviations are more

pronounced for the “on” setting, as the “off” one should in

fact be embarassingly parallel. For ls1 mardyn, the best

results were obtained running at 4 × 8. This system, however,

is almost “too small” for ls1 mardyn, as it features only

35× 35× 35 cells; the scheme sli is, thus, not applicable

in the 1 × 32 configuration. In ls1 mardyn, molecule

storage required slightly more than 21 MB, which almost fits

in the cache of one socket.

In Figure 8(b), we explore parameterizations, which affect

MMUPS performance considerably: rc, the number of atoms

and Verlet list settings. Except where noted, other simulation

parameters were kept as in Figure 8(a).

A LAMMPS run with the parameters check yes

(not shown) revealed that all builds are marked as

“dangerous”, suggesting that the neighbor lists were not

updated frequently enough. As advised by the LAMMPS

documentation, the neigh modify settings were modified,

until the number of “dangerous builds” dropped to zero,

which was at the settings delay 0 every 5 check

yes. This resulted in 10 builds over the course of 100 time

steps, instead of the previous 5 builds. These measurements

are denoted with “check” in Figure 8(b). Comparing to the

default settings, this results in roughly 16% less performance

for LAMMPS.

Next, we investigated increasing the system size up

to what each code can fit on a node. For LAMMPS, a

run with 16 · 106 molecules exceeded the available RAM,

so the “LAMMPS 8M check” data series was run with

8 192 000 molecules. The increased system size caused

a minor deterioration of performance, except for rc/σ =
5.0. With ls1 mardyn, we were able to store over 434 ·
106 molecules and this resulted in up to 43% performance

improvement. Comparing “LAMMPS 8M check” to “ls1

434M”, the margins are no longer as drastic and decrease

with increasing the cut-off radius. For rc/σ = 3.5, which

was used for the large scale runs, it is seen that the cost

of memory efficiency is about 33%, which we consider

tolerable.

At first glance, the gain of Newton’s third law optimization

in Figure 8(a) is small. Running the combinations of

Figure 8(b), however, (not shown) leads to increasing

gains for larger cut-off radius reaching up to 34% for the

“LAMMPS 8M check rc = 5.0σ” configuration, suggesting

that it should not be undererstimated. For ls1 mardyn, the
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Figure 5. (a) Visualization of load imbalance scenario, (b) strong scaling on one node of S1 for the scenario visualized in (a). One

thread per core is used, except for the case with 32 threads, which corresponds to hyperthreading (two threads per core).
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Figure 6. Hybrid MPI-OpenMP analysis on S1 for decreasing system size. 20 denotes 100% RAM utilization, 2−1 denotes 50%

RAM utilization and so on. N ×M denotes N MPI × M OMP.
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Figure 7. Hybrid MPI-OpenMP analysis on HH for decreasing system size. 20 denotes 100% RAM utilization, 2−1 denotes 50%

RAM utilization and so on. N ×M denotes N MPI × M OMP.

gains of Newton’s third law optimization were investigated

by Tchipev et al. (2015) who found it to be higher, i.e.

between 30% and 50%.

The primary advantage of LAMMPS over ls1 mardyn

in these scenarios is the reduced number of unnecessary

cut-off condition checks between the Verlet list and linked

cells implementations (28% vs 84%). For single-site LJ

atoms, this is a serious overhead. However, the primary

application area of ls1 mardyn are multi-site molecules

(e. g., benzene: 6 LJ sites and 6 point quadrupoles), for which

the cut-off condition check represents only a small fraction

of the total number of FLOPs to be performed, especially

since ls1 mardyn performs the cut-off condition check on

a center of mass basis.

For this reason, a performance comparison with the

important rigid water model TIP4P-2005 (Abascal and Vega

2005) was made, featuring 1 LJ and 3 charge sites per

molecule. This implies that the force calculation between two

molecules involves 1 LJ and 3× 3 = 9 charge interactions,

and is, thus, roughly ten times more expensive than the

evaluation of the interaction between two single-site LJ

molecules. The results in MMUPS (not atom-updates-per-

second) are shown in Figure 9. The results were obtained for

a system containing 512 000 TIP4P molecules at T = 373.15
K (100◦ C), p = 1 bar, timestep 2 fs, rc = 10 Å, run in

double precision. Long-range calculations were switched off

or set to the reaction field mode, so that the non-bonded

force calculation took more than 80% of the runtime for all

codes. The Normal mode of ls1 mardyn was used. For

LAMMPS, the package USER-OMP was used, as it features

a specialized TIP4P calculation (as well as OpenMP support)

via pair style lj/cut/tip4p/cut.

We further included Gromacs in the performance

comparison. We used the 2016.3d release, where d stands

Prepared using sagej.cls



12 Journal Title XX(X)

LAMMPS

Newton off

LAMMPS

Newton on

ls1 mardyn

sliced

ls1 mardyn

c08

0

15

30

45

60

2
2.
5

1
3.
3

1
1.
3

3
4.
2

2
4.
3

1
3.
5

1
1.
8

3
8
.3

3
2
.0

1
4.
1

1
3.
8

4
1
.6

3
9
.1

1
4
.1

1
3.
9

4
3
.8

4
4
.4

1
3
.5

1
3.
3

4
2
.3

4
4
.3

1
3
.4

1
3.
2

M
M

U
P

S
1× 32 2× 16 4× 8
8× 4 16× 2 32× 1

(a)

2.5 3.5 5.0
0

20

40

60

80

4
4
.4

2
4
.3

1
0
.5

3
8.
2

2
0
.9

9.
0

3
5
.9

2
0
.0

9
.31
4
.1

1
0.
4

5
.6

1
9.
5

1
5
.0

8.
0

cutoff radius

M
M

U
P

S

LAMMPS 512K

LAMMPS 512K check

LAMMPS 8M check

ls1 524K

ls1 434M

(b)

Figure 8. MMUPS comparison between ls1 mardyn and LAMMPS. (a) Hybrid MPI-OMP study of the Lennard-Jones

benchmark. Newton “off” and “on” indicate whether Newton’s third law optimization was turned on for LAMMPS. (b) Parameter

investigation for LAMMPS 16×2 Newton on and ls1 mardyn 4×8.

for double-precision, which was available on S1‖. To create

a suitable input, gmx solvate was used to create a

box of 16913 water molecules employing the TIP4P water

model which comes with Gromacs. This box was then

subject to energy minimization, as well as temperature

and pressure equilibration runs at T = 373.15 K, p = 1
bar. Subsequently, we used gmx genconf to enlarge the

scenario to a box containing 456651 molecules through

stacking of the previously equilibrated coordinate file. For

the actual benchmark run, we used settings aiming for

maximum comparability to ls1 mardyn. Temperature

and pressure coupling was disabled and both vdw-type

(Van der Waals) and coulomb-type settings were set to

Cut-off with distances rvdw, rlist and rcoulomb all

specified with 1 nm. The actual cutoff-scheme was set

to Verlet which the documentation describes as a “pair

list with buffering”∗∗. Dispersion correction was enabled for

both energy and pressure (DispCorr = EnerPres) and

no further vdw-modifiers were employed.

In this configuration, ls1 mardyn outperforms

LAMMPS—at least when using the USER-OMP package—

by almost a factor of two. A reason for this is the multi-site

molecule-oriented SIMD vectorization of ls1 mardyn.

Consecutive sites of a single molecule always lie in

contiguous memory locations, increasing the gains due

to SIMD vectorization. Gromacs still outperforms ls1

mardyn, but only by 22%. A reason for the excellent

Gromacs performance could be the extra effort invested in

intrinsics vectorization and clustering of the Verlet lists, as

highlighted by Abraham et al. (2015). A LAMMPS run with

the USER-INTEL package would, of course, be of interest,

but the current version does not support the pair style

lj/cut/tip4p/cut interaction type.

To summarize this comparison, Verlet list-based codes,

such as LAMMPS and Gromacs, certainly offer excellent

alternatives to linked cell calculations and can outperform

them in many cases. Linked cells, however, can still offer

excellent performance when the interaction between two

molecules is expensive and treated in a memory efficient

way. Continuing the comparison between the codes to

investigate the effects of density, skin radius, and multi-node

performance would be of great interest in the future.

Multi-Node Results

Global Overlapping Collectives As described in Sec-

tion Global Collectives, we have replaced blocking col-

lectives with nonblocking collectives. Figure 10 shows the

performance improvements gained through nonblocking col-

lectives. The strong scaling results are shown for a simulation

of 64 · 106 benzene molecules, which were modeled by 6 LJ

and 6 quadrupole sites, at a liquid density ρ = 11.4 mol/l

and a cut-off radius rc = 2.0139 nm. The simulation was

performed in double precision and Normal mode. We used

the c08 traversal and pinned one MPI process on each

NUMA domain. A speedup of ca. 16% could be measured

on 4096 nodes of SuperMUC, resulting in a performance of

191 TFLOPS (13.8% of the theoretical peak performance on

4096 nodes). Nonblocking collectives boost the performance

of ls1 mardyn significantly. They were thus used in the multi-

node simulations discussed in the following.

‖https://www.lrz.de/services/software/

comp-chemistry/gromacs/

∗∗http://manual.gromacs.org/documentation/5.

1-current/user-guide/mdp-options.html?highlight=

dispcorr#mdp-cutoff-scheme
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Figure 9. MMUPS comparison between ls1 mardyn, LAMMPS USER-OMP and Gromacs 2016.3d.
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Figure 10. Comparison of the strong scaling behavior with and without the use of global overlapping collectives. A scenario with

64 · 106 benzene molecules was simulated on SuperMUC.

Results on SuperMUC, Phase 1 We conducted strong and

weak scaling experiments on S1 and HH; results in terms

of GFLOPS and parallel efficiency are shown in Figure 11.

For the same scenario as in WR13 (LJ, rc/σ = 3.5), a

total of 5.2 trillion molecules could be simulated on S1,

retaining a parallel efficiency of 87% and a performance of

720 TFLOPS (13.6% of the theoretical peak performance at

2.3 GHz) in the weak scaling scenario on 9216 nodes, using

only 1 MPI rank per node, cf. Figure 11c. This is an increase

of 27% in molecules and 21% in performance (WR13:

4.125 · 1012 particles, 591 TFLOPS). However, we had to

run these simulations at a frequency of 2.3 GHz, as technical

difficulties prohibited an execution at 2.7 GHz. Scaling

this up, our simulations yield a 40% increase in terms of

performance. These improvements can mainly be attributed

to increased node-level performance that shows a similar

performance difference. For a scenario using rc/σ = 5.0 and

2.3 GHz, a performance of 1.2 PFLOPS could be measured.

A performance decrease of around 10% was measured

for simulations on 8 nodes compared to simulations on 1

node. This is the consequence of a very efficient OpenMP

parallelized intra-process exchange of molecules over the

periodic boundaries, whereas the MPI communication, even

though OpenMP parallelized, can not be optimized to the

same degree.

Considering the performance on 8 nodes as a baseline and

using 4.6 billion LJ particles at rc/σ = 3.5, a strong scaling

efficiency of 73% (WR13: 41.1%) was measured for runs on

the entire machine in the 8× 4 configuration, cf. Figure 11d.

Compared to WR13 (260 TFLOPS, 2.7 GHz), we were

able to more than double the performance (573 TFLOPS,

2.3 GHz, 10.8% of the theoretical peak performance),

despite the lower frequency. If one scales the results to

the proper frequency (2.7 GHz), a remarkable performance

improvement of 258% can be measured for strong scaling

experiments, even though a production-ready code version

was used that, in contrast to the measurements from WR13,

includes global collectives and the use of thermostats. The

most important reasons for this are node-level performance

and communication improvements. The former manifests

itself in higher performance gains at low particle counts,

cf. Figure 3(c). The latter was achieved through the

improvements described in Section MPI Communication

as well as the hybrid MPI-OpenMP parallelization and its

accompanying reduction of the number of MPI processes.

The strong scaling tests were performed such that we always

chose the best values out of 11 runs. This was done to

minimize the influence of the environment.

Results on Hazel Hen We were able to simulate systems

with up to 2.1 · 1013 particles on up to 7168 nodes of HH;

for liquid xenon (σ = 3.9450 Å), this corresponds to a cube

with a width of 11.8 µm. On up to 7168 nodes, we obtained

a weak scaling efficiency of 88% (cf. Figure 11c) in the

1× 48 configuration. On 7168 nodes, a performance of

1.33 PFLOPS was achieved, which represents around 9% of

the single precision peak performance of HH. The value is

lower than on S1 (13.6%) because the benefits from AVX2

are limited, cf Figure 3(a). The simulation rate could be

measured at up to 189 · 109 MUPS.

The strong scaling tests were performed for a cut-off

radius of rc/σ = 3.5 and with a system of 23.85 billion

particles. A performance of 1.18 PFLOPS with a parallel

efficiency of 81% on 7168 nodes was observed in the

6× 8 configuration. The simulation rate was measured

as 178 · 109 MUPS. Like for the strong scaling runs on

SuperMUC, we chose the best out of 11 runs on HH. A

reason for the higher strong scaling efficiency—compared

to the SuperMUC experiments—is that we began from 8
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Figure 11. Scalability experiments on Hazel Hen (HH) and SuperMUC, Phase 1 (S1), using up to 9216 (S1)/7168 (HH) nodes. In

(c) and (d) GFLOPS are shown by solid, the parallel efficiency by dashed lines. (a) GFLOPS per node in weak scaling, (b) legend,

(c) total GFLOPS in weak scaling, (d) total GFLOPS in strong scaling.

full nodes, which means that the starting system contained

almost five times more molecules on Hazel Hen.

On HH, we encountered hardware issues at large node

counts, especially for the weak scaling simulations. Here,

performance drops by up to 50% and failing nodes were

observed. The cause of these performance decreases is under

current investigation.

Conclusions and Outlook

We provided a detailed discussion of latest improvements

of the MD package ls1 mardyn. Boosting node-level

performance by enhanced hybrid MPI-OpenMP schemes,

addressing programmability issues by SIMD wrappers and

incorporating nonblocking global collectives, we could show

that Peta-FLOP simulations and handling tens of trillions of

atoms is feasible on current top supercomputers.

The OpenMP scheme sli is not only applicable to the

linked cell, but also to Verlet list approaches. The scheme

further yields minimal synchronization for large process-

local domains. The c04 scheme provides a load balance-

tolerant alternative to c08, which was also demonstrated

to perform very well, while bringing the number of colors

and synchronization stages even further down. We further

outlined the construction of two more schemes, based on

additional memory buffers. Different OpenMP schemes were

advantageous in one or the other case. It was not always easy

to predict which one would deliver the best performance.

Hence, an automatic choice of the scheme on-the-fly would

be desirable to always achieve optimal performance. One

way to achieve this is by iterating through available OpenMP

schemes and selecting the one that delivers the lowest

runtime. To take this a step further, different particle

containers can also be iterated, including linked cells, Verlet

lists and further possibilities such as full O(N2) interactions

(for very small systems) or tree containers (such as the ones

used in astrophysics applications). Possibilities for this will

be explored within the project “Task-based load balancing

and auto-tuning in particle simulations” in the future. On

the MPI side, even more performance may be attained in

the hard strong scaling limits with our implementation by

relying on enhanced domain decomposition methods, such

as the eighth-shell approach—which is ongoing work. For

large-scale runs, problems were observed that included nodes

with very low performance as well as failing nodes. We

currently investigate invasive parallelization techniques to

timely exclude failing nodes and to recover from failures.

Due to the HPC improvements and having them integrated

into the trunk (and thus in the production version) of

ls1 mardyn, new scientific studies are enabled. For

example, nucleation processes, which are the onset of

phase change transitions, can now be sampled significantly
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closer to (supersaturation) conditions that are accessible

with experimental work; corresponding collaborative work

is also in progress. The presented software version of

ls1 mardyn is open-source. The version detailed in

this contribution is available for download at www.

ls1-mardyn.de/download.
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