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Abstract

Molecular models of real fluids are validated by comparing the vapour-liquid surface tension from molecular
dynamics (MD) simulation to correlations of experimental data. The considered molecular models consist
of up to 28 interaction sites, including Lennard-Jones sites, point charges, dipoles, and quadrupoles. They
represent 33 real fluids, such as ethylene oxide, sulfur dioxide, phosgene, benzene, ammonia, formaldehyde,
methanol, and water, and were adjusted to reproduce the saturated liquid density, the vapour pressure,
and the enthalpy of vaporization. The models were not adjusted to interfacial properties, however, so that
the present MD simulations are a test of model predictions. It is found that all of the considered models
overestimate the surface tension. In most cases, however, the relative deviation between the simulation
results and correlations to experimental data is smaller than 20 %. This observation corroborates the
outcome of previous studies on the surface tension of two-centre Lennard-Jones plus point quadrupole
(2CLJQ) and two-centre Lennard-Jones plus point dipole (2CLJD) fluid models, where an overestimation
of the order of 10 to 20 % was found.
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1. Introduction

Interfacial properties are important for many applications in process engineering, including processes
like absorption, wetting, nucleation, cavitation, and foaming. Experimental data on the surface tension are
available for pure fluids, but the temperature range is usually limited to ambient conditions [1, 2]. Hence,
it is desirable to have models which allow predicting interfacial properties of pure fluids and mixtures over
a wide temperature and pressure range. Molecular modelling and simulation can be used for this purpose if
the underlying force fields are accurate [3].

Molecular models for many low-molecular fluids were developed in previous work of our group [4–15] and
recent work by Vrabec and co-workers [11–21]. The molecular model parameters were adjusted to describe
the saturated liquid density, the vapour pressure, and the enthalpy of vaporization, which they do well.
These models were also used to predict transport properties, yielding good results for the shear viscosity,
the thermal conductivity, and self-diffusion coefficients of pure fluids [15, 16, 20–22] and mixtures [22–26].
Several fluid models discussed in the present work have recently been used to develop fundamental equations
of state based on molecular simulation as well as experimental data, i.e. the models for ethylene oxide [27],
phosgene [28], hexamethyldisiloxane [20], and octamethylcyclotetrasiloxane [21]. The surface tension was
not part of the parameterization and is thus strictly predictive.

In previous work, systematic evaluations of the surface tension of the two-centre Lennard-Jones plus
point quadrupole (2CLJQ) and the two-centre Lennard-Jones plus point dipole (2CLJD) molecular model
classes were conducted [29, 30]. These models, on average, overestimate the surface tension by about 20 %
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and 12 %, respectively [30, 31]. Other molecular models which have been adjusted to bulk properties, but
not to interfacial properties, exhibit similar deviations [32–40].

In the present work, the existing multi-site models are used as they are. No parameters are changed.
By molecular dynamics (MD) simulation, predictions of interfacial properties from bulk properties are
obtained. Used in this way, molecular modelling can be compared to other approaches for predicting the
surface tension from bulk data, such as phenomenological parachor correlations [41–44], corresponding-states
or critical-scaling expressions [44, 45], which are also phenomenological correlations, and other molecular
methods, e.g. square gradient theory [46] and density functional theory [47, 48] on the basis of molecular
equations of state [49–52].

In the present work, bulk and interfacial properties of real fluids are determined simultaneously from
heterogeneous MD simulations. The simulation results are compared with correlations to experimental data,
where available.

2. Molecular simulation

The molecular models discussed in the present work [4–21] are internally rigid and consist of Lennard-
Jones (LJ) sites with superimposed electrostatics. The total potential energy is given by
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where ǫijab and σijab are the LJ energy and size parameters, rijab and rijcd are site-site distances, qic, qjd,
µic, µjd, Qic, and Qjd are the magnitudes of the electrostatic interactions, i.e. the point charges, dipole and
quadrupole moments, and the functions fk(ωi, ωj) represent dimensionless angle-dependent expressions in
terms of the orientations ωi and ωj [53].

Thermodynamic properties in heterogeneous systems are very sensitive to a truncation of the inter-
molecular potential [39, 54–59]. For dispersive interactions, like the LJ potential, various long range cor-
rection (LRC) approaches exist which are known to be accurate for planar fluid interfaces [59–67]. The
simulations in the present work use slab-based LRC techniques [65–67]. For polar interactions, occasionally
even for dispersive interactions [61, 62], LRCs based on Ewald summation are typically employed for the
simulation of vapour-liquid interfaces [68–71]. However, a slab-based LRC developed in previous work [57],
which evaluates an integral over the density profile, can be used with a high computational efficency both for
non-polar and polar molecular models. In terms of the thermodynamic results, the different methods deliver
a similar degree of accuracy for the 2CLJD fluid [30, 70, 71]. Therefore, the slab-based LRC technique is
employed here both for dipolar electrostatic interactions and for dispersion. A cutoff radius of 17.5 Å is used
(cf. Supplementary Information), and the LRC contribution expressions which are employed in the present
work are known to be robust even down to significantly smaller cutoff radii [57].

For the present series of MD simulations, systems were considered where the vapour and liquid phases
coexist with each other in direct contact, employing periodic boundary conditions, so that there are two
vapour-liquid interfaces which are oriented perpendicular to the y axis. The interfacial tension was computed
from the deviation between the normal and the tangential diagonal components of the overall pressure tensor
[72, 73], i.e. the mechanical route

γ =
1

2

∫ ∞

−∞
dy (pN − pT) . (2)
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Table 1: Molecular models discussed in the present work. The deviations δρ′ and δps are taken from the referenced publications,
and δγ is the root mean square relative deviation between predictions by the present MD simulations and DIPPR correlations to
experimental data [1], determined in the present work. For all considered fluids, the molecular models overestimate γ on average.

Name Formula CAS RN # Model interaction sites δρ′ δps δγ Source
Acetonitrile C2H3N 75-05-8 3 LJ + dipole 0.1 4.7 51.7 Deublein et al. [12]
Cyclohexane C6H12 110-82-7 6 LJ 0.3 1.7 10.8 Merker et al. [13]
Cyclohexanone C6H10O 108-94-1 7 LJ + dipole 0.9 2.7 26.0 Merker et al. [13]
Cyclohexanol C6H10OH 108-93-0 7 LJ + 3 charges 0.2 3.0 28.3 Merker et al. [15]
Ethylene oxide C2H4O 75-21-8 3 LJ + dipole 0.4 1.5 16.6 Eckl et al. [7]
Isobutane C4H10 75-28-5 4 LJ + dipole + quadrupole 0.6 4.2 12.5 Eckl et al. [8]
Formaldehyde CH2O 50-00-0 2 LJ + dipole 0.9 4.3 - Eckl et al. [8]
Dimethyl ether C2H6O 115-10-6 3 LJ + dipole 0.4 2.6 18.9 Eckl et al. [8]
Sulfur dioxide SO2 7446-09-5 3 LJ + dipole + quadrupole 0.9 4.0 3.4 Eckl et al. [8]
Dimethyl sulfide C2H6S 75-18-3 3 LJ + dipole + 2 quadrupoles 0.7 4.0 18.1 Eckl et al. [8]
Thiophene C4H10 110-02-1 5 LJ + dipole + quadrupole 1.2 3.8 22.4 Eckl et al. [8]
Hydrogen cyanide HCN 74-90-8 2 LJ + dipole + quadrupole 1.0 7.2 51.9 Eckl et al. [8]
Nitromethane CH3NO2 75-52-5 4 LJ + dipole + quadrupole 0.2 18.7 31.5 Eckl et al. [8]
Phosgene COCl2 75-44-5 4 LJ + dipole + quadrupole 0.5 2.1 17.2 Huang et al. [11]
Benzene C6H6 71-43-2 6 LJ + 6 quadrupoles 0.4 3.4 11.9 Huang et al. [11]
Chlorobenzene C6H5Cl 108-90-7 7 LJ + dipole + 5 quadrupoles 0.9 5.0 17.8 Huang et al. [11]
Ortho-dichlorobenzene C6H4Cl2 95-50-1 8 LJ + dipole + 4 quadrupoles 0.5 6.4 34.3 Huang et al. [11]
Cyanogen chloride NCCl 506-77-4 3 LJ + dipole + quadrupole 0.3 2.1 15.3 Miroshnichenko et al. [18]
Cyanogen C2N2 460-19-5 4 LJ + quadrupole 0.6 13.0 2.5 Miroshnichenko et al. [18]
Heptafluoropropane (R227ea) C3HF7 431-89-0 10 LJ + dipole + quadrupole 1.0 1.0 7.2 Eckl et al. [4]
Ammonia NH3 7664-41-7 LJ + 4 charges 0.7 1.6 36.7 Eckl et al. [9]
Formic acid CH2O2 64-18-6 3 LJ + 4 charges 0.8 5.1 9.5 Schnabel et al. [5]
Methanol CH3OH 67-56-1 2 LJ + 3 charges 0.6 1.1 35.3 Schnabel et al. [6]
Dimethylamine C2H7N 124-40-3 3 LJ + 3 charges 0.4 6.2 28.7 Schnabel et al. [10]
Ethylene glycol C2H6O2 107-21-1 4 LJ + 6 charges 0.8 4.8 32.6 Huang et al. [14]
Water H2O 7732-18-5 LJ + 3 charges 1.1 7.2 30.7 Huang et al. [14]
Hydrazine N2H4 302-01-2 2 LJ + 6 charges 0.5 7.6 29.2 Elts et al. [16]
Methylhydrazine CH6N2 60-34-4 3 LJ + 3 charges 0.2 7.0 — Elts et al. [16]
1,1-Dimethylhydrazine C2H8N2 57-14-7 4 LJ + 3 charges 1.3 3.7 — Elts et al. [16]
Ethyl acetate C4H8O2 141-78-6 6 LJ + 5 charges 0.1 4.6 10.3 Eckelsbach et al. [19]
Decafluorobutane C4F10 355-25-9 14 LJ + 14 charges 0.5 3.5 10.3 Köster et al. [17]
Hexamethyldisiloxane C6H18OSi2 107-46-0 9 LJ + 3 charges 0.5 5.0 12.9 Thol et al. [20]
Octamethylcyclotetrasiloxane C8H24O2Si4 556-67-2 16 LJ + 8 charges 0.5 6.0 10.5 Thol et al. [21]

Thereby, the normal pressure pN is given by the y component of the diagonal of the pressure tensor, and
the tangential pressure pT is determined by averaging over the x and z components of the diagonal of
the pressure tensor. The simulations were performed with the MD code ls1 mardyn [74] in the canonical
ensemble with N = 16 000 molecules. Further details on the MD simulations are given in the Supplementary
Information.

Table 2: Molecular simulation results for the vapour-liquid equi-
librium of the pure components from the present work. The num-
bers in parentheses indicate the statistical uncertainties of the last
decimal digits.

T ps ρ
′

ρ
′′

γ
K MPa mol l−1 mol l−1 mN m−1

Acetonitrile
300 0.005(4) 18.885(1) 0.002(1) 41.9(15)
370 0.137(38) 17.013(20) 0.053(12) 27.1(6)
440 0.839(90) 14.810(21) 0.307(58) 15.7(30)
510 2.72(14) 11.84(9) 1.09(15) 5.9(3)
Cyclohexane
280 0.008(6) 9.355(3) 0.003(1) 29.2(12)
335 0.049(8) 8.750(4) 0.017(3) 22.3(13)
390 0.270(33) 8.093(3) 0.090(9) 15.5(10)
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445 0.855(34) 7.325(13) 0.273(11) 9.5(7)
510 2.387(93) 6.117(26) 0.834(41) 3.5(4)
Cyclohexanone
250 0.000(0) 9.902(8) 0.000(0) 50.6(38)
315 0.002(2) 9.327(4) 0.001(1) 40.5(12)
380 0.020(6) 8.741(5) 0.006(1) 30.8(21)
445 0.148(22) 8.118(11) 0.042(5) 22.3(13)
510 0.558(37) 7.423(14) 0.146(9) 14.8(6)
Cyclohexanol
300 0.000(0) 9.700(22) 0.000(0) 40.3(62)
375 0.009(7) 9.028(4) 0.003(1) 32.0(13)
450 0.122(20) 8.277(3) 0.034(8) 22.9(4)
525 0.633(24) 7.422(13) 0.165(12) 14.0(7)
600 2.093(91) 6.325(20) 0.575(31) 5.7(11)
Ethylene oxide
180 0.000(0) 23.230(4) 0.000(0) 48.1(33)
245 0.006(4) 21.325(6) 0.004(3) 38.6(23)
310 0.331(68) 19.323(27) 0.145(30) 25.0(13)
375 1.304(57) 16.851(13) 0.495(27) 14.3(19)
440 4.77(40) 13.39(13) 2.16(34) 3.7(11)
Isobutane
120 0.000(0) 12.654(6) 0.000(0) 37.9(13)
185 0.001(1) 11.539(3) 0.001(1) 26.7(8)
250 0.067(17) 10.383(23) 0.032(7) 17.4(5)
315 0.584(10) 8.983(28) 0.263(16) 9.1(7)
380 2.32(12) 7.112(41) 1.13(12) 2.3(4)
Formaldehyde
180 0.001(1) 31.984(54) 0.001(1) 51.6(14)
235 0.030(9) 29.228(5) 0.017(5) 36.3(15)
290 0.331(54) 26.222(77) 0.155(20) 24.2(14)
345 1.66(13) 22.594(39) 0.782(66) 12.7(9)
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T ps ρ
′

ρ
′′

γ
K MPa mol l−1 mol l−1 mN m−1

Dimethyl ether
205 0.016(8) 17.016(5) 0.016(4) 30.0(12)
260 0.205(39) 15.415(53) 0.100(35) 19.8(13)
315 0.95(13) 13.563(13) 0.442(38) 10.9(10)
370 3.34(35) 10.94(12) 1.70(31) 3.6(6)
Sulfur dioxide
220 0.013(8) 24.771(11) 0.007(4) 39.8(29)
265 0.106(39) 22.923(25) 0.049(14) 29.6(27)
310 0.65(17) 20.932(52) 0.278(74) 20.0(14)
355 1.95(46) 18.48(12) 0.83(19) 11.1(9)
400 4.65(26) 14.87(28) 2.30(25) 3.6(10)
Dimethyl sulfide
190 0.001(1) 19.996(5) 0.000(0) 48.6(16)
260 0.036(14) 18.300(17) 0.022(14) 36.1(10)
330 0.342(26) 16.471(18) 0.134(16) 23.6(7)
400 1.70(15) 14.315(56) 0.635(65) 11.8(13)
470 5.32(33) 10.85(26) 2.60(57) 2.1(8)
Thiophene
250 0.002(1) 13.107(7) 0.001(1) 43.6(22)
320 0.035(16) 12.168(6) 0.013(4 ) 33.3(7)
390 0.263(37) 11.166(7) 0.084(9) 22.4(13)
460 1.12(11) 10.001(16) 0.342(35) 13.6(10)
530 3.13(29) 8.458(65) 1.01(16) 5.0(8)
Hydrogen cyanide
280 0.038(21) 25.756(38) 0.021(11) 34.0(11)
315 0.122(12) 24.015(12) 0.063(10) 25.5(21)
340 0.343(32) 22.589(23) 0.153(23) 19.2(12)
375 0.949(50) 20.50(12) 0.431(41) 13.2(17)
410 2.03(10) 17.766(69) 1.00(12) 7.6(7)
Nitromethane
260 0.001(1) 19.569(16) 0.001(1) 55.3(37)
330 0.030(7) 18.014(6) 0.014(6) 41.6(34)
400 0.109(22) 16.259(52) 0.044(15) 28.3(14)
470 0.826(69) 14.337(25) 0.266(32) 16.5(15)
540 2.84(26) 11.70(20) 1.06(15) 6.0(9)
Phosgene
160 0.000(0) 17.047(11) 0.000(0) 49.2(32)
225 0.007(7) 15.578(10) 0.004(3) 34.8(17)
290 0.133(34) 14.047(7) 0.058(8) 23.1(21)
355 0.937(36) 12.311(20) 0.367(8) 12.5(12)
420 3.35(33) 9.873(48) 1.46(22) 3.7(7)
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T ps ρ
′

ρ
′′

γ
K MPa mol l−1 mol l−1 mN m−1

Benzene
290 0.007(7) 11.208(13) 0.003(3) 33.2(13)
350 0.092(23) 10.403(7) 0.033(3) 24.3(7)
410 0.423(47) 9.523(3) 0.137(16) 15.7(10)
470 1.441(67) 8.450(19) 0.468(22) 8.5(11)
530 3.337(92) 6.884(36) 1.21(13) 2.6(9)
Chlorobenzene
250 0.004(3) 10.320(8) 0.002(2) 46.7(28)
335 0.011(6) 9.466(11) 0.005(3) 33.3(19)
420 0.122(13) 8.567(23) 0.037(2) 21.9(8)
505 0.79(14) 7.520(30) 0.222(44) 11.7(9)
590 2.91(8) 5.992(20) 0.94(7) 3.2(9)
Ortho-dichlorobenzene
375 0.003(2) 8.472(5) 0.001(1) 36.1(51)
470 0.097(17) 7.631(3) 0.026(6) 23.4(8)
565 0.701(89) 6.647(16) 0.173(28) 12.6(15)
660 2.79(14) 5.240(33) 0.807(80) 3.0(7)
Cyanogen chloride
280 0.079(21) 19.777(13) 0.036(8) 28.3(21)
315 0.312(36) 18.490(46) 0.135(9) 21.6(16)
350 0.86(17) 17.08(39) 0.361(83) 14.9(21)
385 1.86(43) 15.27(7) 0.79(23) 9.4(17)
420 3.74(36) 12.92(9) 1.86(54) 4.2(7)
Cyanogen
260 0.094(31) 18.030(33) 0.049(21) 21.9(24)
290 0.349(95) 16.866(58) 0.168(25) 16.6(12)
320 0.79(30) 15.546(99) 0.36(17) 11.5(16)
350 2.17(34) 13.820(16) 1.04(26) 5.7(6)
380 4.40(5) 11.15(28) 2.89(40) 1.2(6)
Heptafluoropropane
200 0.002(1) 10.364(13) 0.001(1) 21.9(10)
250 0.063(10) 9.381(8) 0.031(2) 14.8(19)
300 0.466(39) 8.215(3) 0.213(21) 7.7(9)
350 1.776(68) 6.531(20) 0.938(46) 1.8(6)
Ammonia
220 0.029(2) 41.985(19) 0.015(1) 55.1(19)
260 0.233(38) 38.927(14) 0.116(23) 40.1(36)
300 1.029(80) 35.470(30) 0.467(39) 26.2(13)
340 3.080(66) 31.410(26) 1.421(43) 15.2(25)
380 7.23(15) 25.572(21) 3.86(21) 4.8(1)
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T ps ρ
′

ρ
′′

γ
K MPa mol l−1 mol l−1 mN m−1

Formic acid
300 0.014(10) 26.192(5) 0.007(2) 39.3(29)
360 0.072(9) 24.478(9) 0.038(14) 30.2(23)
420 0.333(28) 22.607(11) 0.169(20) 22.0(15)
480 1.14(17) 20.36(17) 0.543(61) 15.3(13)
540 3.20(25) 17.45(14) 1.57(18) 6.7(15)
Methanol
245 0.001(1) 26.175(9) 0.001(1) 36.0(16)
320 0.045(17) 23.958(6) 0.020(7) 27.1(16)
395 0.58(13) 21.317(36) 0.359(49) 14.0(20)
470 3.61(14) 17.318(91) 1.61(26) 6.0(14)
Dimethylamine
210 0.003(1) 16.653(10) 0.002(1) 35.2(13)
260 0.033(11) 15.523(4) 0.016(6) 27.3(4)
310 0.257(24) 14.279(7) 0.109(10) 19.0(2)
360 1.04(10) 12.888(6) 0.407(45) 11.8(9)
410 2.65(74) 10.814(77) 1.07(50) 5.3(18)
Ethylene glycol
380 0.005(3) 16.867(29) 0.002(1) 65.6(21)
480 0.107(60) 15.527(25) 0.028(11) 42.3(36)
580 1.144(52) 13.759(14) 0.268(9) 23.6(31)
680 5.45(58) 10.906(97) 1.44(19) 6.2(12)
Water
300 0.006(5) 56.348(12) 0.002(1) 94.0(21)
375 0.069(16) 52.650(12) 0.024(8) 75.1(13)
450 0.63(10) 48.475(11) 0.31(13) 56.9(19)
525 3.31(16) 43.412(11) 0.94(6) 34.1(21)
600 10.43(20) 36.485(46) 3.28(3) 13.7(20)
Hydrazine
280 0.000(0) 32.321(8) 0.000(0) 96.7(23)
360 0.028(10) 29.955(5) 0.010(5) 72.6(13)
440 0.358(24) 27.220(18) 0.153(19) 49.4(30)
520 2.24(64) 24.063(80) 1.16(33) 29.9(20)
Methylhydrazine
270 0.009(5) 19.384(10) 0.004(3) 57.3(13)
345 0.031(13) 17.944(6) 0.012(3) 43.1(16)
420 0.420(64) 16.358(48) 0.137(40) 29.7(12)
495 1.93(21) 14.598(16) 0.573(51) 16.7(8)
570 5.21(22) 12.21(12) 1.73(13) 5.7(9)
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T ps ρ
′

ρ
′′

γ
K MPa mol l−1 mol l−1 mN m−1

1,1-Dimethylhydrazine
260 0.003(2) 13.783(6) 0.001(1) 35.5(21)
315 0.045(13) 12.833(4) 0.018(6) 27.6(16)
370 0.290(14) 11.806(6) 0.101(9) 19.4(9)
425 1.03(13) 10.603(3) 0.344(40) 11.9(4)
480 2.97(19) 9.026(33) 1.10(12) 4.6(4)
Ethyl acetate
190 0.000(0) 11.726(4) 0.000(0) 42.2(19)
265 0.002(1) 10.709(18) 0.001(1) 29.9(6)
340 0.063(12) 9.636(10) 0.024(3) 19.7(9)
415 0.497(39) 8.379(6) 0.170(6) 10.9(12)
490 2.078(53) 6.584(19) 0.831(37) 3.0(7)
Decafluorobutane
260 0.077(13) 6.848(12) 0.038(7) 11.8(17)
310 0.357(6) 6.021(28) 0.157(5) 6.5(6)
360 1.329(67) 4.852(77) 0.657(43) 1.7(3)
Hexamethyldisiloxane
210 0.000(0) 5.211(31) 0.000(0) 26.3(17)
280 0.002(1) 4.788(5) 0.001(0) 18.4(9)
350 0.047(15) 4.327(8) 0.017(4) 12.1(11)
420 0.299(20) 3.771(10) 0.097(10) 6.7(4)
490 1.161(26) 3.020(25) 0.421(10) 1.8(2)
Octamethylcyclotetrasiloxane
310 0.000(0) 3.135(14) 0.000(0) 18.6(33)
355 0.004(2) 2.970(12) 0.001(0) 14.6(10)
420 0.044(14) 2.709(8) 0.013(4) 10.1(11)
485 0.217(15) 2.403(12) 0.061(4) 5.7(2)
550 0.699(12) 1.985(27) 0.211(7) 1.9(3)

2 3 4 5
10−4

10−3

10−2

10−1

100

101

1000 K / T

p
/
M
P
a

Figure 1: Vapour pressure curves of ammonia, methanol, sulfur dioxide, and benzene. Solid lines represent correlations to
experimental data [76–79], and symbols are the present simulation results: Sulfur dioxide (◦), benzene (�), ammonia (△), and
methanol (⋄).

8



3. Results and Discussion

Tab. 1 gives an overview of the molecular models investigated in the present work. All studied models
are rigid, i.e. internal degrees of freedom are not accounted for. The deviations δρ′ and δpS, which are
reported for the models in Tab. 1, are taken from the corresponding publications and represent relative
mean deviations of the simulated values from correlations to experimental data [4–21]. The molecular
simulations in previous work were performed with the Grand Equilibrium method [75].

Fig. 1 shows the simulation results for the vapour pressure of ammonia, methanol, sulfur dioxide, and
benzene from the present work which were obtained from heterogeneous simulations; cf. Tab. 2 for the
numerical simulation results. The present results for the saturated densities and the vapour pressure are
in very good agreement with experimental data [76–79]. However, for low temperatures, the uncertainties
in the saturated vapour density and vapour pressure are relatively high. This is due to the fact that at
low temperatures, in many cases, less than one molecule is in the vapour phase on average, which yields
relatively high statistical uncertainties. Similar findings were obtained for the the other fluids studied in the
present work. The simulation results obtained for the vapour pressure and the saturated densities for all
studied fluids are reported in Tab. 2 together with the data for the surface tension.

The relative mean deviation δγ between the simulation data and the experimental data reported in Tab. 1
is calculated in the same way as the deviations for the saturated liquid density and the vapour pressure. It
represents the root mean square deviation of the surface tension predicted by the molecular models from
Design Institute for Physical Properties (DIPPR) correlations to experimental data

|δγ| =

√√√√ 1

K

K∑

i=1

(
γsim(Ti)− γexp(Ti)

γexp(Ti)

)2

, (3)

over a set of K simulation results at temperatures between the triple point temperature and 95 % of the
critical temperature. By convention, the sign of δγ is positive if, on average, the model overestimates the
surface tension (δγ = + |δγ|) and negative otherwise (δγ = − |δγ|). Underlying experimental surface tension
data are usually not available over the entire temperature range. Only for four compounds – water, methanol,
ammonia, and heptafluoropropane – experimental data are available over the entire temperature range. In
most cases, the surface tension is measured only up to 373 K and the DIPPR correlation extrapolates these
results to the critical point [1, 2].

The DIPPR correlations usually agree with available experimental data within 3 %, only for dimethyl
sulfide, ortho-dichlorobenzene, heptafluoropropane, cyanogen, decafluorobutane, and hexamethyldisiloxane
deviations of up to 5 % are reported [1]. For three fluids – formaldehyde, methylhydrazine, and 1,1-
dimethylhydrazine – no experimental data are available. The DIPPR correlations do not match the critical
temperature for ethylene glycol and formic acid. Therefore, a straight line is used to connect the DIPPR
correlation and the critical point of respective fluids.

Figs. 2 and 3 show the surface tension for some of the studied fluids as a function of the temperature
(for the other fluids: cf. Supplementary Information). The molecular simulation results are compared with
DIPPR correlations to experimental data. For formaldehyde, methylhydrazine and 1,1-dimethylhydrazin
eno experimental data are available. The predictions of the surface tension agree reasonably well with
the experimental data. Fig. 4 shows the surface tension predicted by MD simulation as a function of the
experimental surface tension calculated by the DIPPR correlation [1] for all studied fluids. The molecular
models overestimate the surface tension in all cases. The average deviation between the predictions by
the molecular simulation and the experimental data is about 20 %. This is in line with results for the
surface tension obtained by molecular simulation in the literature [30–40]. Compared to other methods for
predicting the surface tension of low-molecular fluids, molecular modelling and simulation, using models
which are adjusted to bulk data, leads to relatively high deviations.

Several examples illustrate this: The surface tension of benzene is reproduced with a deviation of
|δγ| ≈ 4% using the corresponding-states (CS) correlation by Sastry and Rao [45], |δγ| = 1% with the
CS correlation by Zuo and Stenby [44], and |δγ| = 8.5% from a parachor correlation [42–44]; the molecular
model from Huang et al. [11] has |δγ| = 11.9%. For cyclohexane, |δγ| ≈ 1% is obtained following CS
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Figure 2: Surface tension as a function of the temperature. Solid lines represent DIPPR correlations to experimental data [1],
and symbols are the present simulation results: Thiophene (▽), ethylene oxide (◦), dimethyl ether (�), and heptafluoropropane
(△).
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Figure 3: Surface tension as a function of the temperature. Solid lines represent DIPPR correlations to experimental data
[1], and symbols are the present simulation results: Cyclohexanol (△), ethyl acetate (�), hexamethyldisiloxane (⋄), and
decafluorobutane (◦).

by Sastry and Rao [45], |δγ| = 0.7% with CS by Zuo and Stenby [44], |δγ| = 7.4% from the parachor
correlation [42–44], and |δγ| = 10.8% with the molecular model from Merker et al. [13]. In case of ethyl
acetate, a CS correlation yields |δγ| ≈ 7% [45] and density functional theory with the PC-SAFT equation
of state [48] reaches |δγ| ≈ 4%, whereas the average relative deviation is |δγ| = 10.3% for the molecular
model from Eckelsbach et al. [19] For methanol, the CS correlation by Sastry and Rao [45] exhibits almost
perfect agreement |δγ| < 1%; the molecular model by Schnabel et al. [6] has |δγ| = 35.3%. Zuo and Stenby
[44] reproduce the surface tension of isobutane with an accuracy of |δγ| = 1.6% using their CS correlation
and with |δγ| = 2.5% using a parachor correlation [42–44]; in contrast, the molecular model for isobutane
from Eckl et al. [8] exhibits a deviation of |δγ| = 12.5%.

Square gradient theory with the SAFT-VR Mie equation of state, following Garrido et al. [46], typically
yields deviations of the order of 2 to 3% for the surface tension of low-molecular fluids. However, no direct
comparison is possible with any of the present results.

The anisotropic united atom (AUA) force field [80, 81] was also adjusted to bulk data only. All results
for γ from simulations with AUA models are therefore predictions of interfacial properties from bulk fluid
properties. For benzene, applying the test-area method in Monte Carlo simulations with the AUA-9 sites
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Figure 4: Predicted surface tension γsim over the experimental surface tension γcorr based on DIPPR correlations [1] for the
present molecular simulation results. The solid line represents perfect agreement between simulation and experiment, and the
dashed line represents a deviation of 20 %.

force field, which was parameterized by Nieto Draghi and collaborators [82, 83], Biscay et al. [84] report a
surface tension which deviates from experimental data by about δγ ≈ +4%, compared to δγ = +11.9% for
the Huang et al. [11] model. For cyclohexane [84], the AUA-9 sites model has δγ ≈ +5%, whereas for the
Merker et al. [13] model, δγ = +11.9% was found in the present work. The AUA-4 model [81] underestimates
the surface tension of methanol by δγ ≈ −12%, cf. Biscay et al. [85], which compares favourably to the
Schnabel et al. [6] model with δγ = +35.3%. Overall, the AUA force field is more reliable for predicting
the surface tension than the models investigated in the present work [86]; it has roughly the same accuracy
as empirical parachor correlations [44]. However, this still makes the AUA force field less accurate than
empirical CS correlations [44, 45] and semiempirical square gradient theory [46].

Since molecular simulation is also computationally much more expensive than the other approaches, it
cannot be recommended to predict interfacial properties from molecular models which were not previously
adjusted to or, at least, validated against such data. However, a systematic overestimation of the surface
tension has also been observed in density functional theory in combination with physically based equations
of state [47, 87–90]. To account for this overestimation, an empirical correction expression is often employed,
which is formally attributed to the presence of capillary waves and decreases the surface tension. Without
this correction term, which was adjusted to fit the experimental surface tension values of the n-alkane series
[47], density functional theory would deviate from the surface tension of real fluids in a similar way as the
molecular models mentioned above. In square gradient theory, the influence parameter, which controls the
magnitude of the surface excess free energy, is also adjusted to surface tension data.

The unfavourable performance of molecular models, compared to methods which are more abstract
physically and less expensive numerically, is explained by the fact that the molecular models are entirely
predictive for interfacial properties. All other methods, i.e. density functional theory, square gradient theory,
and phenomenological correlations, were adjusted to surface tension data at least indirectly. Moreover,
methods which are based on analytical equations of state, including molecular equations of state, fail in
the vicinity of the critical point, so that δγ diverges at high temperatures. Renormalization group theory
has to be employed in these cases to avoid unphysical behaviour [48, 91, 92]. By molecular simulation, the
(Ising class) critical scaling behaviour of intermolecular pair potentials is correctly captured. Therefore, any
fit of force-field parameters to VLE data over a significant temperature range always indirectly adjusts the
molecular model to the critical temperature [93].

It has been shown before that a better agreement of molecular simulation results with experimental data
for the surface tension can be achieved by taking into account experimental data on the surface tension in
the parameterization of the molecular models. However, improvements in the quality of the representation
of the surface tension have to be traded off against losses in the quality of the representation of bulk fluid
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properties [31, 93–95].

4. Conclusion

In the present work, the surface tension of 33 real molecular fluids was determined by MD simulation.
These models were parameterized to reproduce the saturated liquid density, the vapour pressure, and the
enthalpy of vaporization. Accordingly, bulk properties of the fluid models from molecular simulations agree
well with experimental data for the real fluids. On the basis of well-described phase equilibria, the model
predictions for the surface tension were assessed. It was found that the surface tension is consistently
overpredicted by the molecular models. On average, the deviation is about +20 %.
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Supplementary information: Molecular simulation of the surface tension of
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Molecular simulation details

The equation of motion was solved by a leapfrog integrator [1] with a time step of ∆t = 1 fs. The
elongation of the simulation volume normal to the interface was 30 nm and the thickness of the liquid film
in the middle of the simulation volume was 15 nm to account for finite size effects [2]. The elongation
in the other spatial directions was at least 10 nm. The equilibration was executed for 500 000 time steps.
The production was conducted for 2 500 000 time steps to reduce statistical uncertainties. The statistical
errors were estimated to be three times the standard deviation of five block averages, each over 500 000 time
steps. The saturated densities and vapour pressures were calculated as an average over the respective phases
excluding the area close to the interface, i.e. the area where the first derivative of the density with respect
to the y coordinate deviated from zero significantly.

The cutoff radius was set to 17.5 Å and a centre-of-mass cutoff scheme was employed. The LJ interactions
were corrected with a slab-based long range correction based on the density profile [3]. Electrostatic long-
range interactions were approximated by a resulting effective molecular dipole and corrected with a slab-
based long range correction based on the density profile [4]. The quadrupolar interactions do not need a
long-range correction as they decay by r−10, cf. Prausnitz et al. [5].
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Figure 5: Surface tension as a function of the temperature. Solid lines represent DIPPR correlations to experimental data
[6], and symbols are the present simulation results: Hydrazine (△), methylhydrazine (▽), 1,1-dimethylhydrazine (⋄), cyanogen
chloride (◦), and cyanogen (�). No experimental data are available for methylhydrazine and 1,1-dimethylhydrazine.
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Figure 6: Surface tension as a function of the temperature. Solid lines represent DIPPR correlations to experimental data [6],
and symbols are the present simulation results: Cyclohexanone (◦), cyclohexane (�), formaldehyde (△), and octamethylcyc-
lotetrasiloxane (⋄). No experimental data are available for formaldehyde.
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Figure 7: Surface tension as a function of the temperature. Solid lines represent DIPPR correlations to experimental data
[6], the dotted line connects the DIPPR correlation with the critical point of ethylene glycol, and symbols are the present
simulation results: Ethylene glycol (◦), ortho-dichlorobenzene (△), chlorobenzene (▽), benzene (⋄), and phosgene (�).
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Figure 8: Surface tension as a function of the temperature. Solid lines represent DIPPR correlations to experimental data [6],
the dotted line connects the DIPPR correlation with the critical point of formic acid, and symbols are the present simulation
results: Water (◦), formic acid (⋄), methanol (△), and dimethylamine (�).
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Figure 9: Surface tension as a function of the temperature. Solid lines represent DIPPR correlations to experimental data [6],
and symbols are the present simulation results: Dimethyl sulfide (◦), hydrogen cyanide (△), and sulfur dioxide (�).
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Figure 10: Surface tension as a function of the temperature. Solid lines represent DIPPR correlations to experimental data [6],
and symbols are the present simulation results: Nitromethane (⋄), acetonitrile (△), ammonia (◦), and isobutane (�).
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