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Abstract

The surface tension is determined by molecular dynamics simulation for

the class of fluid models containing two Lennard-Jones centers and a point

quadrupole (2CLJQ). The simulations are carried out with a long range cor-

rection for elongated molecules at planar interfaces, along the whole vapor

pressure curve. The model parameters are varied systematically, covering the

parameter range of 2CLJQ models for real fluids from the literature. Vapor-

liquid equilibrium properties are obtained which agree well with literature

data for 2CLJQ models. An empirical correlation for the surface tension is

developed as a global function of the model parameters.
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1. Introduction

The two center Lennard-Jones plus quadrupole (2CLJQ) class of molec-

ular models provides a straightforward description of the intermolecular in-
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teraction in many compounds such as air components [1–7], halogens [1, 8],

refrigerants [9] and hydrocarbons [1]. For example, various 2CLJQ molecu-

lar models exist for carbon dioxide [1–3], nitrogen [1, 4–7], oxygen [1, 7] and

chlorine [1, 8]. Table 1 shows an overview of 2CLJQ molecular models for

real fluids from the literature.

[Table 1 about here.]

These molecular models are usually adjusted to bulk properties of vapor-

liquid equilibria [1–3, 6, 9] like the vapor pressure, the enthalpy of vaporiza-

tion and saturated densities, or the second virial coefficient [3]. The surface

tension of these molecular models was up to now not taken into account in

the parameterization. Nonetheless, the surface tension of 2CLJQ nitrogen

and oxygen models adjusted to vapor-liquid equilibrium bulk properties is

known to agree well with experimental data [10, 11]. However, a systematic

study on the surface tension of 2CLJQ models has not been conducted so

far. The present work closes this gap, providing detailed information on the

relation between 2CLJQ model parameters and the surface tension obtained

by molecular simulation. It can, e.g., be used for adjusting model parameters

to surface tension data.

In molecular simulation, bulk properties of fluid phases in thermody-

namic equilibrium can be computed by various methods, like Grand Equi-

librium [12], NpT plus test particle simulation [13], or the Gibbs ensemble

method [14]. The computation of interfacial properties is not possible with

these methods as no interface is present. Instead, a single simulation vol-

ume containing the liquid and the vapor phase, separated by an interface,

2



is needed. Directly sampling the interface has the consequence that because

of the heterogeneity of the system, the long range contribution of the inter-

action potential becomes more significant [15–17]. However, for numerical

reasons the interaction potential has to be cut off. The error made by this

simplification is accounted for by an asymmetrical long range correction,

which can be based on fast multipole methods [18, 19], slab based tail cor-

rections [15, 20, 21] or Ewald summation techniques [22, 23]. Even though

these methods differ considerably in their algorithms, the results in terms of

the saturated liquid density and the surface tension in systems with multi-

ple Lennard-Jones sites of the most recent versions of these approaches are

similar [20, 23].

In previous work, vapor-liquid equilibria of the 2CLJQ fluid were exa-

mined and correlated [1, 9, 24]. Additionally, transport properties of the

2CLJQ fluid were determined for model fluids [25] as well as 2CLJQ molecular

models describing real fluid behavior [26, 27]. In the present work, the surface

tension of the 2CLJQ model fluid is determined and a correlation for the

simulation data is given. These results can be used for the optimization of

molecular models.

2. Simulation

The molecular models considered in the present work consist of two iden-

tical Lennard-Jones sites, which are at a distance L apart from each other,

and a point quadrupole in the center of mass. The Lennard-Jones potential

is described by

uLJij = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (1)
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with the energy parameter ε and the size parameter σ, where rij is the dis-

tance between the two interaction sites. The quadrupole-quadrupole inter-

action is described by

uQij =
1

4πε0

3

4

QiQj

r5ij
f(ω), (2)

where ε0 is the electric constant, Qi and Qj are the quadrupole moments of

the two molecules, and f(ω) is a dimensionless angle-dependent expression

[28].

All thermodynamic properties are given here in terms of σ, ε and m, as

well as the Boltzmann constant kB and the Coulomb constant 1/4πε0, i.e.

temperature T = T ∗ ε / kB, (3)

pressure p = p∗ ε / σ3, (4)

density ρ = ρ∗ / σ3, (5)

surface tension γ = γ∗ ε / σ2. (6)

This approach effectively reduces the number of parameters of the 2CLJQ

model fluid to two: the reduced elongation L∗ = L / σ and the reduced

squared quadrupole moment Q∗2 = Q2 / (4πε0 ε σ
5). The simulation grid,

containing the parameters of the simulated fluids, is shown in Figure 1, which

also includes molecular models for real fluids from the literature [1–9]. Sim-

ulations were performed from 0.6 to 0.9 T ∗c , where T ∗c (Q∗2, L∗) is the critical

temperature estimated by an equation of state for the 2CLJQ fluid [24].

The liquid phase was situated in the center of the simulation volume and

surrounded by vapor on both sides.

[Figure 1 about here.]
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The surface tension γ was obtained from the difference between the nor-

mal and tangential contributions to the virial ΠN − ΠT, which is equivalent

to the integral over the differential pressure pN − pT

γ =
1

2A
(ΠN − ΠT) =

1

2

∫ ∞
−∞

dy (pN − pT) , (7)

where 2A denotes the surface area of the two dividing surfaces in a simulation

volume with periodic boundary conditions [21, 29].

A center-of-mass cutoff radius of 5 σ was used. Beyond the cutoff radius

a slab-based long range correction (LRC) with angle averaging was used for

the Lennard-Jones interactions [20], while the point quadrupole was assumed

to have no preferred orientation beyond the cutoff radius, which yields a

vanishing LRC contribution.

The simulations were performed with the ls1 mardyn molecular dynamics

code [30, 31] in the canonical ensemble. A number of particles of

N = 16 000 was used throughout. The equation of motion was solved by a

leapfrog integrator [32] with a time step of ∆t∗ = 0.001. The elongation of the

simulation volume normal to the interface was l∗y = 60 and the thickness of

the liquid film was l∗lf = 30, to minimize finite size effects [33]. The extension

of the simulation volume in the other spatial directions was at least l∗x = l∗z

= 20 to minimize the error due to truncating the capillary wave spectrum

[34–37]. The equilibration was conducted for 500 000 time steps and the

production runs for 2 500 000 time steps, so that highly precise simulation

results were obtained (see below). The statistical errors were estimated to be

the triple standard deviation of five block averages, each over 500 000 time

steps. The saturated densities and the vapor pressures were calculated as an

average over the respective phases excluding the interfacial region.
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3. Results and Discussion

Table 2 shows the results for the saturated liquid density ρ∗
′
, the saturated

vapor density ρ∗
′′
, the vapor pressure pS* and the surface tension γ∗ obtained

for the 30 considered parameter sets of the 2CLJQ model class.

[Table 2 about here.]

Stoll et al. [24] used the Grand Equilibrium method for the determination

of the vapor-liquid equilibria of 2CLJQ model fluids. Figures 2 and 3 show

the correlations for the saturated densities and the vapor pressure curve

from Stoll et al. [24] in comparison to the simulation results from the present

work. The deviation between the correlation and the simulation result is

consistently smaller than the simulation error (except for a single value).

[Figure 2 about here.]

[Figure 3 about here.]

The results for the surface tension of the 2CLJQ model fluids are shown

in Figure 4 for three different elongations and three different quadrupole

moments.

[Figure 4 about here.]

Correlations for the surface tension are usually given in the form

γ = A

(
1− T

Tc

)B

, (8)

which is also used here. In agreement with the theory of universal critical

scaling, a constant value of B is employed here for the correlation expression.
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The critical temperature T ∗c is calculated with the correlation of Stoll et al.

[24], and A∗ (Q∗2, L∗) is fitted adopting the approach of Stoll et al. [24]

A∗
(
Q∗2, L∗

)
= a1 +

3∑
i=1

biQ
∗2i + c1/

(
L∗2 + 0.1

)
+

3∑
i=2

diQ
∗4L∗i +

∑
i∈{2,5}

eiQ
∗4/
(
L∗i + 0.1

)
. (9)

Fitting the parameters of Eq. (9) as well as the B parameter from Eq. (8)

simultaneously to the simulation results yields the exponent B = 1.2378,

which is similar to exponents found for the pure Lennard-Jones fluid [33].

The remaining parameters of Eq. (9) are shown in Table 3. The correlation

generally agrees with the simulation data within their statistical uncertain-

ties, cf. Figures 4 and 5. The relative deviation between the simulation data

and the correlation, cf. Figure 5, increases at higher temperatures due to

fluctuations close to the critical point and the lower numerical value of the

surface tension. The relative mean deviation between the simulation results

and the correlation is 1.9 %.

[Figure 5 about here.]

[Table 3 about here.]

The correlation for the surface tension describes the increasing surface

tension for larger quadrupole moments as well as the decrease of the surface

tension with increasing elongation.

Figure 6 shows the surface tension of the 2CLJQ model fluids over the

density difference between the saturated liquid density and the saturated
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vapor density. The surface tension of a given substance only depends on the

density difference [38, 39]

γ ∝ (ρ′ − ρ′′)3B . (10)

According to Sugden [40], the prefactor for Eq. (10) is called the parachor

P , leading to

γ =

(
P
ρ′ − ρ′′
m

)3B

, (11)

where m is the molar mass. The reduced mass is m∗ = 2 here, since the mass

of the molecule is reduced by the mass of a single Lennard-Jones site. The

parachor P is only a function of the elongation

P ∗ (L∗) = α1 +
3∑

i=1

βiL
∗i, (12)

and the parameters of Eq. (12) are given in Table 4.

[Table 4 about here.]

Two major phenomena can be observed from the present simulations: An

increase in the quadrupole moment leads to an increase in both the surface

tension and the density difference, whereas increasing the elongation results

in a smaller density difference, which reduces the surface tension. These

effects are both well described by the parachor correlation given by Eq. (12).

They can be exploited during the optimization of 2CLJQ molecular models

for real fluids [41].

[Figure 6 about here.]
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4. Conclusion

In the present work, the surface tension of 30 2CLJQ model fluids was

computed by molecular dynamics simulation. A correlation for the surface

tension in dependence of the parameters of the 2CLJQ model fluid was devel-

oped. The deviation between the correlation and simulation data is within

the statistical uncertainties. The saturated densities and the vapor pressures

agree with the results from Stoll et al. [24] within the statistical uncertainties

as well. The correlation can be used to adjust 2CLJQ molecular models to

the surface tension over the whole temperature range.
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[21] J. Janeček. J. Phys. Chem. B, 110(12):6264–6269, 2006.

[22] P. J. in ’t Veld, A. E. Ismail, and G. S. Grest. J. Chem. Phys.,

127:144711, 2007.

[23] R. E. Isele-Holder, W. Mitchell, and A. E. Ismail. J. Chem. Phys.,

137:174107, 2012.

[24] J. Stoll, J. Vrabec, H. Hasse, and J. Fischer. Fluid Phase Equilib.,

179:339–362, 2001.

11



[25] G. A. Fernández, J. Vrabec, and H. Hasse. Fluid Phase Equilib., 249:120–

130, 2006.

[26] G. A. Fernández, J. Vrabec, and H. Hasse. Int. J. Thermophys., 26:1389–

1407, 2005.

[27] G. A. Fernández, J. Vrabec, and H. Hasse. Mol. Sim., 31(11):787–793,

2005.

[28] C. G. Gray and K. E. Gubbins. Theory of Molecular Fluids, Vol. 1:

Fundamentals. Clarendon Press, Oxford, 1984.

[29] J. P. R. B. Walton, D. J. Tildesley, J. S. Rowlinson, and J. R. Henderson.

Mol. Phys., 48(6):1357–1368, 1983.

[30] M. Buchholz, H.-J. Bungartz, and J. Vrabec. J. Computat. Sci.,

2(2):124–129, 2011.

[31] C. Niethammer, S. Becker, M. Bernreuther, M. Buchholz, W. Eckhardt,

A. Heinecke, S. Werth, H.-J. Bungartz, C. W. Glass, H. Hasse, J. Vrabec,

and M. Horsch. J. Chem. Theory Comput., 10(10):4455–4464, 2014.

[32] D. Fincham. Mol. Phys., 8(3-5):165–178, 1992.

[33] S. Werth, S. V. Lishchuk, M. Horsch, and H. Hasse. Physica A,

392(10):2359–2367, 2013.
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Figure 1: Reduced parameters of the simulated 2CLJQ model fluids. Open symbols denote
the model fluids studied in the present work, crosses correspond to molecular models which
represent real fluids. The numbers identify the real fluids and the authors given in Table
1.
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Table 1: Overview of 2CLJQ molecular models for real fluids from the
literature. Numbers are used for identification, cf. Figure 1.

CO2 1,2,3 C2H2 19 CO 29
N2 4,5,6,7,8 C2F6 20 R113 30
O2 9,10 C2F4 21 R114 31
Cl2 11,12 C2Cl4 22 R115 32
F2 13 Propadiene 23 R134 33
Br2 14 Propyne 24 R30B2 34
I2 15 Propylene 25 R150B2 35
CS2 16 SF6 26 R114B2 36
C2H6 17 CF4 27 R1120 37
C2H4 18 CCl4 28

Vrabec et al. [1] 1,4,9,11,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28

Möller and Fischer [2] 2
Murthy et al. [3] 3
Cheung and Powles [4] 5
Murthy et al. [5] 6
Kriebel et al. [6] 7
Bouanich [7] 8,10
Murthy et al. [8] 12
Stoll et al. [9] 29,30,31,32,33,34,35,36,37
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Table 2: Vapor-liquid equilibrium data for 2CLJQ model
fluids. The numbers in parentheses indicate the uncer-
tainties of the last decimal digits.

L∗ = 0 T ∗ pS* ρ∗
′

ρ∗
′′

γ∗

Q∗2 = 0 3.156 0.016(1) 0.8034(2) 0.0055(3) 3.79(16)
3.681 0.056(2) 0.7416(2) 0.0172(8) 2.66(12)
4.225 0.150(5) 0.6624(1) 0.0452(2) 1.53(5)
4.674 0.266(3) 0.5888(7) 0.0854(18) 0.77(6)

Q∗2 = 1 3.132 0.012(1) 0.8257(2) 0.0041(4) 4.22(5)
3.712 0.051(2) 0.7571(2) 0.0153(7) 2.91(11)
4.187 0.120(2) 0.6929(3) 0.0351(5) 1.89(9)
4.773 0.273(2) 0.5927(11) 0.0856(9) 0.77(8)

Q∗2 = 2 3.398 0.015(1) 0.8416(1) 0.0047(5) 4.48(19)
3.925 0.053(3) 0.7778(2) 0.0150(8) 3.20(12)
4.538 0.151(4) 0.6923(4) 0.0421(12) 1.80(8)
4.946 0.264(5) 0.6212(6) 0.0769(19) 0.98(9)

Q∗2 = 3 3.505 0.009(1) 0.8876(3) 0.0026(2) 5.45(15)
4.106 0.041(1) 0.8178(1) 0.0111(3) 3.86(10)
4.741 0.133(3) 0.7333(3) 0.0339(8) 2.30(6)
5.341 0.302(8) 0.6319(9) 0.0826(3) 1.01(10)

Q∗2 = 4 3.841 0.009(1) 0.9137(1) 0.0025(3) 6.06(20)
4.476 0.044(4) 0.8427(3) 0.0107(9) 4.31(11)
5.164 0.145(5) 0.7540(4) 0.0340(1) 2.54(18)
5.742 0.311(5) 0.6588(19) 0.0779(16) 1.22(19)
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L∗ = 0.2 T ∗ pS* ρ∗
′

ρ∗
′′

γ∗

Q∗2 = 0 2.589 0.011(1) 0.7108(1) 0.0044(5) 2.93(9)
3.015 0.037(1) 0.6573(3) 0.0137(3) 2.06(2)
3.441 0.095(2) 0.5955(4) 0.0345(11) 1.27(6)
3.874 0.197(3) 0.5141(6) 0.0771(16) 0.53(3)

Q∗2 = 1 2.625 0.010(1) 0.7206(1) 0.0040(3) 3.10(12)
3.07 0.037(2) 0.6639(1) 0.0136(9) 2.16(6)
3.496 0.094(2) 0.6014(3) 0.0336(9) 1.33(7)
3.941 0.202(2) 0.5174(11) 0.0780(14) 0.55(9)

Q∗2 = 2 2.722 0.009(1) 0.7433(2) 0.0034(3) 3.42(9)
3.195 0.036(2) 0.6825(1) 0.0125(1) 2.37(6)
3.659 0.099(2) 0.6140(2) 0.0338(8) 1.39(9)
4.072 0.199(3) 0.5367(9) 0.0722(21) 0.66(4)

Q∗2 = 3 2.877 0.007(1) 0.7692(1) 0.0027(2) 3.90(15)
3.393 0.035(3) 0.7038(4) 0.0113(11) 2.68(8)
3.856 0.096(1) 0.6368(4) 0.0306(6) 1.61(8)
4.318 0.210(5) 0.5520(9) 0.0713(26) 0.74(5)

Q∗2 = 4 3.054 0.006(1) 0.7973(3) 0.0020(2) 4.55(27)
3.642 0.035(2) 0.7254(2) 0.0105(6) 3.00(6)
4.103 0.094(3) 0.6609(4) 0.0275(9) 1.92(18)
4.6 0.216(3) 0.5738(8) 0.0675(20) 0.89(11)
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L∗ = 0.4 T ∗ pS* ρ∗
′

ρ∗
′′

γ∗

Q∗2 = 0 1.893 0.005(0) 0.5807(6) 0.0030(1) 1.88(8)
2.232 0.022(2) 0.5335(2) 0.0111(9) 1.31(7)
2.536 0.055(2) 0.4836(2) 0.0274(10) 0.80(5)
2.858 0.118(1) 0.4144(10) 0.0633(15) 0.33(5)

Q∗2 = 1 1.925 0.005(1) 0.5866(2) 0.0029(5) 1.96(6)
2.239 0.020(1) 0.5422(1) 0.0100(7) 1.39(6)
2.573 0.055(2) 0.4873(2) 0.0270(13) 0.81(5)
2.869 0.113(1) 0.4248(6) 0.0591(13) 0.37(4)

Q∗2 = 2 1.999 0.005(1) 0.6004(4) 0.0026(4) 2.15(6)
2.318 0.019(1) 0.5550(2) 0.0092(3) 1.53(4)
2.663 0.056(2) 0.4983(4) 0.0262(13) 0.90(4)
2.987 0.120(2) 0.4293(7) 0.0607(15) 0.37(3)

Q∗2 = 3 2.096 0.004(0) 0.6193(4) 0.0021(3) 2.41(9)
2.447 0.019(1) 0.5696(4) 0.0086(6) 1.69(14)
2.794 0.056(1) 0.5130(3) 0.0245(7) 1.00(4)
3.134 0.124(3) 0.4422(8) 0.0589(15) 0.43(2)

Q∗2 = 4 2.213 0.003(1) 0.6395(4) 0.0016(3) 2.75(13)
2.599 0.018(1) 0.5862(2) 0.0077(4) 1.87(10)
2.972 0.057(2) 0.5268(4) 0.0235(11) 1.12(5)
3.35 0.137(2) 0.4487(7) 0.0614(23) 0.45(3)
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L∗ = 0.505 T ∗ pS* ρ∗
′

ρ∗
′′

γ∗

Q∗2 = 0 1.638 0.004(0) 0.5288(8) 0.0025(3) 1.57(5)
1.913 0.015(1) 0.4888(3) 0.0087(4) 1.10(8)
2.19 0.041(1) 0.4415(6) 0.0232(9) 0.67(4)
2.476 0.091(1) 0.3774(10) 0.0571(7) 0.27(3)

Q∗2 = 1 1.652 0.003(0) 0.5360(4) 0.0022(2) 1.65(4)
1.924 0.014(1) 0.4954(11) 0.0079(3) 1.16(3)
2.187 0.036(1) 0.4516(4) 0.0203(8) 0.75(6)
2.509 0.092(1) 0.3806(9) 0.0558(11) 0.28(2)

Q∗2 = 2 1.728 0.003(1) 0.5467(5) 0.0021(3) 1.77(8)
2.029 0.016(1) 0.5015(1) 0.0087(5) 1.21(7)
2.288 0.040(1) 0.4567(6) 0.0213(8) 0.76(6)
2.584 0.091(1) 0.3913(9) 0.0530(13) 0.33(4)

Q∗2 = 3 1.813 0.003(0) 0.5629(4) 0.0017(3) 1.99(7)
2.102 0.013(1) 0.5196(8) 0.0069(5) 1.38(2)
2.393 0.038(1) 0.4708(4) 0.0195(5) 0.86(5)
2.692 0.091(1) 0.4068(4) 0.0494(15) 0.37(3)

Q∗2 = 4 1.922 0.003(1) 0.5793(4) 0.0015(3) 2.22(11)
2.252 0.014(1) 0.5311(2) 0.0069(5) 1.51(7)
2.541 0.040(1) 0.4828(4) 0.0189(7) 0.96(6)
2.885 0.102(3) 0.4090(5) 0.0525(24) 0.37(1)
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L∗ = 0.6 T ∗ pS* ρ∗
′

ρ∗
′′

γ∗

Q∗2 = 0 1.475 0.003(1) 0.4892(3) 0.0022(5) 1.31(3)
1.726 0.013(0) 0.4508(2) 0.0082(4) 0.92(5)
1.948 0.031(1) 0.4111(3) 0.0199(7) 0.60(1)
2.211 0.073(0) 0.3498(6) 0.0505(5) 0.24(2)

Q∗2 = 1 1.49 0.003(0) 0.4958(3) 0.0020(3) 1.40(4)
1.731 0.011(1) 0.4588(1) 0.0073(3) 1.01(4)
2.011 0.036(2) 0.4084(3) 0.0224(13) 0.56(3)
2.233 0.072(2) 0.3562(7) 0.0485(19) 0.27(3)

Q∗2 = 2 1.552 0.003(0) 0.5070(3) 0.0019(2) 1.52(5)
1.81 0.012(1) 0.4660(9) 0.0072(5) 1.05(6)
2.08 0.036(1) 0.4177(3) 0.0213(5) 0.61(6)
2.314 0.074(1) 0.3627(8) 0.0481(9) 0.28(2)

Q∗2 = 3 1.61 0.002(0) 0.5248(3) 0.0013(2) 1.76(9)
1.879 0.010(1) 0.4829(4) 0.0058(4) 1.21(5)
2.137 0.030(1) 0.4378(3) 0.0167(4) 0.76(7)
2.435 0.079(1) 0.3705(8) 0.0484(11) 0.30(5)

Q∗2 = 4 1.725 0.002(0) 0.5372(1) 0.0012(2) 1.90(7)
2.023 0.011(1) 0.4912(7) 0.0061(5) 1.29(5)
2.284 0.033(1) 0.4460(4) 0.0173(9) 0.82(3)
2.608 0.089(1) 0.3719(3) 0.0522(14) 0.29(3)
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L∗ = 0.8 T ∗ pS* ρ∗
′

ρ∗
′′

γ∗

Q∗2 = 0 1.234 0.002(0) 0.4293(2) 0.0018(3) 1.03(2)
1.426 0.008(0) 0.3968(6) 0.0062(3) 0.73(2)
1.632 0.023(1) 0.3574(5) 0.0174(9) 0.44(3)
1.856 0.055(1) 0.2993(2) 0.0464(16) 0.16(1)

Q∗2 = 1 1.246 0.002(0) 0.4380(2) 0.0015(2) 1.11(4)
1.458 0.008(1) 0.4020(6) 0.0060(5) 0.76(3)
1.686 0.025(1) 0.3577(5) 0.0187(12) 0.44(2)
1.885 0.055(1) 0.3061(10) 0.0448(9) 0.18(4)

Q∗2 = 2 1.308 0.002(0) 0.4490(3) 0.0013(1) 1.21(5)
1.514 0.007(0) 0.4138(5) 0.0055(2) 0.86(5)
1.712 0.021(1) 0.3760(3) 0.0149(7) 0.54(4)
1.933 0.051(1) 0.3220(4) 0.0388(10) 0.23(2)

Q∗2 = 3 1.352 0.001(0) 0.4675(3) 0.0009(3) 1.39(11)
1.579 0.006(1) 0.4296(4) 0.0043(6) 0.97(5)
1.801 0.021(1) 0.3880(2) 0.0136(7) 0.61(6)
2.045 0.055(1) 0.3290(7) 0.0394(6) 0.25(3)

Q∗2 = 4 1.447 0.001(0) 0.4796(2) 0.0008(2) 1.54(8)
1.674 0.006(1) 0.4430(3) 0.0039(4) 1.09(3)
1.914 0.021(1) 0.3992(2) 0.0130(7) 0.68(1)
2.187 0.060(1) 0.3338(3) 0.0406(10) 0.25(1)

26



Table 3: Fit parameters for A∗ from Eq. (9), correlated to the present
simulation results.

a1 1.81404 d2 1.15865
d3 -7.74845 · 10−1

b1 1.43624 · 10−1

b2 -3.66120 · 10−1 e2 6.38307 · 10−2

b3 9.70532 · 10−3 e5 1.66285 · 10−2

c1 1.03576
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Table 4: Fit parameters for P ∗ from Eq. (12), correlated to the present
simulation results.

α1 1.80157

β1 2.55606 · 10−1

β2 1.39008
β3 -1.05375
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