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1 Introduction

Two of the most challenging tasks in molecular simulation consist in capturing the
properties of systems with long-range interactions (e.g. electrolyte solutions), and
of systems containing large molecules such as hydrogels. These tasks become par-
ticularly demanding when explicit solvent models are used. Therefore, massively
parallel supercomputers are needed for both tasks.

For the development and optimization of molecular force fields and models, a
large number of simulation runs have to be evaluated to obtain the sensitivity of ther-
modynamic properties with respect to the model parameters. This requires both an
efficient work flow and, obviously, even more computational resources. The present
work discusses the force field development for electrolytes regarding thermody-
namic properties of their solutions. Furthermore, simulation results for the volume
transition of hydrogels in solution containing electrolytes are presented. Both ap-
plications are of interest for engineering. It is shown that the properties of these
complex systems can be reasonably predicted by molecular simulation.

2 Development of Force Fields for Alkali and Halogen Ions
in Aqueous Solution

2.1 Outline

The simulation of electrolyte systems is computationally very expensive due to the
long-range interactions, which have to be taken into account by suitable algorithms.
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Examples of such algorithms are the classical Ewald summation [1] and its deriva-
tives like particle mesh Ewald summation [2] or the particle particle/particle mesh
method [3].

Early efforts in this research area were mainly directed to the development of ion
force fields, which were capable of reproducing static structural properties of solu-
tions [4–6]. Recently, however, these models have been proven to be too inaccurate
for the prediction of basic thermodynamic properties [7, 8]. Since the models were
parameterized solely at short distances, long distance effects are underestimated.
These effects can be seen in particular in the density and the activity of electrolyte
solutions.

In the present work new atomistic models for alkali and halogen ions are pre-
sented, which accurately describe not only structural properties of aqueous elec-
trolyte solutions but also basic thermodynamic properties like their density. The
main focus of the model development is placed on transferability, i.e. the ion mod-
els are intended to describe solution properties independently of the cation/anion
combination.

The ions were modeled as Lennard-Jones (LJ) spheres with superimposed charges
of ±1 in units of elementary charges, located in the center of mass. For the solvent
water, the SPC/E model [9] was used, which consists of one LJ site and three point
charges.

2.2 Simulation Details

All simulations in Sect. 2 were performed using the Monte-Carlo technique in the
isobaric-isothermal (N pT ) ensemble at 20◦C and 0.1 MPa. The simulation volume
contained a total of 1000 molecules and ions, respectively. The electrostatic long-
range interactions were calculated using the Ewald summation with an Ewald pa-
rameter κ of 5.6/L, where L denotes the length of the cubic simulation volume.
The dispersive and repulsive long-range contributions were approximated using the
assumption of an homogeneous fluid beyond the cut-off distance of 11.9 Å. The
simulation program employed was an extended version of ms2 [10].

2.3 Solvent Model and Reduced Properties

For the calculation of aqueous electrolyte solutions, the model for water is cru-
cial, since it represents the largest fraction in the mixture. The SPC/E [9] water
model was employed, which reproduces the density and other thermodynamic prop-
erties at chosen conditions in good agreement with experimental data (ρSPC/E(T =
20◦C, p = 0.1 MPa) = 999.5 g/l). To minimize the influence of errors in the solvent
model on the parameterization of the ion force fields, the reduced density ˜ρ of the
aqueous solution was chosen as objective function, which is defined as the fraction
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Fig. 1 Reduced density ˜ρ as a function of sodium chloride mass fraction. The line indicates the
experimental values [11], while the symbols represent simulation results using varying ion force
fields [12–15]

of the density of the electrolyte solution ρES and the density of the pure solvent ρS

at the same temperature and pressure

˜ρ =
ρES

ρS
. (1)

Figure 1 shows a typical plot of the reduced density of an aqueous electrolyte so-
lution as a function of salt mass fraction using sodium chloride as an example. The
dependence of ˜ρ with xm is almost linear. It can also be seen from Fig. 1 that elec-
trolyte force fields from the literature predict this linear correlation, but with a wrong
slope. Note also that the solvent activity (or activity coefficient) can be regarded as
a normalized property. However, a similar approach fails for properties like the ion
self-diffusion coefficient.

2.4 Ion Force Field

A global parameterization strategy was used in the present study. Due to the sim-
ple model for the ions, the overall parameter space is small. It contains the two
LJ parameters σ and ε for each ion. The position and magnitude of the charges
are constant. In a preliminary analysis, the sensitivity of the reduced density on the
Lennard-Jones parameters was evaluated. It shows that the influence of the LJ en-
ergy parameter ε on ˜ρ is very small. Therefore, the σ parameters were determined
by a fit to the reduced density, while the ε parameters were set here to a constant
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value, i.e. 200 K for sodium and chloride, based on results of a study on the water
activity in the electrolyte solution, which is not described in detail here.

The objective function of the optimization used to determine the LJ σ parameters
is the slope of the reduced density ˜ρ with increasing salt mass fraction at x(m) → 0

(

d˜ρ
dx(m)

)

x(m)→0
=

(

d˜ρ
dx(m) (σanion,σcation)

)

x(m)→0
. (2)

In molecular simulations, these slopes were systematically derived for varying val-
ues of σanion and σcation. The data were smoothed by a two dimensional polynomial
fit. The ion parameters for all alkali and halogen ions were chosen such that the
sum of the squared deviations between the functional fit and the experimental data
is minimized.

2.5 Results

New atomistic models for alkali and halogen ions were determined that describe
the reduced density of the aqueous electrolyte solution in good agreement with ex-
periments. As an example the force field for sodium chloride is shown in Table 1.
Figure 1 shows the excellent agreement between the simulation using the new model
and the experimental results.

The new atomistic models for alkali and halogen ions were investigated regarding
the representation of structural properties of aqueous solution. Radial distribution
functions gi j(r) were used for the characterization which are defined by

gi j(r) =
ρ j(r)
ρ j,bulk

. (3)

Here ρ j(r) is the density of component j as a function of the distance r between two
ions of component i and j, respectively, and ρ j,bulk is the number density of compo-
nent j in the bulk phase. For the characterization of aqueous electrolyte solutions,
the radial distribution function of water around the ions is of particular interest. In
this case, water is represented by the position of the oxygen atom. For a solution of
sodium chloride in water, gi,H2O(r) is shown in Fig. 2.

The locations of the first maximum and minimum, respectively, for both ions are
in good agreement with experimental measurements [16], as shown in Table 2. The
hydration shell of the cation is more attached to the ion than of the anion, which is
represented by the height of the first peak in the distribution function.

Table 1 Force field of sodium chloride

Ion σ/Å ε/K
Na+ 1.88 200
Cl− 4.41 200
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Fig. 2 Radial distribution function gi,H2O(r) of the solvent water around the sodium cation and
chloride anion, respectively, at T = 20◦C and p = 0.1 MPa

Table 2 Location of the first maximum rmax and minimum rmin of the radial distribution func-
tion gi,H2O(r) for an aqueous sodium chloride solution. The simulative results are compared to
experimental data from the literature [16]

Ion i rSim
max/Å rExp

max/Å rSim
min/Å rExp

min/Å
Na+ 2.2 2.3 3.0 3.0
Cl− 3.4 3.3 3.9 4.0

Table 3 Hydration number n of Na+ and Cl− in aqueous solution. The simulative results are
compared to experimental data from the literature [16]

Ion nSim nExp

Na+ 5.6 5–6
Cl− 7.5 7–8

The attraction of the solvent to the cation is also visible in the hydration number
around the ions, which describes the number of solvent molecules in the closest
vicinity to the solute i and is defined by

ni,H2O = 4πρH2O

∫ rmin

0
r2gi,H2O(r)dr. (4)

Here, ρi defines the number density of component i and rmin the distance up to which
the hydration number is calculated. For the first shell, the value of rmin is chosen to
be the distance of the first minimum in the radial distribution function. For sodium
chloride for example, the calculation of hydration numbers reproduces experimental
results in good agreement, cf. Table 3.
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2.6 Computational Demands

Typical simulations to generate data points for the studies discussed in Sect. 2 were
carried out on 16 CPUs running for 72 hours. For the prediction of other thermody-
namic data like activity coefficients, up to 32 CPUs running for 72 hours depending
on the system are required. For these simulations a virtual ram of 216 MB was
required.

3 Self-diffusion Coefficients of Solutes in Electrolyte Systems

3.1 Outline

The self-diffusion coefficient is, in comparison to the density, an individual property
of the different solute species and the solvent in electrolyte systems. Self-diffusion
coefficients of anions and cations in aqueous solution are experimentally accessible
and numerous experimental data are available in the literature [17, 18]. Therefore, it
is worthwhile trying to fit model parameters of ion force fields to self-diffusion coef-
ficient data. As a suitable strategy for determining the size parameters σ is available
(cf. Sect. 2), the question may be raised whether self-diffusion coefficient data are
useful for determining the energy parameters ε .

In molecular simulations, the self-diffusion coefficient is usually determined by
time and memory consuming methods, which require simulations of large sys-
tems. Examples for such methods in equilibrium molecular dynamics are the mean
square displacement [19] and the Green-Kubo formalism [20, 21]. In this formal-
ism, the self-diffusion coefficient is related to the time integral of the velocity auto-
correlation function. The calculation of self-diffusion coefficients of solutes in elec-
trolyte systems are computationally expensive due to additional time consuming al-
gorithms (e.g. Ewald summation [1]) that allow for a truncation of ionic interactions
in molecular simulations.

In aqueous solution, the cations and anions are surrounded by a shell of strongly
bonded water molecules (hydration shell). These hydrated ions diffuse within a bulk
fluid, which is itself also highly structured. Therefore, the mobility and accordingly
the self-diffusion coefficient of ions is strongly related to the structure of the water
molecules around the ions [22].

3.2 Methods

The investigated solution consisted of sodium and chloride ions as solutes and ex-
plicit water as solvent. The ions were modeled as Lennard-Jones spheres with a
central charge. Size parameters σ for different ion force fields were determined as



Atomistic Simulations of Electrolyte Solutions and Hydrogels 191

discussed in Sect. 2. The energy parameter ε was modified in a range of 50 to 250 K.
Water models were taken from the literature.

First, the density of the solution was determined in an isobaric-isothermal (NpT)
molecular dynamics (MD) simulation at a desired temperature and pressure. Then,
the velocity auto-correlation function and, according to the Green-Kubo formalism
[20, 21], the self-diffusion coefficients were determined in an isochoric-isothermal
(NVT) MD simulation at this temperature and density. The sampling length of the
velocity auto-correlation function was set to 11 ps and the time span between the ori-
gin of two auto-correlation functions was 0.06 ps. The separation between the time
origins was chosen such that all autocorrelation functions have decayed at least to
1/e of their normalized value. For both NpT and NVT simulations, the molecular dy-
namics unit cell with periodic boundary condition included 4420 water molecules,
40 sodium and 40 chloride ions. The long-range charge-charge interactions were
calculated using Ewald summation [1]. The simulation program employed was an
extended version of ms2 [10], which is developed by our group.

3.3 Results

The self-diffusion coefficients of anions and cations determined in molecular simu-
lation largely depend on the used molecular model of water, as the mobility of the
ions is influenced by the hydration shell and the structure of the surrounding water.

3.3.1 Self-diffusion Coefficient of Water Models

The accuracy of the estimated self-diffusion coefficients of pure water for different
water models is verified with respect to experimental data [23]. The self-diffusion
coefficients were determined with the Green-Kubo formalism [20, 21] in molecular
dynamics simulations at a temperature of 25◦C and a pressure of 0.1 MPa. For this
study, three commonly used rigid nonpolarizable molecular water models of united-
atom type, namely SPC/E [9], TIP4P [24] and TIP4P/2005 [25], were chosen.

The determined self-diffusion coefficients of the different water models vary over
a wide range, cf. Table 4. For TIP4P/2005, the self-diffusion coefficient of pure
water is in good agreement with the experimental value. In contrast, both the SPC/E
and the TIP4P model overestimate the mobility of water molecules in pure water.
The obtained values for the self-diffusion coefficient are in good agreement with the
results published by other authors [26].

Table 4 Self-diffusion coefficients of pure water at 25◦C and 0.1 MPa of different molecular water
models. The number in parenthesis indicates the uncertainty of the last digit

Model SPC/E TIP4P TIP4P/2005 Experiment
Dw [m2 s−1] 26.2 (1) 36.7 (2) 21.9 (1) 22.3 (−)
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3.3.2 Model Development

For fitting the energy parameter ε of the ion force fields to experimental self-
diffusion coefficients of anions and cations in aqueous solution, the influence of
ε on the determined self-diffusion coefficients in molecular simulations was inves-
tigated. In this study, the above mentioned three water models were used.

However, it turned out that the number for the energetic parameter ε has no sig-
nificant influence on the self-diffusion coefficient. This study is not discussed here in
detail. In the following, ε = 200 K is used. The results for both sodium and chloride
are shown in Fig. 3.

As can be seen in Table 4 and Fig. 3, there is no correlation between the ac-
curacy of the determined self-diffusion coefficient of pure water and the accuracy
of the estimation of ion mobility for the different water models. For example, the
TIP4P model significantly overestimates the self-diffusion coefficient of pure water,
whereas the simulation results for the self-diffusion coefficients of the sodium and
the chloride ion are in fair agreement with experimental data (deviation for sodium
of 4%; deviation for chloride of 18%).

All water models overestimate the interaction between the water molecules in
the hydration shell, the sodium ion and the bulk fluid. Hence, the cation mobility is
too low. The same is true for the chloride ion only for SPC/E and TIP4P/2005 water
models, whereas the TIP4P underestimates the interaction in the hydration shell.

Fig. 3 Self-diffusion coefficient of sodium (DNa) and chloride (DCl) in aqueous solution at 25◦C
and 0.1 MPa for different water models. The energy parameter ε for both sodium and chloride
force fields was set to 200 K. Experimental data for sodium [17] and chloride [18] were taken from
the literature
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3.4 Computational Demands

All molecular simulations in Sect. 3 were carried out with the MPI based molecular
simulation program ms2, which is developed in our group. The total computing time
for determining self-diffusion coefficients of ions in electrolyte systems was 216
hours on 36 CPUs (72 hours for the NpT run and 144 hours for the NVT run). These
simulations require large systems as the accuracy of the Green-Kubo formalism for
ions increases with increasing number of solutes and, at the same time, an infinite
dilution is aspired. For these simulation a maximum virtual memory of 1.76 GB was
used.

4 Hydrogels in Electrolyte Solutions

4.1 Outline

Hydrogels are three-dimensional hydrophilic polymer networks. Their most char-
acteristic property is their swelling in aqueous solutions by absorbing the solvent,
which is influenced by various factors. Hydrogels can be used in many applications
like e.g. superabsorbers such as in diapers [27] and contact lenses [28]. To fully
exploit the potential of hydrogels in all these applications, it is important to under-
stand, describe and predict their swelling behavior. The hydrogel which is studied
in the present work is built up of poly(N-isopropylacrylamide) (PNIPAAm) cross-
linked with N,N’-methylenebisacrylamide (MBA). PNIPAAm is one of the most
extensively studied hydrogels in the scientific literature and is mainly used in bio-
engineering applications [29]. The degree of swelling in equilibrium of PNIPAAm
is significantly influenced by many factors [30–33]. On the one hand, the swelling
depends on the structure of the hydrogel itself, like the type of the monomer, but
also the amount and type of cross-linker and of co-monomers. On the other hand,
the environment conditions like temperature, type of solvent, solvent composition,
electrolyte concentration or pH-value of the solvent influence the swelling. Varying
these factors, the hydrogel typically shows a region where it is swollen and a region
where it is collapsed. In between those two regions lies the region of volume tran-
sition. The solvent composition which is characteristic for that transition is called
Θ -solvent here. The Θ -solvent mainly depends on the environmental factors and the
nature of the polymer chain but not on the amount of cross-linker.

For the quantitative description of the swelling of hydrogels, various types of
models are used [34]. It is normally not possible to quantitatively predict the
swelling of hydrogels or its dependence on factors the models were not adjusted to.
With molecular simulation it is possible to predict the swelling of different hydro-
gels upon varying any environmental factor, as was shown in a previous study [35].

In the present work, the swelling of PNIPAAm hydrogel is studied with atom-
istic molecular dynamics simulation. The results for the Θ -solvent are compared to
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experimental data of PNIPAAm hydrogel as a function of the temperature in water
[36]. The experimental data shows that the Θ -solvent of PNIPAAm in different elec-
trolyte solutions follows the Hofmeister series. For this study the electrolyte sodium
chloride (NaCl) was considered.

4.2 Models

For the molecular dynamics simulations of PNIPAAm in aqueous solutions, the
OPLS-AA force field [37, 38] was employed to describe PNIPAAm. It was com-
bined with the SPC/E water model [9]. In previous studies, it was shown that this
combination allows predicting the volume transition of PNIPAAm in water as func-
tion of the temperature [35]. Different NaCl models from the literature were used
and compared to the NaCl model developed in this work. The used electrolyte mod-
els from the literature are GROMOS-96 53A6 (G53A6) [39] and KBFF [40].

4.3 Simulation Details

Molecular simulations of PNIPAAm single chains were carried out with version
4.0.5 of the GROMACS simulation package [41, 42]. Simulations with PNIPAAm
in aqueous NaCl solutions at 25◦C were performed in order to find the best NaCl
model for the simulation of the volume transitions of PNIPAAm in NaCl solutions.

In a previous study, it was shown that the amount of cross-linker of the hydrogel
has no significant influence on the Θ -solvent of the hydrogel and that this value is
the same as for the PNIPAAm polymer [35]. Therefore, the simulations can be per-
formed with a single PNIPAAm chain. For equilibration, single PNIPAAm chains
in water were simulated in the isobaric-isothermal ensemble (N pT ) over 1 to 5 ·107

timesteps. The pressure was 0.1 MPa and was controlled by the Berendsen baro-
stat [43], the temperature was controlled by the velocity rescaling thermostat [44]
and the timestep was 1 fs for all simulations. Newton’s equations of motion were
numerically solved with the leap frog integrator [45]. For the long-range electro-
static interactions, particle mesh Ewald [46] with a grid spacing of 1.2 Å and an
interpolation order of four was used. A cutoff radius of rc = 15 Å was assumed for
all interactions. After equilibration, 2 to 6 · 107 production time steps were carried
out with constant simulation parameters. Note that the production steps include the
conformation transition as well as the simulation of the equilibrium.

In order to analyze the results, the radius of gyration Rg was calculated

Rg =
(

Σi||ri||2mi

Σimi

)1/2

, (5)
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which characterizes the degree of stretching of the single chain, where mi is the mass
of site i and ||ri|| is the norm of the vector from site i to the center of mass of the
single chain. The radius of gyration in equilibrium was calculated as the arithmetic
mean over the last 5 · 106 time steps of the simulation together with its standard
deviation.

4.4 Results and Discussion

For the temperature of 25◦C, the hydrogel is swollen in pure water and collapsed

above the NaCl concentration x(m)
NaCl of about 0.03 g·g−1 [36]. Therefore, the sin-

gle chain should be stretched in pure water and low electrolyte concentrations and
collapsed at electrolyte concentrations above 0.03 g·g−1. Figure 4 shows the simu-
lation results as the radius of gyration over the NaCl concentration. The NaCl model
from this work and G53A6 are able to predict the Θ -solvent of PNIPAAm at a NaCl
concentration of 0.03 g·g−1. The NaCl model KBFF does not yield the fully col-
lapsed conformation. The models, that show the Θ -solvent at 0.03 g·g−1 also show
a more or less stretched single chain at electrolyte concentrations above this point.
The model with the best results here is the one from this work, for it only yields a
slightly stretched conformation of the chain at electrolyte concentrations above the
Θ -solvent.

It is therefore clearly possible to obtain qualitative predictions for the swelling
of PNIPAAm hydrogels in electrolyte solutions of NaCl by molecular simulation of

Fig. 4 Radius of gyration Rg of a PNIPAAm chain of 30 monomers in NaCl solutions of about

14,000 solvent molecules in equilibrium as a function of the NaCl concentration x(m)
NaCl for the

different NaCl models at a temperature of 25◦C. The error bars indicate the standard deviation
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a single chain. For the Θ -solvent in NaCl solutions, it was even possible to quanti-
tatively reproduce experimental data. First studies on the volume transition of PNI-
PAAm hydrogels in electrolyte solutions of sodium sulfate Na2SO4 were currently
carried out (results not shown here). By comparing the results of the two electrolyte
solutions NaCl and Na2SO4 in water, it is also possible to determine the effect of the
Hofmeister series on the solubility of PNIPAAm in aqueous electrolyte solutions.
The Hofmeister series leads to a Θ -solvent of PNIPAAm in Na2SO4 solutions at a
lower concentration than in NaCl solutions [36]. This correlation could be repro-
duced by the molecular simulations. In summary, this is an unexpectedly favorable
agreement between predictions by molecular simulation and experimental data, es-
pecially when considering that the force fields were not adjusted to any such data.

4.5 Computational Demands

All simulations presented in Sect. 4 were carried out with the MPI based molec-
ular simulation program GROMACS. The parallelization of the molecular dynam-
ics part of GROMACS is based on the eighth shell domain decomposition method
[42]. With GROMACS, typical simulation runs to determine the radius of gyration
in equilibrium employ 128 CPUs running for 24–72 hours. For these simulations
very large systems must be considered comprising typically about 58 800 interac-
tion sites. For these simulations a maximum memory of 284 MB and a maximum
virtual memory of 739 MB was used.

5 Conclusion

This work covers the development of ion force fields for describing the thermody-
namic properties of electrolyte solutions and the applications of these force fields
for predicting the volume transition of hydrogels by atomistic molecular simulations
with explicit solvent models.

The present work proves that alkali and halogen ions can be reliably modeled
by an LJ sphere with a superimposed charge located at the center of mass. The de-
veloped force fields allow predicting structural properties like the radial distribution
function and the hydration number as well as thermodynamic properties like the
density.

The self-diffusion coefficient of pure water was determined using various well
known molecular models of water. The agreement with experimental data is often
poor. Furthermore, ion self-diffusion coefficients were determined in simulations us-
ing these different water models. No correlation was observed between the accuracy
of the self-diffusion coefficients of pure water and the accuracy of the self-diffusion
coefficients of the ions. Further research effort in developing a new water model is
needed to gain accurate predictions of transport properties in aqueous electrolyte
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systems. In addition, the study shows that the self-diffusion coefficient of ions in
aqueous solutions is almost independent of the LJ energy parameter ε of the ion.

With the developed electrolyte models, it was possible to predict the volume
transition of hydrogels in electrolyte solutions qualitatively and in some cases even
quantitatively. The results also reproduce the effect of the Hofmeister series on the
swelling of hydrogels.
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XC4000 at the Steinbuch Centre for Computing in Karlsruhe (Germany) under the grant LAMO.
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