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A slab based long range correction approach for multi-site Lennard-Jones models is presented
for systems with a planar film geometry that is based on the work by Janeček, J. Phys. Chem.
B 110: 6264 (2006). It is efficient because it relies on a center-of-mass cutoff scheme and scales
in terms of numerics almost perfectly with the molecule number. For validation, a series of
simulations with the two-center Lennard-Jones model fluid, carbon dioxide and cyclohexane
is carried out. The results of the present approach, a site-based long range correction and
simulations without long any long range correction are compared with respect to the satu-
rated liquid density and surface tension. The present simulation results exhibit only a weak
dependence on the cutoff radius.
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1. Introduction

One of the most important properties of vapor-liquid equilibria, that can be deter-
mined by molecular simulation, is the surface tension [1–4]. Usually the properties
of interfaces are directly sampled in a simulation volume containing both the vapor
and liquid phase, separated by an interface. Indirect methods like Grand Equilib-
rium [5], NpT plus test particle [6] or Gibbs ensemble [7] provide access to the
bulk properties along the saturation curve in a numerically more efficient manner
but do not consider interfaces.

Intermolecular interactions are usually evaluated explicitly up to a specified cut-
off radius, beyond which the interactions are covered by a mean field approach,
in order to reduce the computing costs. Two main directions are followed in this
field: Using small cutoff radii without long range corrections (LRC) for systematic
studies [8–11] or using larger cutoff radii with additional LRC to approximate the
real fluid behavior [12–14]. In homogeneous simulations, the LRC typically only
consider the energy and the virial [15, 16], while in inhomogeneous systems also
the force has to be corrected appropriately [17, 18]. If no LRC is used, truncating
the Lennard-Jones potential at 2.5 σ leads to a significant decrease of the surface
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tension, and other thermodynamic properties also deviate significantly from the
bulk properties [10, 19]. This does not imply that truncated potentials are poor
models for real fluids. The truncated and shifted Lennard-Jones potential, e.g., is
an excellent model for fluid methane and argon, which is also surprisingly accurate
for the surface tension [10], However, different parameters must be chosen to com-
pensate for the deviation between truncated and not-truncated potentials, which
is quite significant.

For homogeneous systems, typical correction strategies are straightforward, mak-
ing the approximation that the pair correlation function is unity beyond the cutoff
radius. They may rely on a site-site correction [20] or on center-of-mass correction
approaches, employing angle averaging [21] or the reaction field method [22, 23].
For inhomogeneous configurations, fast multipole methods [24, 25], slab based LRC
[18, 26–28] or more complex Ewald summation techniques are used [29, 30]. Recent
implementations of the slab based LRC and the Ewald summation technique yield
very similar results for planar interfaces [18, 30].

In addition to the LRC approach, the cutoff scheme plays an important role. For
small rigid molecular models, it is useful to employ a center-of-mass cutoff, while
a site-site cutoff is beneficial for larger and more complex molecules. However,
the LRC has to be consistent with the chosen scheme [21, 31]. A site-site cutoff
scheme consumes a much larger amount of computing time, because every site-site
distance has to be evaluated and compared to the cutoff radius. E.g., for a pair of
carbon dioxide models consisting of three Lennard-Jones sites each, the site-site
cutoff scheme requires the execution of nine if statements for the Lennard-Jones
interactions, while a center-of-mass cutoff requires only one. Hence, a center-of-
mass cutoff scheme should be preferred for small molecules.

In the present work, we combine the slab based LRC approach for inhomogeneous
systems by Janeček [18] with the center-of-mass cutoff method by Lustig [21],
which is based on angle averaging, and apply it to molecular models containing
several Lennard-Jones sites. This combined correction approach is validated for
planar interfaces with a two-center Lennard-Jones model fluid and two multi-center
Lennard-Jones fluids, representing carbon dioxide and cyclohexane.

2. Theory

The intermolecular potential u is usually evaluated in molecular simulation explic-
itly only up to a specified cutoff radius rc. To correct for the error made by this
assumption, a LRC has to be applied. The potential energy of molecule i is thus
separated into the explicitly sampled contribution and the LRC contribution

Ui =
∑
rij<rc

uij + ULRC
i . (1)

The potential energy in a system with a planar vapor-liquid interface can be com-
puted with a slab based LRC. For systems with planar symmetry, such as a planar
liquid film surrounded by vapor, it is sufficient to compute the LRC with respect to
the coordinate normal to the interface [18, 27]. In the present work, this corresponds
to the y direction. The correction term ULRC

i is then a sum over all Nslabs slabs
with respect to the interactions ∆uLRC

i,k between the molecule i and the molecules
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in slab k

ULRC
i =

Nslabs∑
k

∆uLRC
i,k . (2)

According to Janeček [18], the correction term ∆uLRC
i,k is an integral over the slab

volume

∆uLRC
i,k = 2πρ(yk)∆y

∫ ∞
r′

dr u(r)r, (3)

where ρ(yk) denotes the mean density in slab k and ∆y is its thickness, which was
kept constant in this work, cf. Figure 1. As usual, it was assumed by Janeček [18]
that for the radial distribution function within a single slab, g(r) ≈ 1 holds beyond
the cutoff radius.

The lower bound of the integration r′ has to be selected appropriately [18, 32] as
shown in Figure 1. If the distance ξ = |yi−yk| between the molecule i and the slab
k is smaller than the cutoff radius, the cutoff radius has to be used as the lower
integration bound, i.e. otherwise it is ξ [18, 32]

r′ =

{
ξ, if ξ > rc

rc, instead.
(4)

The definition of r′ has to be employed in Eq. (3) as well as the analogous expres-
sions for the force and the virial.

rc

ξ+ ξ∗

∆y

y+k yi y∗k

Figure 1. Relevant distances for the LRC approach by Janeček [18]. If the normal distance ξ between the
molecule i and the slab k is smaller than the cutoff radius, the cutoff radius has to be used as the lower
integration bound, cf. Eqs. (3) and (4).

This approach yields results that are hardly dependent on the cutoff radius for
the single-site Lennard-Jones fluid down to rc = 2.5 σ [18, 33]. It is also suitable
for multi-site models if the molecular simulation code is based on a site-site cutoff
scheme.

However, for molecules consisting of multiple Lennard-Jones sites, a center-of-
mass cutoff scheme is more efficient because only the distances between the centers
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of mass have to be evaluated during the neighborhood search. In this case, angle
averaging as proposed by Lustig [21] is required for the LRC, because the orienta-
tion of the molecules cannot be considered explicitly. The present study introduces
such an approach, applying it to the Lennard-Jones potential

u = 4ε
[
σ12s−12 − σ6s−6

]
, (5)

with the energy parameter ε and the size parameter σ, where s represents the dis-
tance between the interaction sites, which may deviate from the distance between
the centers of mass r. Three cases have to be distinguished here, cf. Figure 2. For a
given r, the center-center (CC), center-site (CS) and site-site (SS) distances depend
on the mutual orientation of the molecules. The term s thus has to be an average
over all molecular orientations with the same center-of-mass distance r [21].

CC

+

+

+

CS
τ

+

+

+

+

+

+

SSτ1 τ2

Figure 2. Illustration of the three different cases discussed here. Sites in the center of mass interact with
each other as a center-center interaction (top), as opposed to the center-site interaction (middle) and the
site-site interaction (bottom). The distance of the sites from the center of mass of their molecule is denoted
by τ . The dots indicate the center of mass, while the crosses denote the site positions.

center-center case

In the CC case, i.e., for the interaction between single-site Lennard-Jones molecules,
the distance s is equal to the center-of-mass distance r and no angle averaging is
required, because s2n = r2n. For the CC case, the reader is referred to Janeček [18],
who derived correction terms for the potential energy, virial and force. The present
work generalizes Janeček’s approach such that a center-of-mass cutoff scheme can
be applied to CS and SS interactions with a similar accuracy.

center-site case

In the CS case, one site is not in the center of mass of its molecule, i.e. it is situated
at a distance τ from the center of mass. The CS case does not exist on its own,
because CC and SS interactions are also always present in such a scenario. The
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angle-averaged value of s2n has been derived by Lustig [21]

s2n =
(r + τ)2n+2 − (r − τ)2n+2

4rτ(n+ 1)
, (6)

where n = −6 or −3, respectively, for the repulsive and dispersive contributions to
the Lennard-Jones potential. The correction term for the potential energy is then
a combination of Eqs. (3) and (6)

∆uLRC
i,k = 2πρ(yk)∆y

∫ ∞
r′

dr 4ε[σ12s−12 − σ6s−6]r

= −2περ(yk)∆y

τ

∫ ∞
r′

dr

[
σ12 (r + τ)−10 − (r − τ)−10

5
− σ6 (r + τ)−4 − (r − τ)−4

2

]
= −2περ(yk)∆yσ

3

3τ

[
σ9 (r′ + τ)−9 − (r′ − τ)−9

15
− σ3 (r′ + τ)−3 − (r′ − τ)−3

2

]
.

(7)

The correction term for the force is obtained in a similar manner

∆fLRC
i,k = −2πρ(yk)∆y

∫ ∞
r′

dr
∂u

∂r

ξ

r
r

= −2περ(yk)∆yσ
2ξ

τr′

[
σ10 (r′ + τ)−10 − (r′ − τ)−10

5
− σ4 (r′ + τ)−4 − (r′ − τ)−4

2

]
.

(8)

The correction term for the virial is separated into its normal and tangential con-
tribution. The normal contribution corresponds to the y direction here that is
perpendicular to the interface, and the tangential contribution corresponds to the
x and z directions. The term for the virial in normal direction is analogous to the
force

∆ΠLRC
N ;i,k = −πρ(yk)∆y

∫ ∞
r′

dr
∂u

∂r

ξ2

r
r

= −περ(yk)∆yσ
2ξ2

τr′

[
σ10 (r′ + τ)−10 − (r′ − τ)−10

5
− σ4 (r′ + τ)−4 − (r′ − τ)−4

2

]
.

(9)

The term for the tangential virial is slightly more complicated

∆ΠLRC
T ;i,k = −1

2
πρ(yk)∆y

∫ ∞
r′

dr
∂u

∂r

r2 − ξ2

r
r

= −περ(yk)∆yσ
2

2τr′

[
σ10 (r′ + τ)−10 − (r′ − τ)−10

5
− σ4 (r′ + τ)−4 − (r′ − τ)−4

2

]
(r2 − ξ2)

− περ(yk)∆yσ
3

3τ

[
σ9 (r′ + τ)−9 − (r′ − τ)−9

15
− σ3 (r′ + τ)−3 − (r′ − τ)−3

2

]
.

(10)
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site-site case

In the SS case, the correction terms are of similar form. Both sites are not in the
center of mass of their molecule, i.e. they are separated from it by the distances
τ1 and τ2, respectively. The corresponding expression for s2n has also been derived
by Lustig [21]

s2n =
(r + τ+)2n+3 − (r + τ−)2n+3 − (r − τ−)2n+3 + (r − τ+)2n+3

8rτ1τ2(n+ 1)(2n+ 3)
, (11)

with τ+ = τ1 + τ2 and τ− = τ1 − τ2. The correction terms for the potential energy,
virial and force are calculated in the same way as for the CS case

∆uLRC
i,k =

περ(yk)∆yσ
4

12τ1τ2

[
σ8 (r′ + τ+)−8 − (r′ + τ−)−8 − (r′ − τ−)−8 + (r′ − τ+)−8

30

− σ2
[
(r′ + τ+)−2 − (r′ + τ−)−2 − (r′ − τ−)−2 + (r′ − τ+)−2

] ]
, (12)

∆fLRC
i,k =

περ(yk)∆yσ
3ξ

3τ1τ2r′

[
σ9 (r′ + τ+)−9 − (r′ + τ−)−9 − (r′ − τ−)−9 + (r′ − τ+)−9

15

− σ3 (r′ + τ+)−3 − (r′ + τ−)−3 − (r′ − τ−)−3 + (r′ − τ+)−3

2

]
, (13)

∆ΠLRC
N ;i,k =

περ(yk)∆yσ
3ξ2

6τ1τ2r′

[
σ9 (r′ + τ+)−9 − (r′ + τ−)−9 − (r′ − τ−)−9 + (r′ − τ+)−9

15

− σ3 (r′ + τ+)−3 − (r′ + τ−)−3 − (r′ − τ−)−3 + (r′ − τ+)−3

2

]
, (14)

∆ΠLRC
T ;i,k =

περ(yk)∆yσ
3

12τ1τ2r′

[
σ9 (r′ + τ+)−9 − (r′ + τ−)−9 − (r′ − τ−)−9 + (r′ − τ+)−9

15

− σ3 (r′ + τ+)−3 − (r′ + τ−)−3 − (r′ − τ−)−3 + (r′ − τ+)−3

2

]
(r′2 − ξ2) +

∆uLRC
i,k

2
.

(15)

The corrections for the normal and tangential virial are used for the pressure cal-
culation. The surface tension γ can be obtained from the difference between the
normal and tangential contributions to the virial ΠN −ΠT , which is equivalent to
the integral over the differential pressure pN − pT

γ =
1

2A
(ΠN −ΠT ) =

∫ ∞
−∞

dy (pN − pT ) , (16)

where 2A denotes the surface area of the two dividing surfaces [18, 34].
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3. Simulations

These correction terms were implemented in the ls1 MarDyn molecular dynamics
code [35, 36] for an assessment of the present combination of the methods by
Janeček [18] and Lustig [21]. The equations of motion were solved by a leapfrog
integrator [37] with a reduced time step of ∆t = 0.001 σ

√
m/ε for the two-center

Lennard-Jones model fluid and a time step of ∆t = 1 fs for the real fluids carbon
dioxide and cyclohexane. Simulations were conducted in the canonical ensemble
with N = 16 000 molecules. The liquid phase was in the center of the simulation
volume surrounded by vapor phases on both sides. The elongation of the simulation
volume normal to the interface was between 60 and 80 σ to limit the influence of
finite size effects which may be significant for thin liquid films [33]. A thickness
of the LRC slabs of ∆y ≈ 0.1 σ was used throughout. The spatial extension of
the simulation volume in the other directions was at least 20 σ to account for
capillary waves [38–40]. For the scaling tests, the length of the simulation volume in
y direction was varied. The equilibration was conducted for 200 000 time steps and
the production runs for 800 000 time steps. The statistical errors were estimated
to be three times the standard deviation of four block averages, each over 200 000
time steps.

The employed simulation program ls1 MarDyn was designed for massively
parallel high performance computing with systems containing a large number of
molecules [41]. Accordingly, the implementation of the present LRC approach was
designed to consume only a small amount of computing time and to scale well with
the molecule number N as well as with the number of processing units. The scaling
behavior with respect to the number of processing units was discussed in previous
publications [35, 41, 42] so that no weak or strong scaling experiments are shown
here.

4. Results

A series of simulations for the two-center Lennard-Jones model fluid with an elon-
gation of L = σ was carried out for different temperatures. The results are com-
pared with those by Stoll et al. [43], who employed the indirect Grand Equilibrium
method where interfaces are absent, with a cutoff radius of rc = 5 σ. In addition,
simulation results without any LRC are included here, representing the extreme
case where long range interactions are completely absent. To exemplify the neces-
sity of angle averaging, Janeček’s original approach was applied together with the
center-of-mass cutoff scheme, although it was designed for a site-site cutoff scheme
[31]. It is termed site-based approach in the following.

Figure 3 shows the density over the y coordinate close to the triple point. The
density profile is needed on the one hand for the LRC, on the other hand for
the calculation of the saturated liquid density, which is compared with results
from homogeneous simulations. The density with our new approach matches the
saturated liquid density from the homogeneous simulations by Stoll et al. [43],
while the other approaches exhibit deviations from the reference data.

Figure 4 shows the saturated liquid density over the cutoff radius for different
temperatures from near the triple point up to 0.96 Tc, where Tc is the critical
temperature. The results for the saturated liquid density that were determined
with the present LRC approach hardly show any dependence on the cutoff radius
for the lower two temperatures, while the site-based approach and the simulations
without LRC show significant deviations from the reference saturated liquid den-
sity. Simulations without LRC were only performed for comparison near the triple
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y
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/
σ
3

Figure 3. Density ρ over y coordinate for the two-center Lennard-Jones model fluid for T = 0.979 ε/kB
and rc = 2.5 σ. Comparison between simulations without LRC (dashed line), the site-based approach
(dash-dotted line), the present approach (solid line) and the reference values by Stoll et al. [43] (dotted
line).

2.5 3 3.5 4 4.5 5
0.2

0.25

0.3

0.35

0.4

rc / σ

ρ
′
/
σ
3

T = 0.979 ε/kB

T = 1.508 ε/kB

T = 1.691 ε/kB

Figure 4. Saturated liquid density over the cutoff radius for the two-center Lennard-Jones model fluid.
Comparison between simulations without LRC (diamonds), the site-based approach (squares), the present
approach (circles) and the reference values by Stoll et al. [43] (dashed lines).

point. At the highest temperature, both LRC approaches exhibit deviations from
the reference case for small cutoff radii. However, it should be noted that a stable
liquid film at a temperature of 0.96 Tc is quite challenging to simulate due to the
divergence of the correlation length at the critical point.

The two-center Lennard-Jones model fluid with L = σ is a difficult case, because
of its anisotropy. Figure 5 shows the relative deviations from the reference data
by Stoll et al. [43] for seven model fluids with a varied elongation L at a low
temperature close to their triple point. These simulations were carried out with a
cutoff radius of rc = 2.5 σ. As expected, the deviations of the site-based approach
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rise with the elongation of the molecules, but they are much smaller than in case
of the simulations without LRC. The deviations in terms of the saturated liquid
density reach 3 % for the site-based approach at the largest elongation L = σ. For
small elongations, the site-based approach and the present approach converge.

0 0.2 0.4 0.6 0.8 1

-0.10

-0.05

0

L / σ

(ρ
′
−
ρ
′ re
f)
/ρ

′ re
f

Figure 5. Relative deviations of the saturated liquid density from the reference values by Stoll et al.
[43]. Comparison between simulations without LRC (diamonds), the site-based approach (squares) and
the present approach (circles). All simulations were carried out with a cutoff radius of rc = 2.5 σ and a
temperature close to the triple point, i.e. T ≈ 0.56 Tc.

Two multi-center Lennard-Jones fluids were also studied to compare the perfor-
mance of the LRC terms: carbon dioxide (CO2), which was described by a rigid
three-site Lennard-Jones model with one superimposed point quadrupole [44], and
cyclohexane (C6H12), which was described by a rigid six-site Lennard-Jones model
[45]. For carbon dioxide, temperatures from 220 to 280 K were considered, i.e. al-
most from the triple point up to approximately 0.92 Tc. Carbon dioxide was chosen
because it is similar to the two-center Lennard-Jones model fluid. It is a combina-
tion of the CC, CS and the SS cases. The point quadrupole was assumed to have
no preferred orientation beyond the cutoff radius, which yields a vanishing LRC
contribution. Merker et al. [44] used an indirect simulation method without the
presence of interfaces and a cutoff radius of at least 7.1 σ in terms of the Lennard-
Jones parameter σ of the oxygen atoms. Figure 6 shows the results for the saturated
liquid density. The results are similar to the two-center Lennard-Jones model fluid,
i.e. the saturated liquid density is almost independent on the cutoff radius with
the present approach.

For cyclohexane, three different temperatures were studied for a comparison be-
tween the results with different LRC approaches and the reference data by Merker
et al. [45]. Figure 7 shows the results for 330, 415 and 500 K. Merker et al. [45]
also used an indirect simulation method without the presence of interfaces and a
cutoff radius of at least 4.3 σ.

Because cyclohexane is a much larger molecule than the others considered in this
work, where all sites have a distance of approximately 0.52 - 0.54 σ from the center
of mass, it is obvious that a cutoff radius of 2.5 σ is insufficient. Nonetheless, even
simulations with a cutoff radius of 3 σ yield good results in terms of the saturated
liquid density. Only for a temperature of about 0.9 Tc, the cutoff radius must be

9



August 22, 2013 Molecular Physics Lustig

2.5 3 3.5 4 4.5 5
18

20

22

24

26

rc / σ

ρ
′ /

m
ol

l−
1

T = 220 K

T = 250 K

T = 280 K

Figure 6. Saturated liquid density over the cutoff radius for carbon dioxide. Comparison between simula-
tions without LRC (diamonds), the site-based approach (squares), the present approach (circles) and the
reference values by Merker et al. [44] (dashed lines).
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T = 500 K

Figure 7. Saturated liquid density over the cutoff radius for the cyclohexane. Comparison between simu-
lations without LRC (diamonds), the site-base approach (squares), the present approach (circles) and the
reference values by Merker et al. [45] (dashed lines).

larger.
Another important property of vapor-liquid equilibria is the surface tension.

For the lowest temperature of the fluids discussed above, the surface tension was
determined with the three different approaches. Figure 8 shows the surface tension
over the cutoff radius for the two-center Lennard-Jones model fluid, carbon dioxide
and cylcohexane. The number of time steps was enlarged to four million to reduce
the statistical uncertainties and better identify systematic deviations.

The dependence of the surface tension on the cutoff radius is similar to the
dependence of the density on the cutoff radius. The present approach shows hardly
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Figure 8. Surface tension over the cutoff radius for the two-center Lennard-Jones model fluid, carbon diox-
ide and cyclohexane. Comparison between simulations without LRC (diamonds), the site-based approach
(squares) and the present approach (circles). The temperature was T = 0.979 ε/kB for the two-center
Lennard-Jones model fluid (top), 220 K for carbon dioxide (center) and 330 K for cyclohexane (bottom).

any influence of rc on the surface tension, as opposed to other approaches, which
exhibit a significant cutoff radius dependence.

Furthermore, a simulation series with a single processing unit (Intel Xeon E5-
2670) with a varying number of two-center Lennard-Jones molecules with an elon-
gation L = σ was carried out. The chosen temperature T = 0.979 ε/kB is close
to the triple point of this fluid [43]. Figure 9 shows the computing time for 100
time steps in the canonical ensemble. Due to the underlying linked-cell algorithm
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[46, 47], the computing time for the explicitly evaluated interactions scales almost
perfectly with the molecule number N . Only for small systems below N ≈ 104,
the LRC does not perfectly scale with the molecule number, because the number
of slabs does not correlate with the molecule number, but rather with the length
of the simulation volume in y direction. However, even in this case, the computa-
tional effort for the LRC is more than one order of magnitude smaller than for the
explicitly evaluated interactions.of large systems.

103 104 105 106 107 108

100

101

102

103

104

105

N

t
/
s

Figure 9. Computing time for 100 time steps with a single processing unit over the molecule number N .
The circles correspond to the computing time for the explicitly evaluated interactions. The computing time
for the LRC (squares) is considerably smaller.

5. Conclusion

In this work, a new slab based LRC approach for inhomogeneous systems with
planar interfaces was presented. It was applied to molecular models consisting of
several Lennard-Jones interaction sites, employing a center-of-mass cutoff. The
center-of-mass cutoff scheme is numerically more efficient for small molecules than
a site-site cutoff scheme, but it requires a more demanding correction scheme. The
LRC by Janeček [18] that is based on the site-site cutoff scheme was generalized to
the center-of-mass cutoff scheme with the angle averaging method by Lustig [21].
The influence of the LRC on the saturated liquid density and the surface tension
was studied. The present LRC approach yields very good results for both properties
and shows only a weak dependence on the cutoff radius. It is numerically efficient,
consumes only a small amount of computing time and scales well for systems with
very large numbers of molecules.
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W. E. Nagel, D. B. Kröner and M. M. Resch (Springer, Berlin/Heidelberg, 2013), accepted,
arXiv:1305.4048 [cond-mat.soft].

[43] J. Stoll, J. Vrabec and H. Hasse, Fluid Phase Equilib. 209 (1), 29 (2003).
[44] T. Merker, C. Engin, J. Vrabec and H. Hasse, J. Chem. Phys. 132, 234512 (2010).
[45] T. Merker, J. Vrabec and H. Hasse, Fluid Phase Equilib. 315, 77 (2012).
[46] B. Quentrec and C. Brot, J. Computat. Phys. 13 (3), 430 (1973).
[47] R.W. Hockney and J.W. Eastwood, Computer Simulation using Particles (McGraw-Hill, New

York, 1981).

14


