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Abstract

Molecular simulation is a promising area of scientific computing.1 While Monte Carlo meth-

ods are randomized and generate statistics over representative molecular configurations, mole-

cular dynamics simulation follows the system trajectory, i.e. the temporal evolution, by nu-

merically integrating the equations of motion. Relatively few molecules are sufficient to re-

produce thermodynamic properties of homogeneous fluids, whereas a scale bridging approach

is required for heterogeneous systems, e.g. for fluids at interfaces. The progress of simulation

technology in high performance computing, concerning both the hardware and the simula-

tion methods, has led to the emergence of Computational Molecular Engineering as an in-

dependent discipline of mathematical modelling and simulation that can deliver a significant

contribution to scientific research in thermodynamics.

The state of the art in molecular modelling and simulation is commented and developed here

with regard to applications in thermodynamics, where molecular methods have an inherent ad-

vantage over empirical correlations of the available data. By selecting a physical model which

explicitly accounts for microscopic properties and intermolecular interactions, the choice of

adequate model parameters facilitates both an accurate reproduction and a reliable prediction

of real fluid properties. Furthermore, the molecular structure of the fluid at a phase boundary

is resolved, so that it becomes possible to investigate interfacial phenomena in detail. In many

cases, Computational Molecular Engineering yields the same level of accuracy as the under-

lying experimental data, which is the optimum that can be reached with theoretical methods.

This requires efficient and scalable simulation codes and simulation methods with a rigor-

ous foundation in statistical mechanics. In Chapter 1, molecular methods are introduced and

applied to heterogeneous systems. First, in Section 1.1, the present level of development of

molecular force field methods is assessed from the point of view of simulation-based engi-

neering, outlining the immediate perspective for further developments. Section 1.2 introduces

molecular modelling and molecular dynamics simulation. On this basis, it is discussed how

the vapour-liquid surface tension is defined and determined by molecular simulation (Section

1.3) and how the contribution from long-range interactions can be accurately and efficiently

taken into account for systems with planar symmetry (Section 1.4).

1Disclaimer: Large parts of the present work literally reproduce contents from journal articles that were pub-
lished between 2011 and 2016.



XII Abstract

Thermodynamic properties of dispersed phases are hard to measure, but nonetheless, they

influence many technically relevant systems where they are present in stable dispersions or

emerge as precursors of macroscopic phases. With scale bridging simulations, covering both

small and large systems, it becomes possible to quantify how dispersed phases are influenced

by their small size and their shape. This is discussed in Chapter 2, where an approach to the

curvature dependence of the surface tension in terms of the excess equimolar radius, i.e. the

deviation between two effective radii corresponding to a spherical interface, is introduced and

applied to small droplets (Section 2.1). In Section 2.2, molecular simulations of thin liquid

films are analysed to investigate size effects which are curvature-independent, and Section 2.3

considers bubbles in equilibrium with liquids at negative pressure.

Chapter 3 discusses phenomena at solid surfaces: In Section 3.1, molecular dynamics simu-

lations are used for studying the contact angle of nanoscale sessile droplets on a planar solid

wall, using the truncated and shifted Lennard-Jones potential. The entire range between total

wetting and dewetting is investigated by varying the solid–fluid dispersive interaction energy,

and a correlation is developed for the contact angle as a function of the dispersive interac-

tion, the temperature and the solid density, which is also found to carry over to other similar

systems. Self-assembled monolayers are investigated in Section 3.2 by simulating layers of

alkylsilanes with different chain lengths, containing 12 and 18 carbon atoms, respectively,

chemisorbed on a silica substrate. These simulations lead to conclusions on the relation be-

tween thickness, tilt angle, and coverage of the monolayers, which improve our understanding

of experimental data, e.g. from electron density measurements. The interpretation of these ex-

periments is often based on strongly simplified models, leading to errors which can be avoided

by fruitfully combining experiment and simulation.

In Chapter 4, highly performant molecular simulation codes are presented which were re-

leased recently. Thels1 mardynprogram, which is introduced in Section 4.1, has enabled

the application of molecular force fields to length scales which were previously out of scope

for molecular dynamics simulation. With dynamic load balancing, it delivers high scalability

even for challenging heterogeneous configurations. Code optimizations tailored to the Intel

Sandy Bridge processor are outlined in Section 4.2, including vectorization as well as shared-

memory parallelization to make use of hyperthreading. On this basis, weak and strong scaling

experiments are carried out for up to four trillion molecules on up to 146 016 cores on the

SuperMUC cluster, achieving a parallel speedup of 133 000. Whilels1 mardynperforms best

for large heterogeneous systems, the thermodynamic analysis of small homogeneous systems

poses different challenges which are addressed by thems2program (Section 4.3).

Conclusions from these developments are formulated in Chapter 5. So far, only part of the

way from basic research to systematic applications in fluid process engineering has been gone

for scale bridging molecular modelling and simulation. However, it can already be recognized

that it will pay off to go the remaining steps.
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Zusammenfassung

Die molekulare Simulation ist ein vielversprechendes Gebiet des wissenschaftlichen Rech-

nens. Während Monte-Carlo-Methoden stochastisch vorgehen, verfolgt die Molekulardyna-

miksimulation die Trajektorie eines Systems, d.h. seine zeitliche Entwicklung, durch die nu-

merische Integration der Bewegungsgleichungen. Verhältnismäßig wenige Moleküle genü-

gen, um die thermodynamischen Eigenschaften homogener Fluide wiederzugeben, während

für heterogene Systeme ein skalenübergreifender Ansatz erforderlich ist. Der Fortschritt der

Simulationstechnik im Höchstleistungsrechnen, sowohl hinsichtlich der Hardware als auch

der Simulationsmethoden, hat zur Entstehung des Computational Molecular Engineering als

eigenständiger Disziplin der mathematischen Modellierung und Simulation geführt, die in-

zwischen einen wesentlichen Beitrag zur Forschung in der Thermodynamik leistet.

Der Stand der Technik der molekularen Modellierung und Simulation wird hier im Hinblick

auf Anwendungen in der Thermodynamik kommentiert und entwickelt. Molekulare Methoden

haben wesentliche Vorteile gegenüber empirischen Korrelationen: Indem ein physikalisches

Modell vorgegeben wird, das mikroskopische Eigenschaften und intermolekulare Wechsel-

wirkungen explizit berücksichtigt, ermöglicht die Wahl geeigneter Modellparameter sowohl

die genaue Wiedergabe als auch die zuverlässige Vorhersage realer Stoffdaten. Zudem wird

die molekulare Struktur des Fluids an einer Phasengrenze aufgelöst, sodass Grenzflächen-

effekte detailliert untersucht werden können. In vielen Fällen erzielt Computational Molecular

Engineering die gleiche Genauigkeit wie die den Stoffdaten zugrunde liegenden Experimente

und erreicht somit die bestmögliche Übereinstimmung mit dem Realverhalten.

Dies erfordert effiziente und skalierbare Simulationsprogramme und robuste Simulationstech-

niken auf Grundlage der statistischen Mechanik. Kapitel 1 gibt eine Einführung in molekulare

Methoden und ihre Anwendung auf heterogene Systeme. In Abschnitt 1.1 wird zunächst der

aktuelle Stand der Entwicklung molekularer Kraftfelder vom Standpunkt der simulations-

gestützten Ingenieurwissenschaften bewertet und eine Perspektive für weitere Entwicklungen

skizziert. Eine Einführung in die molekulare Modellierung und die Molekulardynamik fin-

det sich in Abschnitt 1.2. Im Anschluss daran wird diskutiert, wie die Oberflächenspannung

zwischen Dampf- und Flüssigphase auf molekularer Ebene zu definieren und zu berechnen

ist (Abschnitt 1.3) und wie der Beitrag langreichweiter Wechselwirkungen in planarsym-

metrischen Systemen genau und effizient berücksichtigt werden kann (Abschnitt 1.4).
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Die thermodynamischen Eigenschaften disperser Phasen sind schwer zu messen und dennoch

von großer Bedeutung für viele Anwendungen, bei denen diese in stabilen Dispersionen oder

als Vorläufer makroskopischer Phasen auftreten, die durch Nukleation entstehen (Tröpfchen

und Gasblasen) oder sich durch dynamische Benetzung ausbreiten (dünne Filme). Durch ska-

lenübergreifende Simulationen sowohl kleiner als auch großer Systeme kann genau ermittelt

werden, wie die Größe und Form der dispersen Phasen ihre Eigenschaften beeinflusst. Dies

wird in Kapitel 2 diskutiert, wo ein Ansatz vorgestellt und auf Tröpfchen angewandt wird,

der die Krümmungsabhängigkeit der Oberflächenspannung über den Exzessäquimolarradius

analysiert (Abschnitt 2.1). In Abschnitt 2.2 werden molekulare Simulationen dünner Filme

ausgewertet, um krümmungsunabhängige Größeneffekte zu untersuchen, und Abschnitt 2.3

behandelt Gasblasen im Gleichgewicht mit Flüssigphasen bei negativem Druck.

Kapitel 3 befasst sich mit Phänomenen an Festkörperoberflächen. Abschnitt 3.1 untersucht

den Kontaktwinkel von Tröpfchen auf ebenen Oberflächen. Hierbei wird das abgeschnitte-

ne Lennard-Jones-Potential eingesetzt, wobei die dispersive Wechselwirkungsenergie zwi-

schen Festkörper und Fluid variiert wird. Für den Kontaktwinkel ergibt sich eine Korre-

lation, die sich auch auf andere ähnliche Systeme übertragen lässt. Durch die Simulation

auf einem Siliziumoxidsubstrat chemisorbierter Alkylsilanschichten mit verschiedenen Alkyl-

kettenlängen werden in Abschnitt 3.2 selbstorganisierte Monoschichten untersucht. Aus den

Simulationen lassen sich Rückschlüsse über den Zusammenhang zwischen der Schichtdicke,

der Orientierung der Substituenten und der Beladung des Substrats ziehen, die insbesondere

zu einem besseren Verständnis von Elektronendichtemessungen führen können. Diese Experi-

mente werden oft anhand stark vereinfachter Modelle ausgewertet, was zu Ungenauigkeiten

führt, die durch eine Zusammenführung von Experiment und Simulation vermeidbar wären.

In Kapitel 4 werden zwei leistungsfähige Simulationscodes vorgestellt. Der Molekulardyna-

mikcodels1 mardyn(Abschnitt 4.1) hat es den molekularen Kraftfeldmethoden ermöglicht,

zu bisher unerreichten Längenskalen vorzustoßen. Mit einem effizienten dynamischen Last-

balancierungsverfahren bleibt es selbst für komplexe und heterogene Szenarien hochskalier-

bar. Codeoptimierungen für den Sandy-Bridge-Prozessor von Intel, wie etwa die Vektorisie-

rung und die Nutzung des Hyperthreading, werden in Abschnitt 4.2 dargestellt. Auf dieser

Grundlage wurden auf dem SuperMUC-Cluster schwache und starke Skalierungsexperimente

mit bis zu vier Billionen Teilchen und 141 016 Cores durchgeführt, in denen ein paralleler

Speedup von 133 000 erreicht wurde. Währendls1 mardynfür große heterogene Systeme am

leistungsfähigsten ist, stellt die thermodynamische Analyse kleiner homogener Systeme an-

dere Anforderungen. Für diese wurde das Programmms2entwickelt (Abschnitt 4.3).

Schlussfolgerungen aus diesen Entwicklungen werden in Kapitel 5 formuliert. Der Weg der

skalenübergreifenden molekularen Simulation von der Grundlagenforschung bis hin zum sys-

tematischen Einsatz in der Fluidverfahrenstechnik ist erst zum Teil zurückgelegt. Es zeichnet

sich aber bereits ab, dass es sich lohnen wird, ihn auch weiterhin zu beschreiten.



Contents XV

Contents

1 Introduction 3

1.1 The art of molecular modelling and simulation . . . . . . . . . . . . . . . . . 3

1.2 Pair potentials and molecular dynamics . . . . . . . . . . . . . . . . . . . . 7

1.3 The vapour-liquid surface tension . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Long-range corrections at planar interfaces . . . . . . . . . . . . . . . . . . 21

2 Finite-size effects for vapour-liquid interfaces 31

2.1 Excess equimolar radius of droplets . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Finite thickness of liquid films . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Density of dispersed gas bubbles . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Fluids in contact with solid surfaces 57

3.1 Wetting of planar solid surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Morphology of silane self-assembled monolayers . . . . . . . . . . . . . . . 62

4 Scalable molecular simulation software 71

4.1 Large systems in molecular dynamics . . . . . . . . . . . . . . . . . . . . . 71

4.2 Scalable multi-trillion molecule MD simulation . . . . . . . . . . . . . . . . 76

4.3 Molecular simulation of thermodynamic properties . . . . . . . . . . . . . . 84

5 Conclusion 93

Literature 97





List of symbols XVI I

List of symbols

Lat in Greek

A, A surface area α polarizability

A Helmholtz free energy β inverse temperatureβ = 1/T
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D dipole moment γ̄ effective surface tension
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O Landau«order of» symbol τ thermal critical scaling parameter
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1 Introduction

1.1 The art of molecular modelling and simulation

Molecular modelling and simulation is today an established discipline of simulation-based

engineering as an application of high-performance computing. It adapts molecular force field

methods, which emerged from the soft matter physics and thermodynamics communities [1],

to the needs of industrial users in chemical and process engineering.1 In recent years, highly

accurate molecular models have been developed for a wide variety of fluids, and by mas-

sive parallelization, molecular simulations of complex nanoscopic systems (approaching the

microscale) are feasible with a reasonable computational effort [3, 4].

We witness today the progress of molecular simulation from a set of theoretical academic

methods to an arsenal of robust tools for practical use which supplement experimental data

and replace experiments that are hazardous or hard to conduct [5]. This follows the general

pattern by which engineering increasingly drives scientific development in areas originating

from physics, building on substantial basic research efforts, as soon as they have become ripe

for technical application.

The degree of sophistication of molecular force field methods and the complexity of the si-

mulated systems varies considerably between the various fields of application. In particular,

the interdependence of elementary thermodynamic properties such as pressure, density, tem-

perature, enthalpy, and composition can be reliably investigated by simulating homogeneous

systems that contain up to 1 000 molecules [1]. With relatively little additional effort, higher-

order derivatives of the free energy (e.g. heat capacities or the speed of sound) are accessible

as well [6]; the case is similar for mechanical properties of solid materials [7]. By Grand

Equilibrium [8] or Gibbs ensemble simulation [9], vapour-liquid equilibria between homoge-

neous bulk phases, i.e. without an interface between them, can be efficiently and accurately

sampled [5, 10]. Systems where a phase boundary is explicitly present can also be treated.

Such simulations require more molecules, so that finite-size effects can be isolated [11], and

longer computations (i.e. with more simulation steps) need to be carried out, since fluid inter-

faces often relax more slowly than the homogeneous bulk fluid and exhibit more significant

1This section is based on Horschet al. [2].
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fluctuations, e.g. capillary waves, on a long time scale. A finite-size scaling analysis can help

to capture the critical point and the critical exponents [12].

This facilitates a modelling approach that has been very fruitful in recent years: Thereby, the

electrostatic features of a molecular model, i.e. the choice of parameters for point charges,

dipoles or quadrupoles, are determined from quantum chemical calculations. United-atom

sites interacting by the Lennard-Jones (LJ) potential are employed for the intermolecular re-

pulsion as well as dispersive London forces [1], also known as van der Waals forces. The

corresponding potential parameters are adjusted to optimize the overall agreement with ex-

perimental data [13]. These models account for the most important types of intermolecular

interactions, including hydrogen bonding [4]. Furthermore, they can serve to explain molec-

ular order in fluid systems (local concentrations, radial distribution functions, etc.). This dis-

tinguishes them from other approaches for describing fluid properties and explains why such

models yield reliable extrapolations in two ways: First, to conditions far beyond those where

the experimental data for the parameter fit were determined; second, to a wide variety of fluid

properties which were not considered during parameterization at all [14].

Furthermore, transferable pair potentials are available which directly map functional groups to

the model parameters of corresponding single-atom or united-atom interaction sites [15–17].

In this way, molecular simulation can deploy its predictive power, on the basis of a physically

sound modelling approach, even where the available set of experimental data reaches its limits.

Both Monte Carlo (MC) and molecular dynamics (MD) simulation are suitable for deter-

mining most thermophysical properties: MC simulation evaluates an ensemble average by

stochastically generating a representative set of configurations, i.e. position and momentum

coordinates of the molecules. Thereby, MC simulation uses the Metropolis algorithm (which

is randomized), whereas MD simulation computes a trajectory segment by integrating New-

ton’s equations of motion (which are deterministic). If the same molecular force field is used,

temporal and ensemble averaging lead to consistent results, since all thermodynamically rele-

vant systems are at least quasi-ergodic [1]. MC simulation does not rely on time and does not

require an explicit computation of momentum coordinates, which is advantageous for simula-

ting adsorption [18] and phase equilibria [5]; in these and similar cases, the most effective

methods involve grand-canonical or quasi-grand-canonical ensembles with a varying number

of molecules [11, 18]. For such methods, where new molecules are inserted into the sys-

tem, MD simulation has the disadvantage that momentum coordinates have to be determined

without introducing an additional perturbation. For more complex properties, however, e.g.

regarding non-equilibrium states and the associated relaxation processes, time-dependent phe-

nomena become essential, so that MD is the preferred simulation approach (cf. Fig. 1.1).

Where pure component models are available, the extension to mixtures is straightforward.

Combining rules can be used for predicting the unlike interaction parameters [20]. If suitable

experimental data are available, adjustable binary parameters can be specified to improve
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Figure 1.1: Top: MD simulation snapshot for Couette shear flow of methane in a graphite
nanopore [19]. Bottom: Entrance effects, adsorption/desorption kinetics, and
permeability of fluid methane in nanoporous carbon, employing non-equilibrium
MD simulation [19]. The simulations were conducted withls1 mardyn, cf. Sec-
tion 4.1.

mixture models [20–22]. This concept can also be applied to modelling fluid-wall interactions,

cf. Fig. 1.2 and Section 3.1.

Scientifically and technically, all preconditions for the introduction of molecular simulation

in an industrial environment are now fulfilled [4]. Organizational aspects relevant for this

process include institutional support, the active interest and involvement of both corporate

and academic partners, and channelling of the effort to a few selected simulation codes which

form a consistent toolkit. In this respect, the development in Great Britain can serve as a pos-

itive example, where a community centered around theComputational Collaboration Project

5 develops and applies the programsDL_POLY [23, 24] andDL_MONTE [25]. An exam-

ple for successful collaboration between academia and industry can be found in the United

States, where theIndustrial Fluid Properties Simulation Challengealso attracts international

attention and participation [14]. However, the corresponding programming efforts are highly
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Figure 1.2: MD simulation snapshot (left) and average fluid density contour plot (right) for a
sessile droplet on a solid substrate, cf. Section 3.1. The simulation was conducted
with ls1 mardyn.

fragmented: Parallel developments are attempted based on theAmber, CHARMM,LAMMPS,

NAMD andMCCCS Towheecodes, among many others [16, 26, 27].

In Germany, the strong orientation of the molecular thermodynamics community towards ap-

plications in chemical engineering guarantees an effective integration of engineering with high

performance computing. It is within this framework that, beside other very successful codes

like IMD [28, 29] and ESPResSo [30, 31], a software environment encompassing two ma-

jor components is developed: Thems2program (molecular simulation: second generation),

optimized for computing thermophysical properties of bulk fluids, andls1 mardyn(large sys-

tems 1: molecular dynamics) for large and heterogeneous systems. These two codes, their

functionality, and their performance are discussed in detail in Chapter 4.

From a computational point of view, large MC or MD simulations can better be tackled than

MD simulations of processes over a relatively long time span. By far the largest part of the

numerical effort is required for evaluating the force field, a task which can be efficiently dis-

tributed over multiple processes, as discussed above. In contrast, the temporal evolution along

a trajectory through the phase space cannot be parallelized due to its inherently sequential na-

ture. However, large and interesting systems generally also require more simulation time, not

only more molecules. From the point of view of thermodynamics and fluid process engineer-

ing, the criterion for the computational progress in molecular simulation should not be the

number of moleculesN, but rather an exponenta such that e.g. within a single day, at least

N = 103a molecules in a condensed state were simulated over at least 10a+4 time steps. This

would measure a proportional increase of the accessible length and time scales, which is what

real applications require.

By pushing this frontier forward, a wide spectrum of novel scale-bridging simulation ap-

proaches will become feasible, paving the way to a rigorous investigation of many size-

dependent effects, which on the microscale may be qualitatively different from the nanoscale.
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Following this route, major breakthroughs will be reached within the coming decade, assum-

ing that a research focus is placed onprocesses at interfaces. By focussing on such applica-

tions, cf. Fig. 1.1, an increase in the accessible length and time scale due to massively parallel

high-performance computing will lead to particularly significant improvements, opening up

both scientifically and technically highly interesting fields such as microfluidics (including

turbulent flow), coupled heat and mass trasfer, and design of functional surfaces to an investi-

gation on the molecular level.

For industrial use in correlating and predicting homogeneous fluid properties, the develop-

ment of integrated modelling and simulation frameworks for small systems, ensuring a short

response time, is more promising and important than the simulation of large systems. On

the other hand, many thermodynamic properties can also be reliably correlated and predicted

with molecular equations of state, following the statistical associating fluid theory [32–35]. In

combination with classical-mechanical density functional theory, this can even be extended to

interfacial properties, at a far smaller computational cost than MC or MD simulation [36–39].

In this context, molecular simulation can best be used for validating the equation of state as

well as its incorporation into density functional theory, and for the immediate vicinity of the

critical point where scale-bridging simulations are required and the other approaches break

down.

The present work discusses the state of the art of molecular modelling and simulation by high

performance computing (HPC), highlighting recent contritubions to this field and outlining

future perspectives. The rest of Chapter 1 introduces fundamental concepts and methods to

make the work self-contained. Sections 1.2 and 1.3 contain established material. However,

the present brief introduction cannot and does not aim to replace classical textbooks, such

as the statistical mechanics volume by Landau and Lifshitz [40], or the available compendia

on molecular simulation methods such as the book by Allen and Tildesley [1]. In Section

1.4, a novel planar cutoff correction scheme is introduced. On this basis, subsequent chapters

discuss MD simulation of vapour-liquid interfaces in nanosystems (Chapter 2), the contact

of a fluid with a solid substrate (Chapter 3), and the highly performant molecular simulation

codesls1 mardynandms2(Chapter 4). Finally, a conclusion is given (Chapter 5), reflecting

on the work of the recent years.

1.2 Pair potentials and molecular dynamics

Molecular modelling and simulation relies on a discrete representation of matter, i.e. each

molecule is explicitly considered rather than smeared out as in continuum methods. The in-

termolecular interactions are treated by classical mechanics. Molecular thermodynamics thus

occupies a middle position between quantum chemistry and computational fluid dynamics.
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Continuum Mechanics Molecular Simulation Quantum Chemistry

Continuous

matter and energy

Discrete matter,

continuous energy

Discrete energy levels,

particle-wave duality

Response to gradients

(Fick, Fourier, Ohm, . . . )

Interactions

between molecules
Schrödinger equation

Transport coefficients
Classical-mechanical

force field
Wave function

MD simulation can be employed to obtain transport coefficients and to parameterize the

boundary conditions of continuum simulations. Obversely, molecular modelling often re-

lies on quantum mechanical calculations, e.g. on the charge distribution within a molecule,

for assistance during force-field parameterization.

Treating molecules as discrete classical-mechanical bodies, molecular thermodynamics thus

considers the relationship between intermolecular interactions and the thermophysical be-

haviour of fluid systems [1]. Assuming pairwise additivity, the potential energy is given by a

sum over pair potentials

Epot(x) =
N−1
∑

k=1

N
∑

l=k+1

ui j (r i j ,φi j ), (1.1)

which depend on the distance between two molecules

r i j =
∣

∣

∣x j − xi

∣

∣

∣ (1.2)

and in certain cases also on their mutual orientationφi j . For many purposes, it is sufficient to

employ rigid models, which only consider external degrees of freedom, i.e. the translation and

rotation of entire molecules. Following this approach, the vibration and rotation of covalent

bonds within a single molecule is not modelled explicitly.

With a periodic boundary condition, a pseudo-infinite system is represented by a grid of identi-

cal, finite volumes, which are virtual copies of the microscopic box considered in a molecular

simulation, cf. Fig. 1.3. According to the minimum image convention, the pair potential is

only taken into account for the nearest periodic images of two moleculesi and j.

Intermolecular interactions are by convention separated into short-range contributions, which

decay fast in terms of the distancer i j , and electrostatic long-range interactions, which follow

Coulomb’s law [41, 42]

ui j =
qiq j

4πε̃r i j
, (1.3)

whereqi andq j are two interacting electric charges and ˜ε = 0.005 526 eV Å is the electric

constant, i.e. the permittivity of a vacuum. For molecular simulations, atomic units based on
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i

j

i’

j’

k

Figure 1.3: Ill ustration of the periodic boundary condition and the minimum image conven-
tion. In a molecular simulation following this approach, the interaction between
the moleculesi and j is not explicitly considered. Instead,i interacts withj′ (pe-
riodic image ofj), while j interacts withi′ (periodic image ofi), because they are
closer.

the convention

ε̃ =
1
4π

(1.4)

are usually employed to simplify the electrostatic terms. Higher-order electrostatic contribu-

tions are defined by the multipole expansion (charge, dipole, quadrupole, octopole, . . . ). In

practice, however, only the lower-order multipole moments up to the quadrupole are actually

considered, since the interaction due to higher-order moments decays very fast.

Short-range interactions also derive from the Coulomb equation. At very close intermolecular

distances, these are predominantly repulsive. This is due to the interaction between the orbitals

of neighbouring molecules

• by interpenetration, which increasesEpot due to a large local electron density, and

• by displacement, raising the two interacting orbitals to higher energy levels.

Furthermore, temporary and oscillating dipole moments are caused by fluctuations of the

charge distribution, i.e. by dispersion. A first-order approximation, considering that temporary

dipoles do not have a preferred orientation, cf. Fig. 1.4, does not yield any contribution of the

dispersion to the potential energy.

If it is taken into account that energetically favourable orientations of two temporary dipoles

towards each other are preferred, cf. Fig. 1.5, the dispersive interaction is found to be attractive
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Figure 1.4: Opposite orientations of temporary dipoles caused by dispersion are equally prob-
able.

due to the presence of induced dipoles. Following London [43], this contribution is given by

udisp
i j (r i j ) = −

3αiα j

2(ν−1
i + ν

−1
j )

r−6
i j + O

(

r−7
i j

)

, (1.5)

whereαi andα j are the polarizabilities of the interacting molecules, characterized by the

frequenciesνi andν j, respectively.

induced
temporary dipole

induction

dipole

Figure 1.5: Temporary dipoles tend to induce a dipole moment with an energetically
favourable orientation in neighbouring molecules. This causes the dispersive in-
teraction to be attractive on average.

The LJ potential [44]

uLJ
i j (r i j ) = 4ǫ















[

σ

r i j

]12

−
[

σ

r i j

]6 













, (1.6)

with the size parameterσ and the energy parameterǫ, contains both an attractive term, cor-

responding to ther−6 term of the dispersive interaction, cf. Eq. (1.5), as well as a repulsive

term. It is a suitable model for the short-range pairwise interactions between fluid molecules.

Two LJ interaction sites repulse each other forr i j < 21/6 σ, whereas forr i j > 21/6 σ, the LJ

potential is predominantly attractive, cf. Fig. 1.6.

The molecular model for a mixture containing several componentsi, j, k, . . . , consists of pair

potentials describing

• like interactions i ↔ i, j ↔ j, k↔ k, . . . , i.e. interactions between equal molecules,

• andunlike interactions i ↔ j, i ↔ k, j ↔ k, . . . , between unlike molecules.

For point charges and multipoles, Coulomb’s law applies to the unlike as it does to the like

interaction, and a further parameterization to mixture properties is neither required nor de-

sirable. For dispersion and repulsion, modelled by the LJ potential, various combining rules
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Figure 1.6: LJ potential (solid line) and distancer = 21/6 σ corresponding to the potential
minimum (dashed line). Repulsive forces dominate left of the dashed line, and
attractive forces due to dispersion dominate for larger distances between the in-
teraction sites.

exist, none of which are strictly rigorous or universally valid [20]. However, the modified

Lorentz combining rule for the size parameter

σi j =
η

2
(σi + σ j) (1.7)

and the modified Berthelot combining rule for the energy parameter

ǫi j = ξ
√
ǫiǫ j, (1.8)

can usually be employed with binary interaction parametersη andξ close to 1. Following this

approach, few experimental data for mixtures are sufficient to parameterize the unlike pair

potential in a reliable way [21, 45].

For large numbers of moleculesN it becomes computationally inefficient to evaluate Eq. (1.1)

and related expressions by computing the entire sum overN(N − 1)/2 pairwise interactions.

Instead, the near field is usually separated from the far field, and a cutoff radiusrc is introduced

as an upper limit of the distances which are explicitly considered by pair potentials.

In the far field, the approximation of a continuous density distribution (e.g. constant density)

can usually be justified. On this basis, interactions beyond the cutoff radius, i.e. withr i j ≥ rc,

are taken into account implicitly by a long-range correction (LRC). In a homogeneous sys-

tem,2 the LRC contribution of the LJ potential to the internal energy can thus be approximated

2Thecase of heterogeneous systems, e.g. at a phase boundary, is discussed in Section 1.4.
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by

ELRC =
1
2

N
∑

i=1

∫ ∞

rc
ρuLJ(r) 4πr2 dr = − 8π

3
ǫσ6

[rc]3
ρN + O

(

[

σ

rc

]9
)

. (1.9)

Various approaches exist for computing the LRC for electrostatic interactions. In many cases,

the reaction-field method [46, 47] can be employed, which assumes that the far field acts as a

dielectric continuum, leading to relatively straightforward correction terms.

However, the reaction-field method breaks down in presence of an external electric field.

Furthermore, it assumes that the near field is uncharged, which is not generally the case when

ions are present. In such cases, e.g. for molecular simulation of electrolyte solutions, more

elaborate correction schemes have to be used [48, 49]. These include several variants of Ewald

summation based on the fast Fourier transform [50], such as particle-mesh Ewald [51, 52] and

particle-particle particle-mesh Ewald summation, as well as the fast multipole method [53],

which is carried out in Cartesian space rather than in Fourier space.

In a MD simulation, the trajectory of a system is followed by numerically integrating the

classical-mechanical equations of motion, e.g. by the Verlet algorithm [54]

xk(t + ∆t) − xk(t) = xk(t) − xk(t − ∆t) + ∆t2ẍk,

xk(t + ∆t) = 2xk(t) − xk(t − ∆t) − ∆t2

m
∂H
∂xk

. (1.10)

The acceleration

ẍk =
fk
m
= − ∂H

m∂xk
(1.11)

is then given by the overall forcefk and the massm associated with the respective degree of

freedomk.

Following the leapfrog scheme, spatial coordinates and forces are computed at full time steps,

whereas velocities and momenta are obtained at half time steps, i.e. in the middle of an inte-

gration interval. Accordingly, a time step is then given by an iteration of a loop containing the

following operations:

1. Computation of positionsxk(t) = xk(t − ∆t) + ∆t ẋk(t − ∆t/2),

2. Computation of forcesfk(t) = −∂H / ∂xk,

3. Computation of velocities ˙xk(t + ∆t/2) = ẋk(t − ∆t/2)+ ∆t ẍk(t).

For MD simulations including solids or dense liquids, an integration time step of∆t ≈ 1 fs is

usually chosen, but depending on the considered system, up to∆t ≈ 10 fs can be viable for

fluids. Beside the pair potentials and forces, the virial

Π =

N−1
∑

i=1

N
∑

j=i+1

Πi j , (1.12)
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is computed in a molecular simulation as a sum of pairwise contributions

Πi j = −r i j f i j = −
dui j

dri j
r i j , (1.13)

on the basis of the force exerted by the moleculej on the moleculei

f i j =
dui j

dri j

r i j

r i j
, (1.14)

in terms of the distance vectorr i j = x j − xi. In the canonical, microcanonical, and grand

canonical ensembles, the ensemble average〈Π〉 of the virial is immediately related to the

pressure

p = ρT − 1
3V

〈

∑

{i, j}
r i j

dui j

dri j

〉

= ρT +
〈Π〉
3V

. (1.15)

Due to its relation to the mechanical pressure tensor, the virial can also be employed to com-

pute the surface tension at a planar phase boundary, cf. Section 1.3.

1.3 The vapour-liquid surface tension

The tension of a planar fluid interface can be defined in different ways, following a thermody-

namic or a mechanical approach.3 Thermodynamically, the surface tensionγ can be expressed

by the partial derivative of the free energyA over the surface areaA

γ =

(

∂A
∂A

)

N,V′,V′′,T

, (1.16)

at constant number of moleculesN (of all components), constant volumeV′ andV′′ of the

coexisting phases, and constant temperature. By molecular simulation, the thermodynamic

surface tension can be computed from the test area method [57], while grand canonical Monte

Carlo simulation can be employed to obtain the excess Landau free energy corresponding to

the respective density [58, 59].

For a mechanical definition, the surface tension is treated as causing a forceft acting in tan-

gential direction (with respect to the interface), i.e. a tendency of the interface to contract. The

mechanical surface tension

γ =
ft
ℓ

(1.17)

relates the magnitude of this force to the length of the contact lineℓ between the interface and

the surface of a mechanical object, e.g. a confining wall, on which the forceft acts.

3This section is based on the Introduction from Horschet al. [55] as well as Section II from Horschet al. [56].
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In a cuboid box with the extensionV = ℓx×ℓy×ℓz, which contains a planar interface normal to

theyaxis, the interface and the two faces of the box which are normal to thex axis have contact

lines with an elongation ofℓz, cf. Fig. 1.7. Each of these faces has an area ofAyz = ℓyℓz. The

tangential forceft = fx = γℓz constitutes a negative (contracting) contribution to the pressure,

acting in tangential direction, i.e. inx-direction here.
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Figure 1.7: Diagram illustrating the mechanical definition of the surface tension. The two
faces of the box with an orientation perpendicular to thex axis experience forces
in opposite directions, expressing the tendency of an interface situated in the cen-
tre of the box to contract. The magnitude of the forcefx is proportional to the
surface tensionγ and the length of the contact lineℓz.

The surface tension can thus be obtained from the deviation between the tangential and normal

eigenvaluespt andpn of the pressure tensor [60]

pt − pn = −
γℓz

Ayz
= − γ

ℓy
. (1.18)

In the example discussed above, the tangential pressurept = px = py acts in thex andz

directions parallel to the interface, while the normal pressure acts iny direction perpendicular

to the interface. It is well known that for planar fluid phase boundaries, the thermodynamic

and mechanical definitions ofγ coincide [61]. In molecular simulations, where the pressure

tensor is computed from the virial, an approach referred to as the virial route relies on Eq.

(1.18) to obtain the surface tension [62, 63].

While the methodology for computing the vapour-liquid surface tension is both clear and

simple in the case where a planar interface is simulated, the same problem becomes highly

intricate for curved interfaces, i.e. for bubbles and droplets on the nanometre length scale. The

methods available in the literature are all under dispute as regards their theoretical validity

and accuracy. At a curved interface, moreover, the mechanical and thermodynamic surface

tensions are not identical. Instead, the respective methods yield contradicting results, and for

a virial route which is consistent with statistical mechanics, a second-order virial, based on

the second derivative of the pair potential, needs to be introduced [64].

Furthermore, nano-scale liquid droplets or gas bubbles cannot be characterized sufficiently

by a single effective radius. Instead, the Laplace radiusRL (also called«surface of tension»
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radius) is distinct from the equimolar radiusRe, which is also known as the Gibbs adsorp-

tion radius. For a single-component droplet, the latter is defined by the zero excess density

criterion
∫ Re

0
r2 [

ρ(r) − ρ′(µ, T)
]

dr +
∫ ∞

Re

r2 [

ρ(r) − ρ′′(µ, T)
]

dr = 0, (1.19)

by comparing the radial density profileρ(r) with a step function based on the bulk liquid and

vapour densitiesρ′ andρ′′ (as functions ofµ andT). Therein,r denotes the distance from the

centre of mass of the liquid droplet.

The Laplace radius is defined by the Laplace equation [65]

RL =
2γ
∆p

, (1.20)

in terms of the pressure difference∆p between both phases and the surface tension of the

curved interface. This radius can be related to the surface area and the volume of the droplet

RL dA= 2dV. (1.21)

Modified versions of the Laplace equation, which allow for the use of different effective radii

in an analogous way, were developed by Buff [66, 67] and Kondo [68].

For spherical interfaces, the mechanical route to the surface tension is based on the Bakker-

Buff equation [60, 67, 69, 70]

γ = R−2
L

∫ ∞

0

[

pn(r) − pt(r)
]

r2 dr, (1.22)

in terms of the normal componentpn(r) and the two (equal) tangential componentspt(r) of

the diagonalized pressure tensor, where the integration starts from the centre of the droplet,

i.e. from r = 0. This expresses the work required for a reversible isothermal deformation of

the system that leads to an infinitesimal increase of the surface area at constant volume. It is

sufficient to compute either the normal or the tangential pressure profile, since at a spherical

interface, both are related by [70, 71]

dpn

d ln r
= 2(pt − pn) . (1.23)

At mechanical equilibrium, Eq. (1.22) thus transforms to [70]

γ3 = −∆p2

8

∫ r=∞

r=0
r3 dpn(r), (1.24)

a term in whichRL no longer appears. The Laplace radiusRL can then be obtained from Eq.

(1.20).
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The most widespread implementation of this approach in terms ofintermolecular pair po-

tentials makes use of the Irving-Kirkwood (IK) pressure tensor [72], which was applied to

spherical interfaces by Buff [67]. It underlies the simulation studies of Vrabecet al. [63] as

well as those of van Giessen and Blokhuis [73]. The normal component of the IK pressure

tensor is given by [70, 72]

pn(r) = Tρ(r) +
∑

{i, j}∈A
−

dui j

dri j

∣

∣

∣r×r i j

∣

∣

∣

4πr3 r i j
, (1.25)

whereinA contains all pairs of moleculesi and j which are connected by a line that inter-

sects the sphere of radiusr around the centre of mass of the liquid droplet. The intersection

coordinates (relative to the centre of mass) are represented byr and the distance between the

molecules byr i j = x j − xi, while dui j/dri j is the force acting betweeni and j, cf. Eqs. (1.12)

– (1.15).

However, several observations indicate that the accuracy of the mechanical route to the surface

tension of curved interfaces may be limited:

• Irving and Kirkwood [72] originally proposed their expression for the special case of«a

single component, single phase system». Its derivation relies on truncating an expansion

in terms of derivatives of the pair densityρ(2) after the first term, thereby disregarding

the density gradient completely. For a liquid droplet, this can lead to inaccuracies:«at

a boundary or interface . . . neglecting terms beyond the first may not be justified» [72].

Nonetheless, Blokhuis and Bedeaux [74] have found that the IK tensor leads to the

correct outcome for∆p (to third order in terms of equimolar curvature).

• By construction, the mechanical route cannot be separated from the assumption of a

mechanical equilibrium, e.g. as expressed by Eqs. (1.22) to (1.24). For nanoscopic

liquid droplets, however, the contribution to the partition function due to configurations

that deviate from the equilibrium shape cannot be neglected, and it is not clear to what

extent the spherical average of the pressure tensor succeeds in accounting for the free

energy contribution of capillary waves, i.e. the excited vibrational modi of the interface

[58, 75].

• The non-unique nature of the pressure tensor, which for a planar interface does not

have a consequence on the computed value of the surface tension [62], leads to an

inconsistent description for a curved interface [76–78]. The Harasima pressure tensor

[69], where the setA is defined differently and the tangential pressure profilept(r) is

computed instead of the normal componentpn(r), has been found to agree rather well

with the IK tensor [62, 63, 79]. However, as proven by Lauet al. [64], a second-

order virial expression needs to be taken into account for spherically curved interfaces.

Neither the IK pressure tensor nor others can therefore lead to an accurate outcome.
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The test-area route to the surface tension is based on Bennett’s[80] approach for molecular

simulation of free energies and entropic quantities. In the canonical ensemble, the free energy

difference∆A = A1−A0 between two states with equalN, V andT is given by the quotient of

the respective canonical partition functionsZ0 andZ1, which can be evaluated from ensemble

averages [80]

exp

(

∆A
T

)

=
Z0

Z1
=

〈

min
(

exp(∆E/T), 1
)〉

1
〈

min
(

exp(−∆E/T), 1
)〉

0

, (1.26)

in terms of the internal energy difference∆E = E1 − E0. The index of the angular brackets

denotes the system over which an ensemble average is taken. Bennett proposed the determi-

nation of these energy differences from«separately-generated samples» [80] for E0 andE1. If

the two systems differ in the area of a phase boundary, then the free energy difference can be

related to the surface tension, assuming that all other deviations between them are accurately

taken into account.

Gloor et al. [81] introduced a version of this approach where differences between the two

states are obtained from a single simulation run for an unperturbed system with the partition

functionZ0. Corresponding configurations of the second, perturbed system are generated by

performing small affine transformations, keeping the volume and the number of molecules in

both phases constant. In the limit of an infinitesimal distortion of the system, Eq. (1.26) can

be simplified as [81, 82]
∆A
T
= − ln

〈

exp

(

−∆E
T

)〉

0

, (1.27)

as the probability distribution functions of the ensembles corresonding to the unperturbed and

the perturbed system converge, so that a separate sampling is no longer required. A third-order

expansion in the inverse temperature [82]

∆A
T
=
〈∆E〉

T
−

〈

∆E2
〉

− 〈∆E〉2

2T2
+

〈

∆E3
〉

− 3
〈

∆E2
〉

〈∆E〉 + 2 〈∆E〉3

6T3
, (1.28)

can be used to increase the precision of the simulation results [64, 81, 83]. The surface tension

is then immediately obtained from∆A/∆A, since the distortion of the interface itself (as

opposed to its increase in area) makes a negligible contribution to the free energy difference

[84].

In the adaptation of the test-area method to curved interfaces developed by Sampayoet al.

[83], an affine transformation scales one of the Cartesian axes by the factor 1/(1 + Ξ) and

the remaining ones by (1+ Ξ)1/2. For Ξ > 0, this creates an oblate shape and the area

of the surface of tension is accordingly increased [85]. It can be shown that the first-order

term in Eq. (1.28) is equivalent to the Kirkwood-Buff [86] mechanical route expression for

the surface tension [87]. The higher-order terms therefore presumably capture the deviation

between the mechanical and free-energy difference routes due to fluctuations or, equivalently,
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the contribution of non-equilibrium configurations and the second-order virial toγ. Thus, the

higher-order contribution to Eq. (1.28) may be related to the closed expression derived by

Percuset al. [88] for the deviation between the grand potential and a volume integral over the

local pressure.

From this point of view, the following aspects of the method merit further consideration:

• While finite differences of higher order are taken into account for the energy, no such

terms are considered for the surface area here. Clearly, the variance of∆E is partly

caused by the variance of∆A. The use ofRe for estimating∆A may lead to further

deviations.

• The variance of∆E accounts for surface oscillations such as long wave-length capillary

waves, which directly relate to equilibrium properties of the interface and therefore

do not depend on the statistical-mechanical ensemble [77]. However, it can also be

influenced by fluctuations regardingρ′ (at constantV′) or V′ (at constantρ′). These

modi are ensemble dependent, since they are coupled to the density of the vapour phase.

Canonically, their amplitude increases with the total volume and is ill-defined in the

thermodynamic limitV → ∞. Therefore, the surface tension from the free-energy

difference route may depend on the constraints imposed on the system by the ensemble.

• Although the volume associated with each of the phases is invariant for test-area trans-

formations, there is still a distortion of the sample with respect to the equilibrium

conformation. The method is therefore limited to isotropic phases, since shearing an

anisotropic phase will induce an elastic contribution to∆A from the bulk region as

well.

Following the approach of Gibbs [89], the Helmholtz free energy of a system containing two

phases coexisting at an interface is decomposed into

A = A′ +A′′ +AE, (1.29)

whereA′ is the free energy of the homogeneous bulk liquid withN′ molecules, the volumeV′,

and the temperatureT. Analogously,A′′ is the free energy of the homogeneous bulk vapour

at N′′, V′′, andT. The excess termAE then describes the deviation of the free energy of the

actual system, containing both phases and the interface, from sum of the free energies of the

two homogeneous reference systems.

In this way, excess contributions are ascribed to the interface in all extensive quantities with

the exception of the volume

V = V′ + V′′, (1.30)

since in the Gibbs formalism, the dividing surface is assumed to be a strictly two-dimensional

object without its own excess volume, i.e.VE = 0. Neglecting interfacial adsorption as well
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as finite-size effects onγ, the surface excess free energy is often approximated by

AE ≈ γA. (1.31)

While such a simplification is justified for macroscopic systems, if an equimolar (zero-adsorp-

tion) dividing surface is used, this is not rigorous for small systems [90], where, in general,

significant finite-size effects can be present even for planar phase boundaries [91]. The size

dependence of the surface tension is further discussed in Chapter 2, proving thatγ is far

from constant for dispersed fluid phases. Nonetheless, thermodynamic relations containing

interfacial excess quantities apply, even if the magnitude of these quantities may be size-

dependent and hard to predict or to correlate phenomenologically.

Furthermore, since finite-size effects are much less pronounced for homogeneous than for

heterogeneous systems, it can be assumed that general thermodynamic relations which do not

include interfacial properties remain accurate for bulk fluid systems down to the nanoscale.

This includes the following identity for the Gibbs free energy of a homogeneous system

G = A + pV =
∑

i

µiNi , (1.32)

by which Eq. (1.29) transforms to

A =
∑

i

µi(N
′
i + N′′i ) − p′V′ − p′′V′′ +AE, (1.33)

assuming that the two coexisting phases are in equilibrium thermally (T′ = T′′) and chemi-

cally (µ′i = µ
′′
i ). Therein, the first term can be rewritten as

µi(N
′
i + N′′i ) = µi(Ni − NE

i ), (1.34)

for each componenti, in terms of the surface excess number of moleculesNE
i , based on the

identity

Ni = N′i + N′′i + NE
i . (1.35)

By differentiation

dA =
∑

i

[

µi(dNi − dNE
i ) + (Ni − NE

i ) dµi

]

−p′ dV′ − V′ dp′ − p′′ dV′′ − V′′ dp′′ + dAE, (1.36)

is then obtained, which can be compared with the total differential forA

dA =
∑

i

µi dNi − p′ dV′ − p′′ dV′′ − S dT+ γ dA, (1.37)
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as a function ofN, V′, V′′, T, andA, whereS is the total entropy of the system. The subtraction

(1.37)− (1.36) yields

0 =
∑

i

[

µi dNE
i + (NE

i − Ni) dµi

]

+ V′ dp′ + V′′ dp′′ − S dT+ γ dA− dAE (1.38)

for the whole system, and

0 = −
∑

i

N′i dµi + V′ dp′ − S′ dT, (1.39)

0 = −
∑

i

N′′i dµi + V′′ dp′′ − S′′ dT, (1.40)

for the two homogeneous reference systems without an interface, where all surface excess

terms are absent. By subtracting the reference systems from the whole system, i.e. (1.38)−
(1.39)− (1.40), a general thermodynamic relation between the characteristic surface excess

terms is obtained

0 =
∑

i

µi dNE
i − SE dT + γ dA− dAE, (1.41)

whereSE = S − S′ − S′′ is the surface excess entropy. The excess free energy of the surface

contains contributions of the adsorption and the surface tension

AE =
∑

i

µiN
E
i + γ̄A, (1.42)

dAE =
∑

i

(

µi dNE
i + NE

i dµi

)

+ γ̄ dA+ A dγ̄, (1.43)

which defines an effective tension ¯γ. Based on this decomposition, Eq. (1.41) transforms into

a thermodynamically rigorous version of the Gibbs adsorption equation

A dγ̄ + (γ̄ − γ) dA= −SE dT −
∑

i

NE
i dµi, (1.44)

which holds for arbitrary two-phase equilibria, even for dispersed phases on the nanometre

length scale.

The effective tension ¯γ, defined by Eq. (1.42), may deviate from the thermodynamically ac-

curate value of the surface tensionγ, defined by Eq. (1.16). For macroscopic systems, based

on the assumption ¯γ ≈ γ, Eq. (1.44) can be simplified to [92]

dγ = −Θ dT −
∑

i

Γi dµi (1.45)

which is the better known form of the Gibbs adsorption equation. Therein,Θ = SE/A is the

interfacial entropy andΓi = NE
i /A is the adsorption of componenti at the interface. This sim-
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plified adsorption equation applies when finite-size effects on the surface tension are absent.

In all other cases, the thermodynamically accurate adsorption equation must be employed,

which is given by Eq. (1.44).

1.4 Long-range corrections at planar interfaces

In MD simulations, as discussed in Section 1.2, intermolecular interactions are usually evalu-

ated explicitly up to a specified cutoff radiusrc, beyond which the interactions are covered by

a LRC, following a mean-field approach [1, 17], which compensates the cutoff.4 In homoge-

neous simulations, the LRC is typically only considered for the energy and the virial [46, 94],

while in inhomogeneous systems also the force has to be corrected appropriately [48, 95, 96].

If a small cutoff radius is used without a LRC, the surface tension and other thermodynamic

properties are known to deviate significantly from the correct values [63, 97].

For homogeneous systems, typical correction strategies are straightforward, making the ap-

proximation that the radial distribution function (RDF) is unity beyond the cutoff radius. They

may rely on a site-site correction [1] or on centre-of-mass (COM) correction approaches, em-

ploying angle averaging [98] or the reaction field method [47, 99]. For inhomogeneous con-

figurations, fast multipole methods [53, 100], slab-based LRC [95, 101–103], meanM-body

methods [104–106], or Ewald summation techniques [50, 107, 108] are used. Recent imple-

mentations of the slab-based and Ewald summation techniques yield very similar results for

planar interfaces [95, 109].

In addition to the LRC approach, the cutoff scheme plays an important role. A site-site cutoff

scheme consumes a much larger amount of computing time, because every site-site distance

has to be evaluated and compared to the cutoff radius. Hence, a COM cutoff scheme should

be generally preferred. However, the LRC has to be consistent with the chosen scheme [98,

110]. It is explained here how the slab-based LRC for inhomogeneous systems, which was

introduced by Janěcek [95], can be combined with the COM cutoff method by Lustig [98],

which is based on angle averaging. Thereby, the potential energy of moleculei, given by

Epot
i =

∑

r i j<rc

ui j + ELRC
i , (1.46)

is separated into an explicitly computed contribution and the LRC contribution. For systems

with planar symmetry, such as a planar liquid film surrounded by vapour, it is sufficient to

compute the LRC in terms of the coordinate normal to the interface, employing a slab-based

approach [95, 103]. Here, the interface is assumed to be normal to they axis. The correction

4This section is based on Werthet al. [93].
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term ELRC
i is then a sum overnb slab-shaped bins with respect to the interactions between

moleculei and the molecules from bink

ELRC
i =

nb
∑

k=1

ELRC
ik . (1.47)

Following Janěcek [95], the correction termELRC
ik is obtained by integration over the bin vol-

ume

ELRC
ik = 2πρ(yk)∆y

∫ ∞

r ′
dr u(r)

√

r2 − r2
ik, (1.48)

where∆y is the bin thickness,r ik is the distance between the moleculei and the bink, andρ(yk)

denotes the mean density within the bink, cf. Fig. 1.8. As usual, it is assumed by Janeček [95]

that within each of the slab-shaped bins,g(r) ≈ 1 holds for the RDF beyond the cutoff radius.

rc

rik < rc ril > rc

∆y

yk yi yl

Figure 1.8: Relevant distances for the LRC approach by Janeček [95], cf. Eqs. (1.48) and
(1.49).

As discussed by Sipersteinet al. [111], the lower boundr ′ of the integration has to be selected

appropriately, as shown in Fig. 1.8. Ifr ik is smaller than the cutoff radius,rc has to be used as

the lower integration bound, otherwise it isr ik [95, 111]

r ′ =



















r ik, if r ik > rc,

rc, otherwise.
(1.49)

This definition ofr ′ has to be employed in Eq. (1.48) as well as the analogous expressions for

the force and the virial.

Janěcek’s approach yields results that are hardly dependent on the cutoff radius for the single-

site LJ fluid, down torc = 2.5σ [95], cf. Section 2.2. It is also directly suitable for multi-site

models if the molecular simulation code is based on a site-site cutoff scheme.
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However, for molecules consisting of several LJ sites, a COM cutoff scheme is more efficient,

because only the distances between the centres of mass have to be evaluated during the neigh-

bourhood search. In this case, angle averaging as proposed by Lustig [98] is required for the

LRC, because the orientation of the molecules cannot be considered explicitly by the LRC.

The present study introduces such an approach and applies it to the LJ potential in terms of

the distancers between two interaction sites, which may deviate from the distancer between

the centres (of mass) of the molecules.

Three cases have to be distinguished here, cf. Fig. 1.9. For a given inter-centre distancer,

only the centre-to-centre (C–C) distance is uniquely known, whereas the centre-to-site (C–S)

and site-to-site (S–S) distances depend on the mutual orientation of the molecules. The term

rs thus has to be an average over all molecular orientations with the same C–C distancer [98].

C–C

+

+

+

C–S
R

+

+

+

+

+

+

S–S
R1 R2

Figure 1.9: Ill ustration of the three different cases discussed here. Sites in the COM interact
with each other by a C–C interaction (top), as opposed to the C–S interaction
(middle) and the S–S interaction (bottom). The distance of the sites from the
COM of their molecule is denoted byR. The dots indicate the COM, while the
crosses denote the site positions.

In the C–C case, i.e. for the interaction between LJ sites superimposed with the molecular

COM, the distancers is equal to the C–C distancer, and no angle averaging is required.

For the C–C case, the reader is referred to Janeček [95] who derived correction terms for

the potential energy, virial and force, following the approach outlined above. In the present

section, Janěcek’s approach is generalized such that the COM cutoff scheme can be applied

to C–S and S–S interactions with a similar accuracy.
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In the C–S case, one of the sites is not in the molecular COM, i.e. it is situated at a distance

R from the COM. The C–S case does not exist on its own, because C–C and S–S interactions

are also always present in such a scenario. The angle-averaged value ofr−2l
s , with l ∈ N, is

given by [98]

r−2l
s =

(r + R)2−2l − (r − R)2−2l

4rR(1− l)
, (1.50)

wherel = 3 or 6, respectively, for the dispersive or repulsive contributions to the LJ potential.

The correction term for the potential energy is then a combination of Eqs. (1.48) and (1.50)

ELRC
ik = 2πρ(yk)∆y

∫ ∞

r ′
4ǫr

[

σ12r−12
s − σ6r−6

s

]

dr

=
2πǫρ(yk)∆y

R

∫ ∞

r ′

[

(r − R)−10 − (r + R)−10

5σ−12
− (r − R)−4 − (r + R)−4

2σ−6

]

dr

=
2πǫρ(yk)∆yσ3

3R

[

(r ′ − R)−9 − (r ′ + R)−9

15σ−9
− (r ′ − R)−3 − (r ′ + R)−3

2σ−3

]

. (1.51)

The correction term for the force is obtained in a similar manner

f LRC
ik = −2πρ(yk)∆y

∫ ∞

r ′

∂u
∂rs

r ik dr

=
2πǫρ(yk)∆yσ2r ik

Rr′

[(r ′ − R)−10 − (r ′ + R)−10

5σ−10

−(r ′ − R)−4 − (r ′ + R)−4

2σ−4

]

. (1.52)

The correction term for the virial is separated into its normal and tangential contributions. The

normal contribution (perpendicular to the interface) corresponds to they direction here, and

the tangential contribution corresponds to thex andz directions. The term for the virial in

normal direction

ΠLRC
ik,n = −πρ(yk)∆y

∫ ∞

r ′

∂u
∂rs

r2
ik dr

=
πǫρ(yk)∆yσ2r2

ik

Rr′

[(r ′ − R)−10 − (r ′ + R)−10

5σ−10

−(r ′ − R)−4 − (r ′ + R)−4

2σ−4

]

, (1.53)

is analogous to the force, while the LRC expression for the tangential virial

ΠLRC
ik,t = −1

2
πρ(yk)∆y

∫ ∞

r ′

∂u
∂rs

(

r2 − r2
ik

)

dr

=
πǫρ(yk)∆yσ2

2Rr′

[(r ′ − R)−10 − (r ′ + R)−10

5σ−10
− (r ′ − R)−4 − (r ′ + R)−4

2σ−4

]

(

r2 − r2
ik

)

+
πǫρ(yk)∆yσ3

3R

[(r ′ − R)−9 − (r ′ + R)−9

15σ−9
− (r ′ − R)−3 − (r ′ + R)−3

2σ−3

]

, (1.54)
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is slightly more complicated. In the S–S case, the correction terms are of similar form. Both

sites are not in the COM of their molecule, i.e. they are separated from it by the distancesR1

andR2, respectively. The corresponding expression forr−2l
s has also been derived by Lustig

[98]

r−2l
s =

(r + R+)3−2l − (r + R−)3−2l − (r − R−)3−2l + (r − R+)3−2l

8rR1R2(1− l)(3− 2l)
, (1.55)

with R+ = R1 + R2 andR− = R1 − R2. The correction terms for the potential energy and the

force are calculated in the same way as for the C–S case

ELRC
ik =

πǫρ(yk)∆yσ4

12R1R2

[(r ′ + R+)−8 − (r ′ + R−)−8 − (r ′ − R−)−8 + (r ′ − R+)−8

30σ−8

−(r ′ + R+)−2 − (r ′ + R−)−2 − (r ′ − R−)−2 + (r ′ − R+)−2

σ−2

]

, (1.56)

f LRC
ik =

πǫρ(yk)∆yσ3r ik

3R1R2r ′

[(r ′ + R+)−9 − (r ′ + R−)−9 − (r ′ − R−)−9 + (r ′ − R+)−9

15σ−9

−(r ′ + R+)−3 − (r ′ + R−)−3 − (r ′ − R−)−3 + (r ′ − R+)−3

2σ−3

]

, (1.57)

and the LRC contribution to the normal virial in the C–S case is given by

ΠLRC
ik,n =

πǫρ(yk)∆yσ3ρ2
ik

6R1R2r ′

[(r ′ + R+)−9 + (r ′ − R+)−9

15σ−9

−(r ′ + R−)−9 + (r ′ − R−)−9

15σ−9
− (r ′ + R+)−3 + (r ′ − R+)−3

2σ−3

+
(r ′ + R−)−3 + (r ′ − R−)−3

2σ−3

]

, (1.58)

while the corresponding tangential expression is

ΠLRC
ik,t =

πǫρ(yk)∆yσ3

12R1R2r ′

[(r ′ + R+)−9 + (r ′ − R+)−9

15σ−9

−(r ′ + R−)−9 + (r ′ − R−)−9

15σ−9
− (r ′ + R+)−3 + (r ′ − R+)−3

2σ−3

+
(r ′ + R−)−3 + (r ′ − R−)−3

2σ−3

]

(

[r ′]2 − r2
ik

)

+
ELRC

ik

2
. (1.59)

The corrections for the normal and tangential virial are used for the pressure calculation. The

surface tensionγ can be obtained from the deviation between the respective contributionsΠn

andΠt to the virial, which is equivalent to an integral over the differential pressurepn − pt

γ =
1

2A
(Πn − Πt) =

1
2

∫ ∞

−∞
(pn − pt) dy, (1.60)

cf. Eq. (1.18), where 2A denotes the surface area of the two dividing surfaces [62, 95].
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Figure 1.10:Saturated liquid density over the cutoff radius for the two-centre LJ model
fluid. Comparison between simulations without LRC (diamonds), the site-based
approach (squares), the present approach (bullets), and the reference values
(dashed lines), cf. Stollet al. [112].

The above correction terms were implemented in the molecular dynamics codels1 mardyn,

cf. Section 4.1. For an assessment of the present combination of the methods by Janeček

[95] and Lustig [98], the two-centre LJ model fluid and literature models for two real fluids

were considered: Carbon dioxide was described by the rigid three-site LJ model plus point

quadrupole model of Merkeret al. [113], and cyclohexane was modelled by six LJ interaction

sites, also following Merkeret al. [114]. Carbon dioxide is particularly relevant as a test case,

since it combines C–C, C–S, and S–S interactions. The point quadrupole was assumed to have

no preferred orientation beyond the cutoff radius, which yields a vanishing LRC contribution

to all properties, including the potential energy.

The equations of motion were solved with a time step of∆t = 0.001σ
√

m/ǫ for the two-centre

LJ model fluid and∆t = 1 fs for CO2 and cyclohexane, and the simulations were conducted

in the canonical ensemble withN = 16 000 molecules. The liquid phase was in the centre

of the simulation volume, surrounded by vapour phases on both sides. The elongation of the

simulation volume normal to the interface was between 60 and 80σ to limit the influence

of finite size effects [115], which may be significant for thin liquid films, cf. Section 2.2.

The thickness of the slab-shaped bins for the LRC computation was∆y ≈ 0.1σ in all cases.

The spatial extension of the simulation volume in the other directions was at least 20σ to

properly account for the presence of capillary waves [116]. For scaling tests, the length of

the simulation volume iny direction was varied. The equilibration was conducted for 200 000

time steps and the production runs for 800 000 time steps. The statistical errors were estimated
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to be three times the standard deviation of four block averages,each over 200 000 time steps.

103 104 105 106 107 108

100

101
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105

N

t
/
s

Figure 1.11:Computing time for 100 time steps with a single processing unit over the
molecule numberN. The bullets correspond to the computing time for the ex-
plicitly evaluated interactions. The computing time for the LRC (squares) is
considerably smaller.

In Fig. 1.10, the results for the two-centre LJ model fluid are compared with data from Stoll

et al. [112], who employed the Grand Equilibrium method, where interfaces are absent, with

a cutoff radius ofrc = 5σ. In addition, simulation results without any LRC are included here,

representing the extreme case where long-range interactions are completely neglected. To

underline the necessity of angle averaging, Janeček’s original approach [110] was also applied

here with a COM cutoff scheme (although it was designed for a site-site cutoff scheme) for

purposes of comparing the numerical accuracy. This is referred to as the site-based approach

in the following.

The results for the saturated liquid density that were determined with the present LRC ap-

proach hardly show any dependence on the cutoff radius for the lower two temperatures,

while the site-based approach and the simulations without LRC show significant deviations

from the reference saturated liquid density. Simulations without LRC were only performed

for comparison near the triple point. At the highest temperature, both LRC approaches exhibit

deviations from the reference case for small cutoff radii.

Furthermore, a simulation series on a single processing unit (Intel Xeon E5-2670) with a

varying number of two-centre LJ molecules (elongationℓ = σ) was carried out. The chosen

temperature (T = 0.979ǫ) is close to the triple point of this fluid [112]. Figure 1.11 shows the

computing time for 100 time steps in the canonical ensemble. Due to the underlying linked-

cell algorithm [117], the computing time for the explicitly evaluated interactions scales almost

perfectly with the molecule numberN. Only for small systems (N < 10 000), the LRC does

not perfectly scale with the molecule number. However, even in this case, the computational
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Figure 1.12:Surface tension over the cutoff radius for the two-centre LJ model fluid, carbon
dioxide and cyclohexane. Comparison between simulations without LRC (di-
amonds), the site-based approach (squares) and the present approach (bullets).
The temperature wasT = 0.979ǫ for the two-centre LJ model fluid (top), 220 K
for carbon dioxide (centre) and 330 K for cyclohexane (bottom).
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effort for the LRC is more than one order of magnitude smaller than that for the explicitly

evaluated interactions.

For molecular modelling and simulation of fluids at interfaces, it is crucial to capture the

vapour-liquid surface tension correctly. At the lowest temperature considered for each of the

fluids, the surface tension was determined here by the three different approaches. Figure 1.12

shows the surface tension over the cutoff radius for the two-centre LJ model fluid as well as

carbon dioxide and cylcohexane. The number of time steps was enlarged to four million to

reduce statistical uncertainties and to better identify systematic deviations. Since cyclohexane

is a much larger molecule than the others considered in this work, where all sites have a

distance of approximately 0.52 to 0.54σ from the molecular COM, a cutoff radius of 2.5σ

is insufficient. Nonetheless, even simulations with a cutoff radius of 3σ yield a satisfactory

level of accuracy. Only for a temperature of about 0.9Tc, a larger cutoff needs to be specified

to obtain the right value for the surface tension.

The present LRC approach thus yields very good results for saturated liquid density and the

surface tension, showing only a weak dependence on the cutoff radius. It is numerically

efficient, consumes only a small amount of computing time, and scales well for systems with

very large numbers of molecules.
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2 Finite-size effects for vapour-liquid

interfaces

2.1 Excess equimolar radius of droplets

The macroscopic capillarity approximation consists in neglecting the curvature dependence

of the surface tensionγ of a spherical liquid droplet.1 Accordingly, the surface tension of a

curved interface in equilibrium is approximated by the valueγ0 in the zero-curvature limit,

i.e. for a planar vapour-liquid interface. The Young-Laplace equation [65, 118] for spherical

interfaces relates the macroscopic surface tension to a characteristic radius of the liquid droplet

Rκ =
2γ0

p′ − p′′
=
γ0

C , (2.1)

which will be referred to as the capillarity radius here; the notationC = (p′ − p′′)/2 for

half of the difference between the liquid pressurep′ and the vapour pressurep′′ is introduced

for convenience. Both the droplet radius and the pressure difference characterize the extent

by which the surface is curved. The surface tensionγ0 of the planar vapour-liquid phase

boundary, which is relatively easy to access experimentally, couples 1/Rκ andC, i.e. two

measures of curvature, as a proportionality constant.

For curved interfaces in equilibrium, the chemical potentialµ deviates from its saturated value

µs(T) for a flat vapour-liquid interface at the same temperatureT. In case of a droplet, both

phases are supersaturated, cf. Section 1.3. In combination with an equation of state for the

bulk fluid, microscopic properties such as the radius of a small liquid droplet can be deduced

from the macroscopic state of the surrounding vapour, i.e. from its supersaturation ratio, and

vice versa.

For nanodroplets, the deviation between the capillarity radiusRκ, cf. Eq. (2.1), the equimolar

radiusRe, cf. Eq. (1.19), and the Laplace (surface of tension) radiusRL, cf. Eq. (1.20), cannot

be simply neglected. As Tolman [84, 119, 120], following Gibbs, suggested on the basis of

interfacial thermodynamics, one of these deviations, now commonly referred to as the Tolman

1This section is based on Horschet al. [56].
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length

δ = Re − RL, (2.2)

characterizes the curvature dependence of the surface tension [120]

d ln RL

d ln γ
= 1+

1
2













δ

RL
+

[

δ

RL

]2

+
1
3

[

δ

RL

]3










−1

. (2.3)

This relation is often transformed into a polynomial expansion forγ0/γ, which contains an

infinite number of terms and has to be truncated, e.g. after the second-order contribution in

terms of curvature [121]

γ0

γ
= 1+

2δ0

RL
+ 2

(

ℓB

RL

)2

+ O
(

R−3
L

)

. (2.4)

Here, δ0 is the Tolman length in the limit of an infinite radius (i.e. zero curvature). The

Block lengthℓB characterizes the effect of Gaussian curvature [121, 122], which becomes

predominant whenδ0 is very small or for systems where, due to an inherent symmetry,δ0 = 0

holds by construction. In practice, one of the major problems of the Tolman equation is that it

analyses the surface tension in terms of the radiiRe andRL, cf. Eqs. (1.19) and (1.20). While

Re can be immediately obtained from the density profile,RL is by definition related toγ itself.

If the surface tension of the curved interface is not known precisely, the surface of tension

radiusRL is correspondingly uncertain.

To resolve this issue, Tolman’s theory is reformulated here in terms ofRκ andRe. This leads to

greater transparency, since the capillarity radiusRκ can be obtained on the basis of the surface

tension in the planar limitγ0, which is experimentally accessible, in combination with bulk

fluid properties.2 All information on the molecular structure of the curved interface can thus

be captured by a single undisputed quantity here, namely the equimolar radiusRe. For this

approach, the excess equimolar radius, defined by

RE = Re − Rκ, (2.5)

plays a role similar to the Tolman length, and the macroscopic quantityC is used instead of

R−1
L as a measure of the influence of curvature on the thermophysical properties of the interface

and the bulk phases. In this way, thermodynamics of liquid droplets is discussed by following

a new route that relies on easily accessible properties only.

The present approach is similar to the«direct determination» of δ0 proposed by Nijmeijer

et al. [123], which was implemented by van Giessen and Blokhuis [73] on the basis of a

2Thepressure difference between the coexisting phases in equilibrium is a bulk property, since it can be deter-
mined fromµ andT with an equation of state for the fluid or by conducting grand canonical simulations.
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representation ofCRe over 1/Re with

−δ0 =
1
γ0

(

lim
Re→∞

d
d(1/Re)

CRe

)

. (2.6)

Applying the definitions of the capillarity radius and the excess equimolar radius, this trans-

forms to

−δ0 = lim
Re→∞

d(Re/Rκ)
d(1/Re)

= lim
Re→∞

d(RE/Rκ)
d(1/Re)

, (2.7)

facilitating an analysis of interface properties in terms of the radiiRκ andRe as well as the

deviationRE between them. From the Tolman equation in its form as a polynomial expansion,

cf. Eq. (2.4), the excess equimolar radiusRE can be related to the Tolman lengthδ by

RE = (δ + RL) − Rκ = δ + RL

(

1−
[

1+
2δ0

RL
+ O

(

R−2
L

)

])

= −δ + O
(

R−1
L

)

, (2.8)

so that its magnitude in the zero-curvature limit is obtained as

RE
0 = −δ0, (2.9)

which expresses the same relationship as Eq. (2.7). Both in the planar limit and in the pres-

ence of curvature effects, it is therefore possible to rewrite the Tolman relations in terms of

the easily accessible quantitiesRE andC, rather thanδ andR−1
L . From the Young-Laplace

equation, it follows that
dRL

dC =
1
C

dγ
dC −

γ

C2
, (2.10)

while the reduced length scale appearing in the Tolman equation can be transformed to

δ

RL
=

REC + γ0

γ
− 1, (2.11)

by using Eqs. (1.20), (2.1), (2.2) and (2.5). The full Tolman relation can be converted to

dγ
dC = −

2γ
C













δ

RL
+

[

δ

RL

]2

+
1
3

[

δ

RL

]3










=
2γ
3C















1−
[

REC + γ0

γ

]3












. (2.12)

This representation of the Tolman result is entirely equivalent to Eq. (2.3). ForC → 0, the

curvature dependence ofγ as specified by Eq. (2.12) is only self-consistent for

lim
C→0

dRE

dC = −
(RE

0)2

γ0
, (2.13)

which thus constitutes a necessary boundary condition for the Tolman approach in terms of

RE andC. An expansion of the transformed Tolman equation as power series, analogous to
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Eq. (2.4), is given by

γ = γ0 + 2RE
0C −

2(RE
0)2

γ0
C2 + O

(

C3
)

. (2.14)

Away from the planar limit, Eq. (2.12) applies without any further condition, since the bound-

ary condition for the slope ofRE is only relevant forC → 0.

Numerically, the LJTS model is an adequate basis for investigating bulk and interfacial prop-

erties of simple spherical conformal fluids (e.g. noble gases and methane) on the molecular

level [63]. On account of this, numerous studies on nanoscopic liquid droplets have been

reported [63, 121, 124, 125]. The LJTS fluid can thus be regarded as a key benchmark for

theoretical and simulation approaches to the problem of curved vapour-liquid interfaces. To

evaluate the present approach, the canonical ensemble is considered here for small systems,

corresponding to equilibrium conditions for nanoscopic liquid droplets surrounded by super-

saturated vapours, using thels1 mardynprogram as well as the LJTS pair potential.

Liquid droplets are investigated at reduced temperatures betweenT = 0.65 and 0.95ǫ, cov-

ering most of the range between the triple point temperature (which is≈ 0.55ǫ according to

Bolhuis and Chandler [126],≈ 0.618ǫ as determined by Toxværd [127] and≈ 0.65ǫ accord-

ing to van Meelet al. [124]) and the critical temperature which several independent studies

have consistently obtained as 1.08ǫ for the LJTS fluid, cf. Vrabecet al. [63]. The Verlet

leapfrog algorithm is employed to solve the classical equations of motion numerically with an

integration time step of 0.002 in LJ time units, i.e.σ
√

m/ǫ, wherem is the mass of a molecule.

Cubic simulation volumes with 290 to 126 000 molecules, applying the periodic boundary

condition, are equilibrated for at least 2 000 time units. Subsequently, spherically averaged

density profilesρ(r), with their origin (r = 0) at the centre of mass of the whole system,

are constructed with a binning scheme based on equal volume concentrical spheres using

sampling intervals between 1 000 and 40 000 time units, depending on the (expected) total

simulation time, to gather multiple samples for each system. Examples of the density profiles

obtained according to this method are shown in Fig. 2.1.

The density profiles of LJTS vapour-liquid interfaces are known to agree well with an expres-

sion based on two hyperbolic tangent terms, to whichρ(r) has been successfully correlated

for liquid droplets by Vrabecet al. [63]. The present method merely requires the bulk den-

sitiesρ′ andρ′′ corresponding to a certain value ofµ or C, which are determined here by

correlating the outer parts of the density profile and extrapolating them to regions far from

the interface. The densities of the coexisting fluid phases are thus deduced from simulation

results by correlating the exponential terms

ρ′ = ρ(r) + a′ exp
(

b′[r − r ′]
)

,

ρ′′ = ρ(r) − a′′ exp
(

b′′[r ′′ − r]
)

, (2.15)
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Figure 2.1: Density profiles from canonical MD simulations of LJTS liquid droplets atT =
0.75ǫ with equimolar radii ofRe = 9.977± 0.001 (· – ·), 12.029± 0.003 (– –),
13.974± 0.002σ (· · · ) and 15.967± 0.001σ (—).

to the data for the inner- and outermost spherical bins of the density profiles, respectively, cf.

Fig. 2.2. From the liquid and vapour densitiesρ′ andρ′′ of the fit to Eq. (2.15), the equimolar

radiusRe is calculated according to Eq. (1.19). The respective margins of error are obtained

as standard deviations from the profiles belonging to different sampling intervals of the same

MD simulation, of which there are at least three in all cases. The corresponding pressuresp′

andp′′ are computed by canonical MD simulation of the bulk fluid at the respective densities.

Figure 2.2: Density profiles from canonical MD simulations of LJTS liquid droplets at the
temperaturesT = 0.65 and 0.95ǫ, showing the average densities from simulation
(•) and exponential approximants (– –). The steeper profile corresponds to the
lower temperature.
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For the surface tension in the zero-curvature limit, as a function of temperature, the values

γ0(0.65ǫ) = (0.680± 0.009)ǫσ−2,

γ0(0.75ǫ) = (0.493± 0.008)ǫσ−2,

γ0(0.85ǫ) = (0.317± 0.007)ǫσ−2,

γ0(0.95ǫ) = (0.158± 0.006)ǫσ−2, (2.16)

are taken from the correlation of Vrabecet al. [63]; the error corresponds to the individual

data points forγ0 from the same source. In case ofT = 0.9 ǫ, the higher precision of the

computations of van Giessen and Blokhuis [73] is exploited, using the value

γ0(0.9ǫ) = (0.227± 0.002)ǫσ−2. (2.17)

Combining these quantities leads to the capillarity radiusRκ and the excess equimolar radius

RE. A full summary of the simulation results whereRE could be determined with error bars

smaller than 1σ is given in Tabs. 2.1 and 2.2. Thereby, the margin of error forRE contains

contributions due to the precision ofγ0 and the MD simulations of the liquid droplet itself as

well as those of the homogeneous vapour and liquid phases.

To achieve full consistency with the Tolman approach, the bulk densitiesρ′ andρ′′ from Eq.

(2.15) have to match those of the bulk fluid at the same temperature and chemical potential

as the two-phase system. Regarding liquid droplets withRe > 8 σ, this is certainly the case,

since constant density regions coexisting with the interface are actually present, cf. Figure

2.1. The values determined for the smallest droplets here, however, rely on the validity of the

correlation given by Eq. (2.15) and can be considered valid only as far as this expression itself

does not introduce any major deviations.

Previous authors have made qualitatively contradictory claims on the magnitude of the Tolman

length as well as its sign: Tolman himself expectedδ to be positive and smaller than the

length scale of the dispersive interaction [120], a conjecture that Kirkwood and Buff [86]

affirmed, based on a mechanical approach. Subsequent studies, however, have also foundδ

to be negligible or even equal to zero [128, 129], positive and larger thanσ [63, 130], or

negative with−σ < δ < 0 [83, 122, 131, 132], whereas others have claimed that the sign of

δ is curvature dependent [133, 134]. Thereby, they have proven the mutual inconsistency of

their assumptions and methods.

The present approach relies on the fact thatδ0 = −RE
0 holds in the planar limit. From the

values forRE reported in Table 2.2, for equimolar radiiRe > 8σ, the excess equimolar radius

for liquid is unequivocally shown to be smaller in magnitude than 0.5σ, while it remains

unclear whether it is positive, negative, of both signs (depending on the curvature) or equal

to zero. No definite conclusion can be drawn regarding the dependence ofRE on curvature.
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N V [σ3] T [ǫ] ρ′ [σ−3] ρ′′ [σ−3] p′ [ǫσ−3] p′′ [ǫσ−3]
291 8 999 0.65 0.857(5) 0.0090(2) 0.65(8) 0.0054(1)

1 022 17 576 0.65 0.830(1) 0.00651(7) 0.22(2) 0.00397(4)
497 10 648 0.75 0.81(1) 0.0214(6) 0.6(1) 0.0135(4)

1 418 21 952 0.75 0.777(1) 0.0173(1) 0.16(1) 0.01136(5)
3 762 39 304 0.75 0.7721(2) 0.01566(6) 0.113(2) 0.01042(4)
5 161 54 872 0.75 0.7703(2) 0.0156(2) 0.096(3) 0.0104(1)
6 619 74 088 0.75 0.7697(2) 0.01506(4) 0.090(2) 0.01007(2)

10 241 110 592 0.75 0.7685(1) 0.01469(3) 0.080(2) 0.00985(2)
12 651 140 608 0.75 0.7679(2) 0.01451(7) 0.075(2) 0.00974(4)
15 237 166 375 0.75 0.7673(2) 0.01442(2) 0.070(2) 0.00969(1)
1 119 14 172 0.85 0.733(7) 0.0421(5) 0.23(5) 0.0273(2)
3 357 32 768 0.85 0.7135(8) 0.0371(5) 0.097(5) 0.0249(2)
2 031 21 952 0.9 0.687(3) 0.0573(8) 0.13(1) 0.0369(3)
4 273 29 791 0.9 0.6773(9) 0.0532(2) 0.082(4) 0.03516(7)

11 548 85 184 0.9 0.6738(1) 0.0504(2) 0.0672(6) 0.03396(8)
2 414 19 683 0.95 0.662(2) 0.0825(2) 0.169(7) 0.05032(8)

Table 2.1: Number of moleculesN, simulation volumeV, and temperatureT of the present
canonical simulations of LJTS liquid droplets surrounded by vapour, followed by
the main immediate simulation results, i.e. the densitiesρ′ andρ′′ from the spher-
ical density profiles. For droplet radii above 8σ, these values can be reliably
regarded as identical with those corresponding to the present theoretical approach.
In case of smaller radii, inaccuracies may be present due to the application of ex-
ponential approximants, cf. Eq. (2.15). Results from MD simulation of the bulk
fluid were evaluated to obtain the corresponding pressuresp′ and p′′. All values
are given in LJ units, and the error in terms of the last digit is specified in parenthe-
ses. The margin of error specified for the pressure values contains a contribution
due to the uncertainty of the density.

Since this means that at the present level of accuracy, no significant dependence ofγ on the

radius of the liquid droplet could be detected, the statement of Mareschalet al.[135] regarding

cylindrical interfaces also applies here: Considering«the large fluctuations in the bulk liquid

phase, we tentatively conclude that the surface tension is independent of the curvature of the

liquid-vapor interface or else that this dependence is very weak.»

For extremely small dispersed phases confined by a spherical interface, Wilhelmsenet al.

[122] suggest (on the basis of a density gradient theory) that a«constant curvature (CC) re-

gion» exists, where the equimolar radius of the droplets (or bubbles) is almost constant, while

the Laplace radius may vary significantly. In the CC region, the surface tension decreases

(compared to larger nuclei and the planar interface), but this is not caused by any curvature

effect at all, since the curvature is approximately constant. Instead, this change is driven by

the density in the centre of the nucleus, which increasingly deviates from the bulk-like state

and approaches the density of the surrounding phase. As Wilhelmsenet al. [122] point out,

this might be an artifact of the density gradient theory, which is known to become inaccurate
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N V [σ3] T [ǫ] Rκ [σ] Re [σ] RE [σ]
291 8 999 0.65 2.1(3) 3.90(1) 1.8(3)

1 022 17 576 0.65 6.3(6) 6.407(2) 0.1(6)
497 10 648 0.75 1.8(5) 4.33(5) 2.5(5)

1 418 21 952 0.75 6.5(6) 6.883(3) 0.4(6)
3 762 39 304 0.75 9.7(4) 9.977(1) 0.3(4)
5 161 54 872 0.75 11.5(5) 11.089(4) −0.5(6)
6 619 74 088 0.75 12.3(5) 12.029(3) −0.2(5)

10241 110 592 0.75 14.1(5) 13.974(2) −0.1(5)
12651 140 608 0.75 15.2(8) 14.981(6) −0.2(8)
15237 166 375 0.75 16.5(8) 15.967(1) −0.5(8)
1 119 14 172 0.85 3.1(9) 6.79(6) 2.5(9)
3 357 32 768 0.85 8.8(8) 9.11(1) 0.4(9)
2 031 21 952 0.9 5.1(8) 6.79(6) 1.7(9)
4 273 29 791 0.9 9.7(9) 10.086(9) 0.4(9)

11 548 85 184 0.9 13.7(4) 14.054(8) 0.4(4)
2 414 19 683 0.95 2.7(3) 6.86(3) 4.2(3)

Table 2.2: Number of moleculesN, simulation volumeV, and temperatureT of the present
canonical simulations of LJTS liquid droplets surrounded by vapour, followed by
the capillarity radiusRκ, the equimolar radiusRe and the excess equimolar radius
RE, determined from the simulation results given in Tab. 2.1. All values are given
in LJ units, and the error in terms of the last digit is specified in parentheses.

in the spinodal limit. However, this might as well be a genuine observation, which would fit

well into the general picture from recent work, cf. Sections 2.2 and 2.3.

A notion that can be definitely dismissed is that of a large and positive Tolman length, which

has been obtained by following the mechanical route to the surface tension employing the IK

pressure tensor [63, 130]. A similar deviation between the mechanical route (leading to large

positive values forδ) and a thermodynamic approach (leading toδ < 0.5σ) was found by

Haye and Bruin [136]. As Fig. 2.3 shows, the previous simulation results of Vrabecet al.[63]

are actually consistent with those from the present study if they are interpreted in terms of the

radii Rκ andRe. Thereby, applying the approach of Maruyamaet al. [137], only the density

profile and the pressure in the homogeneous regions inside and outside the liquid droplet are

taken into account, whereas the normal pressure along the interface is not considered at all.

Since the deviation between present and previous data disappears in such a representation, the

disagreement must be caused by the inadequacy of the pressure-tensor (mechanical) route, as

pointed out by Henderson [77]. Possible sources of error for this approach are discussed in

Section 1.3. More detailed methodological investigations have also been carried out by Lau

et al. [64], suggesting that a rigorous mechanical route toγ would need to take a contribution

of the second-order virial into account.
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Figure 2.3: Equimolar radiusRe over the capillarity radiusRκ for LJTS liquid droplets, from
density profiles and bulk pressures determined with canonical MD simulations at
the temperaturesT = 0.75 (�) and 0.85ǫ (◦), in comparison with results from
previous work of Vrabecet al. [63] atT = 0.75 (�) and 0.85ǫ (•), using pressure
differences based on evaluating the Irving-Kirkwood pressure tensor in the homo-
geneous regions inside and outside the liquid droplet. The continuous diagonal
line is defined byRe = Rκ and thus corresponds to an excess equimolar radius of
RE = 0, while the dotted lines correspond toRE = ±0.5σ.

2.2 Finite thickness of liquid films

For a fluid interface, there are at least three different aspects in which its size can be varied,

each of which may affect the interfacial tension:

• Curvature effects, depending on the local characteristic radii of curvature,

• capillary wave effects, depending on the range of wavelengths permitted by the morpho-

logy and size of the interface,

• confinement effects, which arise due to spatial restrictions imposed on a fluid phase by

one or several interfaces or walls.3

According to Tolman’s approach [120], cf. Section 2.1, the interfacial tension of a nanodroplet

deviates from that of a planar interface due to its extremely curved shape [136, 139]. However,

it should be noted that all three phenomena are present when the size of a droplet is varied:

Smaller droplets have a higher curvature, a smaller range of capillary wavelengths, and a more

significant deviation from bulk-like behaviour due to confinement. In addition to curvature,

the other effects might therefore also have a significant influence on the formation of droplets

in a supersaturated vapour [140, 141]. A similar case is cavitation, where bubbles emerge in

a liquid phase [142].

3This section is based on Werthet al. [138].
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Spherically curved interfaces of droplets were already investigated by molecular simulation

in the early 1970s [143]. Nonetheless, while curvature effects are relatively well-studied, the

other size effects have not recieved the same attention, even though they are even present in

the case of planar interfaces. Several previous works address the influence of small simulation

volumes [116, 144], which is usually discussed in terms of capillary wave theory [116, 145].

The present study considers the influence of the liquid film thickness, due to confinement of

the liquid phase by two parallel planar vapour-liquid interfaces which are close to each other.

This effect was previously investigated by Wenget al. [146], who did not find any systematic

influence of the film thickness.

The computation of interfacial properties is always done in a single simulation volume con-

taining both phases, the liquid and the vapour phase, separated by the interface. Thereby, the

surface tension can be computed for example via the virial route or via the surface free energy

[70, 147, 148], cf. Section 1.3. The virial route is directly related to the common approach for

calculating the pressure in a molecular simulation [135, 149], and it is known that the pressure

in dependence of the density exhibits a van der Waals loop in the two phase region [150].

At interfaces, the long-range contribution to the interaction potential plays an important role

for all thermodynamic properties [151]. Nonetheless, there are also simulations applying a

truncated and shifted potential, which neglects the long-range contribution entirely [73, 126].

When dealing with a homogeneous system, long-range corrections are only needed for energy

and pressure [94], while in an inhomogeneous configuration, also the dynamics of the systems

needs to be appropriately corrected [95, 101], cf. Section 1.4, unless a truncated potential is

used.

In the present section, the influence of the liquid film thickness on thermodynamic properties

is discussed. For this purpose, MD simulations were conducted using the full (i.e. not trun-

cated) LJ potential and employing the Janeček [95] long-range correction beyond the cutoff

radiusrc = 3 σ. As discussed in Section 1.4, the potential energy, the forces acting on the

molecules, and the virial are thereby split into an explicitly computed part and a long-range

correction. The calculation of the correction terms was conducted at every tenth time step.

The interfacial tensionγ of a planar vapour-liquid interface, which is oriented normally to

the y axis, is given by the difference between the diagonal components of the virial tensor

Πn − Πt as expressed by Eq. (1.60), cf. the discussion from Section 1.3. Half of the virial

contribution from each pairwise interaction is assigned to each of the coordinates of the two

involved molecules. This localization of the pressure tensor deviates from other definitions,

since there is no single unique definition of local pressure [62]. However, all localizations

of the virial which do not alter its volume integral, including the present implementation,

lead to the correct outcome for the overall surface tension in the case of systems with planar

symmetry [62, 144].
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Following this approach, MD simulations were conducted in the canonical ensemble withN

= 16 000 molecules. The equimolar thickness of the liquid filmℓe was varied between 12

σ and the minimum stable configuration. The equimolar thickness was determined using the

saturated densitiesρ′ andρ′′ for the given temperature, the simulation volumeV, and the

number of moleculesN by

ℓe =
N − ρ′′V

(ρ′ − ρ′′)A, (2.18)

so thatℓe only depends on the boundary conditions applied to the molecular simulation within

the canonical ensemble, not on the outcome of the simulation, and it does not vary over

simulation time. The temperature was kept constant by a velocity scaling thermostat. The

elongation of the simulation volume iny direction, i.e. normal to the interface, wasℓy = 50σ.

For the simulation of a reference case, the number of moleculesN was increased to 300 000,

the elongation iny direction wasℓy = 100σ, and a film thickness ofℓe = 40 σ was used.

The temperatureT was varied between 0.7 and 1.25ǫ, i.e. from the triple point temperature

up to 95 % of the critical temperature. The simulations were carried out using thels1 mardyn

molecular dynamics code, cf. Section 4.1. The equation of motion was solved by a leapfrog

integrator [152], whereby a time step oftδ = 0.002σ
√

m/ǫ was used. The equilibration was

conducted for at least 120 000 time steps, followed by a production run over 840 000 time

steps. The statistical errors given in the present section are triple standard deviations computed

from seven block averages, each over 120 000 time steps.

The simulations of large liquid films (withℓe = 40σ) were carried out to approximate bulk

phase behaviour. The resulting surface tension values are shown in Fig. 2.4. The regression

γ = 2.94ǫσ−2

(

1− T
Tc

)1.23

(2.19)

is obtained on this basis, with the critical temperatureTc = 1.3126ǫ determined by Pérez

Pelliteroet al. [153]. The type of correlation is the same as proposed by Vrabecet al. [63]

whose scaling exponent for the LJTS fluid (i.e. 1.21) is very similar to the present one.

Moreover, simulations were also performed for thinner films (ℓe ≤ 12σ). Thereby, MD runs

were conducted with successively smaller values ofℓe, until a minimum stable thickness was

reached for the given temperature. In Fig. 2.5, representative density and differential pressure

profiles are plotted over they coordinate. It can be seen that forℓe = 7 and 12σ (atT = 0.7ǫ),

the density at the centre of the film almost matches the bulk liquid density at saturation, while

it decreases slightly forℓe = 4.3σ. In the differential pressure, the deviation between the

three simulations is more significant. The differential pressure at the centre of the film (y = 0)

almost reaches the zero line forℓe = 12σ, while for ℓe = 4.3 and 7σ, the pressure tensor is

anisotropic throughout the film. The differential pressure can be seen as an indicator for the

fluid to be isotropic or homogeneous.
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Figure 2.4: Surface tensionγ over the temperature for LJ liquid films which are large enough
to make finite-size effects insignificant (i.e.ℓe = 40σ). Comparison between this
work (red squares) with the results of Janeček [95] (blue triangles), Holcombet
al. [154] (red diamonds), Potoff and Panagiotopoulos [155] (brown circles), in ’t
Veld et al. [107] (black circles), López Lemus and Alejandre [156] (blue stars) as
well as the present correlation expression (solid line), cf. Eq. (2.19).

In Fig. 2.6, the differential pressure is shown over the density, corresponding directly to the

profiles displayed in Fig. 2.5. Additionally, results atT = 1 ǫ are shown. All of the plots in

Fig. 2.6 exhibit van der Waals loops, cf. the discussion by Imreet al. [150]. The red squares

and green stars correspond to a large liquid film, while the blue circles and brown triangles

show the result of the smallest stable liquid film. It can be seen that the differential pressure

does not reach zero when finite-size effects become significant. The resulting surface tensions

are shown in Tab. 2.3. For all temperatures, the surface tension decreases when the liquid film

thickness decreases.

The maximum density in the liquid film, i.e. the density at the centre, is shown in Tabs. 2.4

and 2.5. For the largest simulated film thickness, this value agrees with the density of the

saturated bulk liquid. For thin films, however, a significant deviation from the bulk density is

found.

In Fig. 2.7, the surface tension, normalized by the surface tension obtained for a large system

with ℓe = 40σ, is displayed over the film thickness for different temperatures. It can be seen

that confinement between two planar vapour-liquid interfaces reduces the surface tension, and

the numerical data suggest that this effect is proportional toℓ−3
e . In Fig. 2.8, the normalized

density (reduced by the bulk liquid density at saturation) is shown. The relative density also

decreases for thin films and, as for the surface tension, this effect is approximately proportional

to ℓ−3
e and becomes more significant at high temperatures.

For a film thicknessℓe > 12σ, the dependence of the surface tension on the film thickness be-

comes insignificant (taking the simulation uncertainty into account). For a fluid described by
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T/ǫ N ℓy/σ ℓt/σ ℓe/σ γ/ǫσ−2

0.7 300 000 100 94.2 40.0 1.150(4)
16 000 50 39.7 12.0 1.14(7)
16 000 50 45.8 9.0 1.14(6)
16 000 50 51.8 7.0 1.13(3)
16 000 50 61.1 5.0 1.10(2)
16 000 50 64.3 4.5 1.08(1)
16 000 50 65.7 4.3 1.06(2)

0.8 300 000 100 96.4 40.0 0.93(1)
16 000 50 40.3 12.0 0.92(6)
16 000 50 46.4 9.0 0.92(3)
16 000 50 52.3 7.0 0.91(3)
16 000 50 61.2 5.0 0.87(3)
16 000 50 63.9 4.55 0.85(2)

0.9 300 000 100 98.2 40.0 0.707(8)
16 000 50 40.8 12.0 0.71(5)
16 000 50 46.5 9.0 0.70(4)
16 000 50 51.9 7.0 0.69(3)
16 000 50 55.4 6.0 0.68(2)
16 000 50 58.1 5.4 0.66(3)

1.0 300 000 100 100 40.0 0.502(5)
16 000 50 40.1 12.0 0.50(6)
16 000 50 46.1 9.0 0.50(2)
16 000 50 50.8 7.0 0.48(5)
16 000 50 53.0 6.2 0.5(1)

1.1 300 000 100 102 40.0 0.310(4)
16 000 50 40.9 12.0 0.31(4)
16 000 50 45.3 9.0 0.30(3)
16 000 50 48.6 7.25 0.28(4)
16 000 50 50.2 6.5 0.26(3)

1.2 300 000 100 101 40.0 0.144(8)
16 000 50 38.2 12.0 0.14(5)
16 000 50 40.8 9.0 0.14(4)
16 000 50 42.4 7.5 0.13(4)

1.25 300 000 100 101 40.0 0.075(4)
16 000 50 37.2 12.0 0.08(5)
16 000 50 39.2 9.0 0.06(2)
16 000 50 39.9 8.0 0.06(4)

Table 2.3:Surface tensionγ in dependence of the liquid film thicknessℓe. The total elonga-
tion of the simulation box is indicated byℓy in the direction perpendicular to the
vapour-liquid interfaces and byℓt (= ℓy = ℓz) in the tangential directions. The
statistical error is given in parentheses, in terms of the magnitude corresponding to
the final digit.
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Figure 2.5: Density ρ (top) and differential pressurepn − pt (bottom) over they coordinate,
i.e. the direction perpendicular to the interface. The temperature isT = 0.7 ǫ.
The blue dashed line corresponds to the minimum stable configuration which is
ℓe = 4.3 σ for this temperature, while the red dash dotted one corresponds to
ℓe = 7σ and the black solid one toℓe = 12σ. The dotted line in the upper picture
represents the bulk liquid density and the difference between the vertical dashed
lines in the upper picture represent the equimolar film thickness.

the LJ potential, e.g. methane [157], this means that the present finite-size effect is significant

for liquid films which are thinner than five nanometres. At high temperatures, the deviation

of the density at the centre of the liquid film from the bulk value increases.

The present results suggest that the reduction of the density and the surface tension due to

confinement are two manifestations of the same effect, since both deviations scale with the in-

verse cube of the film thickness. The surface tension decreases with decreasing film thickness,

and so does the density at the centre of the film. The differential pressure does not reach zero

for liquid films with a thickness below 12σ, proving that under such conditions a bulk-like

region is absent.

In particular, this contradicts the work by Wenget al. [146], who did not find a systematic

correlation between the film thickness and the surface tension. For a LJ system atT = 0.818ǫ,
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Figure 2.6: Differential pressurepn − pt over the density, across an interface, for the tem-
peraturesT = 0.7 and 1ǫ. The blue circles (ℓe = 4.3σ) and brown triangles
(ℓe = 6.2σ) correspond to the thinnest stable film at the respective conditions,
while the red squares and green stars correspond toℓe = 12σ. The dotted line
represents the zero line, i.e.pn = pt as in a bulk-like region where the pressure is
isotropic.

Wenget al. [146] detected minor fluctuations around a constant value (γ = 0.78±0.02ǫσ−2),

without a clear tendency, for a range of film thicknesses betweenℓe = 5 and 9σ. A juxtaposi-

tion with the present numerical data, cf. Tab. 2.3 and Fig. 2.7, according to which varying the

liquid film thickness to such an extent has a significant influence onγ, clearly shows that the

present simulation results do not confirm the postulate of Wenget al. that«with film thickness

. . . surface tension values and density profiles show little variation» [146]. The simulations

by Wenget al. [146], however, were only carried out over 120 000 time steps, as opposed to a

million time steps for the present series of simulations. Since systems with an interface relax

more slowly than the homogeneous bulk fluid, the extremely short simulation time could con-

situte a serious limitation, affecting the accuracy of the results obtained by Wenget al. [146]

to a significant extent.

The comparison with results from a recent study by Malijevský and Jackson [158] suggests

that the present results on confinement by two parallel planar vapour-liquid interfaces might

also carry over qualitatively to confinement by the opposite sides of the single spherical in-

terface that surrounds a small droplet. Therein, Malijevský and Jackson [158] come to the

conclusion that for liquid droplets, the size dependence of the surface tension is best described

by two distinct, additive terms: The conventional Tolman term, representing curvature, which

increases the surface tension (i.e. the Tolman length is found to be negative), as well as«an

additional curvature dependence of the 1/R3 form» which causes an eventual decrease of the

surface tension«for smaller drops» [158]. Furthermore, Malijevský and Jackson observe that
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T
ℓe/σ 0.7ǫ 0.8ǫ 0.9 ǫ 1 ǫ

40 0.8410(2) 0.7974(3) 0.7507(6) 0.699(1)
12 0.84(3) 0.80(2) 0.75(1) 0.70(1)
9 0.84(1) 0.80(1) 0.75(1) 0.69(2)
7 0.83(1) 0.79(1) 0.74(2) 0.68(2)
6.2 n/a n/a n/a 0.66(5)
6 n/a n/a 0.73(2) ⋆

5.4 n/a n/a 0.72(1) ⋆

5 0.82(1) 0.77(1) ⋆ ⋆

4.55 n/a 0.76(3) ⋆ ⋆

4.5 0.81(1) ⋆ ⋆ ⋆

4.3 0.81(1) ⋆ ⋆ ⋆

Table 2.4:Densityρ′ at the centre of the liquid film, in dependence of the temperature and the
equimolar film thicknessℓe, for low temperatures; n/a: no simulation was carried
out; asterisks: the liquid film was found to be unstable. The statistical error is
given in parentheses, in terms of the magnitude corresponding to the final digit.

the characteristic droplet radius, below which this negative corrective term becomes domi-

nant,«increases with increasingrc» and conjecture that«such a crossover occurs when . . . no

“bulk” region can be assigned inside the drop. In this case even particles in the centre of the

drop “feel” the interface» [158].

The present results lend further plausibility to this conjecture of Malijevský and Jackson [158].

There could be a relation between their 1/R3 term and the 1/ℓ3
e confinement effect from the

present study. According to such a hypothesis, these contributions would both represent the

deviation from bulk-like behaviour of the liquid phase due to confinement.

2.3 Density of dispersed gas bubbles

The present section illustrates the contribution that molecular modelling and simulation can

make to the discussion of nano-dispersed gas bubbles in equilibrium with a liquid at negative

pressure.4 This case is both of fundamental scientific interest and technically important, e.g.

for cavitation. Neglecting size effects onγ, the surface free energy is often approximated by

AE ≈ γA, cf. Eq. (1.31). While such a simplification is justified for macroscopic systems,

it may violate the thermodynamics of small systems [90], cf. Section 2.1, where significant

finite size effects can be present even for planar phase boundaries [91], cf. Section 2.2.

At the curved interface of a bubble or a droplet, the mechanical equilibrium condition is

characterized by the Laplace equation, cf. Eq. (1.20), which holds for the Laplace (or surface

4This section is based on Horschet al. [55].
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T
ℓe/σ 1.1ǫ 1.2ǫ 1.25ǫ

40 0.6393(4) 0.564(2) 0.515(7)
12 0.63(3) 0.56(3) 0.49(10)
9 0.62(2) 0.54(3) 0.46(4)
8 n/a n/a 0.43(15)
7.5 n/a 0.51(7) ⋆

7.25 0.59(3) ⋆ ⋆

6.5 0.57(8) ⋆ ⋆

Table 2.5:Densityρ′ at the centre of the liquid film, in dependence of the temperature and the
equimolar film thicknessℓe, for high temperatures; n/a: no simulation was carried
out; asterisks: the liquid film was found to be unstable. The statistical error is
given in parentheses, in terms of the magnitude corresponding to the final digit.

of tension) radiusRL. The interface tends to contract, compressing the dispersed phase which

is situated inside, and the surface tensionγ couples this compressing effect with its cause, the

curvature of the interface. By convention, the radiusRL is positive in case of a droplet (with

p′ > p′′) and negative in case of a bubble (withp′ < p′′). Within the thermodynamic approach

of Gibbs [89], the position of the formal dividing surface is arbitrary at first. Thus, a further

condition, such as Eq. (1.20), is needed to define a radius.

Thereby, the values ofp′ andp′′ are thermodynamic rather than mechanical quantities. They

do not necessarily agree with the actual mechanical pressures on the two sides of the interface.

Instead, they are obtained by combining the Laplace equation with the chemical and thermal

equilibrium conditions, i.e. equal chemical potentialµi
′ = µi

′′ for all componentsi and equal

temperatureT′ = T′′. The relation between the values ofµi, p, andT is given by the equation

of state for the bulk phases.

For the case of a pure fluid below the critical temperature, aµ− p diagram [159] visualizes the

impact of curvature, by means of a vapour-liquid equilibrium condition with a pressure dif-

ference between both phases, as expressed by Eq. (1.20), on other thermodynamic properties

such as the density of the coexisting fluid phases and the chemical potential, cf. Fig. 2.9. The

normalized residual chemical potential ˜µ is defined by the deviation of the chemical potential

µ from its ideal temperature-dependent (i.e. density-independent) contributionµid, reduced by

temperature [8]

µ̃(ρ, T) =
µ(ρ, T) − µid(T)

T
. (2.20)

At low densities, it can be approximated by

µ̃ ≈ ln ρ, (2.21)

so that the vapour parts of the three isotherms shown in Fig. 2.9 coincide roughly. Its derivative
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Figure 2.7: Normalized surface tension, reduced by the macroscopic vapour-liquid surface
tension, over the film thicknessℓe for different temperatures. The dashed lines
represent the expression 1− a(T)ℓ−3

e , where temperature-dependent coefficients
were adjusted to simulation results, yieldinga(0.7ǫ) = 5.8σ3, a(0.8ǫ) = 7.9σ3,
a(0.9 ǫ) = 9.3 σ3, a(1 ǫ) = 16 σ3, a(1.1 ǫ) = 28 σ3, a(1.2 ǫ) = 34 σ3, and
a(1.25ǫ) = 93σ3.

with respect to pressure at constant temperature is given by

(

µ̃

p

)

T

=
1
ρT

. (2.22)

Hence, proceeding (at increasing density) from stable vapour to metastable vapour, to the un-

stable part of the isotherm, the metastable and finally the stable liquid, the slope of the curves

in theµ− p diagram decreases successively. In Fig. 2.9, it can be seen how∆p = p′ − p′′ > 0,

corresponding to a droplet, induces a vapour-liquid equilibrium at a supersaturated chemical

potential withµ > µs, whereµs is the chemical potential at saturation in a macroscopic system

over a planar interface at the same temperature. Obversely, in case of a bubble, the pressure

is higher in the gas phase, i.e.∆p < 0, so that the coexisting phases become subsaturated

(µ < µs).

For nano-dispersed fluid phases, where an isotropic bulk-like region may be completely ab-

sent, thermodynamic and mechanical definitions ofγ deviate from each other, as discussed

above. In particular, mechanical approaches (following the virial route), have found the sur-

face tension of nanodroplets to be significantly smaller than that of the planar vapour-liquid

interface [63, 70], whereas thermodynamic routes, e.g. the test area method [83] and grand

canonical Monte Carlo simulation [121], do not confirm this and find the curvature effect on

γ to be much weaker or even of opposite sign.

An explanation of this disagreement between mechanical and thermodynamic expressions for

the surface tension is possibly to be found in the observation of Percuset al. [88] that in
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Figure 2.8: Normalized density at the centre of the liquid film, reduced by the saturated
bulk liquid density, over the film thicknessℓe for different temperatures. The
dashed lines represent the expression 1− b(T)ℓ−3

e , where temperature-dependent
coefficients were adjusted to simulation results, yieldingb(0.7 ǫ) = 3.0 σ3,
b(0.8 ǫ) = 4.4 σ3, b(0.9 ǫ) = 6.3 σ3, b(1 ǫ) = 12 σ3, b(1.1 ǫ) = 27 σ3,
b(1.2ǫ) = 37σ3, andb(1.25ǫ) = 85σ3.

general, the Landau free energy deviates from the volume integral over the local pressure for

inhomogeneous fluid systems. Furthermore, it was proven by Lauet al. [64] that in case of

spherical interfaces, the definition of the surface tension as the differential excess free energy

of the interface can only be recovered by a mechanical approach if the contribution from the

second-order virial is also considered.

The Laplace radiusRL has the disadvantage of being defined by the surface tension of the

curved interface, which is thermodynamically well-defined, but hard to determine. In conse-

quence, it is difficult to evaluate how many molecules are inside a bubble or a droplet with the

Laplace radiusRL (which would be precisely known if an equimolar radius was specified),

or which chemical potential and pressure difference correspond to a particular value ofRL.

Hence, considering that the dependence of the surface tension on curvature is under dispute

at present, Eq. (1.20) contains two unknowns and the Laplace radius is ill-defined at first. For

this reason, the theory of curved interfaces in terms of the capillarity radiusRκ is employed

here, cf. Section 2.1, considering nanoscopic gas bubbles.

Building on the results for the excess equimolar radius of liquid droplets from Section 2.1, a

series of MD simulations was conducted, using thels1 mardynprogram, for volumes contain-

ing a LJTS gas bubble in equilibrium with a subsaturated liquid. The simulations were carried

out in the canonical ensemble with a periodic boundary condition. The initial conditions were

chosen such that a single bubble existed in the centre of the simulation box. The size of

that bubble was controlled by choosing the number of molecules and the simulation volume

appropriately. As pointed out by Fisher and Wortis [161] as well as Regueraet al. [162],
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Figure 2.9: Isothermal dependence of the normalized residual chemical potential ˜µ, cf. Eq.
(2.20), on the pressurep from a virial expansion [160] for the LJTS potential
at temperatures of 0.75 (· · · ), 0.9 (· – ·), and 1ǫ (– –). The plot extends over
the whole range of vapour (v) and liquid (l) densities including stable, metastable
and unstable states. Self-intersections of the isotherms (•) correspond to the phase
equilibrium condition at a planar interface, i.e.µ′ = µ′′ = µs(T) and p′ = p′′ =
ps(T). Solid horizontal lines: Vapour-liquid equilibrium at a curved interface
characterized by the Laplace equation, cf. Eq. (1.20), where the temperature is
0.75ǫ and the pressure is smaller outside than for the dispersed phase, which is
confined by the interface, with a pressure difference ofp′ − p′′ = ± 0.2ǫσ−3.

such equilibria can be thermodynamically stable, even if the phase (here, the subsaturated

liquid) which surrounds the dispersed phase (here, the gas bubble) would be metastable in a

corresponding homogeneous state. In such a case, the simulation volume has to be relatively

small – the precise conditions depend on the equation of state of the fluid – for configurations

containing a single gas bubble.

The present MD simulations are therefore concerned with the scenario where a single gas

bubble is surrounded by a subsaturated liquid phase, under equilibrium conditions for the pure

LJTS fluid. To evaluate the equations of motion numerically, a Verlet leapfrog integrator was

used, with an integration time step of 0.003σ
√

m/ǫ. The total momentum of the system was

neutralized every 16 000 time steps, by subtracting equal fractions of it from all molecules,

and the system of coordinates was continuously shifted, following the random motion of the

bubble to keep its centre in the origin. The temperature was specified to beT = 0.75ǫ, i.e.

about 70 % of the critical temperature [63], and controlled by a velocity rescaling thermostat

(also known as an isokinetic thermostat). A novel shading approach for the visualization of

point-based datasets, which makes it easier to analyse the morphology of an interface on the

molecular level [163], was applied to individual configurations, cf. Fig. 2.10.

The number of moleculesN and the simulation volumeV = ℓ3 were varied as indicated

in Tab. 2.6. An equilibration was conducted for at least 400 000 time steps. Subsequent-
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N V/σ3 ρ′∞/σ
−3 ρ′′0/σ

−3 p′/ǫσ−3 p′′/ǫσ−3 −Re/σ −Rκ/σ

7 303 10 648 0.736(2) 0.023(3) −0.16 0.0061 5.6 6.1
9 551 13 824 0.7365(3) 0.0145(8) −0.15 0.0061 5.9 6.2

20 514 29 791 0.745(1) 0.02(1) −0.101 0.0068 8.1 9.2
18 107 27 000 0.746(1) 0.008(3) −0.093 0.0069 8.7 9.9
42 474 64 000 0.7493(3) 0.010(1) −0.068 0.0072 12.1 13.1
34 944 54 872 0.751(3) 0.009(2) −0.058 0.0074 12.6 15.1
75 794 117 649 0.7521(5) 0.011(1) −0.048 0.0075 16.0 17.7

122232 195 112 0.7538(2) 0.0113(3) −0.035 0.0077 20.0 23.0
263163 438 976 0.7556(4) 0.0117(5) −0.022 0.0079 28.0 32.8

Table 2.6:Number of moleculesN and simulation volumeV for a series of canonical ensem-
ble MD simulations of LJTS bubbles in equilibrium (atT = 0.75σ). The density
ρ′∞ of the liquid phase was also determined by following an approximation for the
outer part of the the density profiles, cf. Eq. (2.15), to an infinite distance from the
centre of the bubble. It is subsaturated with respect to the saturated liquid density
of the bulk fluid, i.e. 0.7594±0.0003σ−3 [63]. The gas densityρ′′0 was determined
in a region closer than 1.5σ to the centre of the bubble. (Errors for the density,
with a magnitude corresponding to that of the final digit, are given in parentheses.)
The liquid and vapour pressuresp′ andp′′ to be used within the Gibbs approach,
respectively, were both computed from the extrapolated liquid density by a fifth-
order virial expansion [160]; they may deviate from the mechanical pressure. From
the equimolar and capillarity radiiRe andRκ, respectively, which are negative by
the convention employed here, the excess equimolar radiusRE = Re − Rκ can be
obtained; the value ofRE is found to be positive (and of the order of 1σ).

ly, density profiles were determined by binning over several averaging intervals of at least

200 000 time steps until the profiles of were found to converge. In one of the cases (withN =

20 514 andV = 29 791σ3), bubble configurations were found to alternate with homogeneous

subsaturated liquid configurations, cf. Fig. 2.11. This simulation was also evaluated, taking

only such density profiles into account where a bubble was actually present.

From these density profiles, cf. Figs. 2.11 and 2.12, all quantities were determined which are

relevant to the theoretical approach discussed in Section 2.1. For this purpose, an extrapolated

liquid densityρ′∞ was determined from the limit to which an exponential approximant, cf. Eq.

(2.15), adjusted to the outer part of the density profileρ(r), converges atr → ∞ in terms of the

distancer from the centre of the bubble. An analogous term was also adjusted to the inner part

of the density profile. Standard deviations on the basis of different density profiles, collected

from the same simulation during successive time intervals, were calculated to estimate the

simulation error. The criterion from Eq. (1.19) was then applied to the density profile, i.e. to

the actual profileρ(r), not the correlation, to obtain the equimolar radiusRe. The pressurep′′

inside the gas bubble, and thereby the capillarity radius

Rκ =
2γ0

p′ − p′′
, (2.23)
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Figure 2.10:Visualization of a configuration containing a nanobubble surrounded by liquid,
using the novel PointAO shading algorithm, cf. Eichelbaumet al. [163].

was not determined here from the density profile on the vapour side, as it was done in Section

2.1 to analyse liquid droplets. Instead, exploiting the fact that the liquid phase can be sampled

very accurately here, the density of the subsaturated liquid surrounding the bubble was used.

The density in the centre of the bubble should be expected to approach the saturated vapour

density, i.e.ρ′′(T) = 0.0124σ−3 for T = 0.75 ǫ [63], in the limit of an infinitely large

bubble (RL → −∞), which corresponds to the transition to a planar interface. The present

simulation results confirm this, cf. Tab. 2.6 and the results forRe = −28 σ shown therein.

Moreover, deviations of the vapour density in the centre of the bubble from the saturated

vapour density are observed for small bubbles, cf. Fig. 2.13. These deviations exhibit two

qualitatively distinct effects:

1. For relatively large bubbles, the density in the centre decreases as the size of the bubble

becomes smaller. The minimal gas density observed in the present series of simulations,

which is significantly below 0.01σ−3, is found in the centre of a bubble withRe =

−8.7σ.

2. For even smaller bubbles, the density in the centre increases again. In the smallest case

considered here, i.e.Re = −5.6σ, the gas phase is found to be much denser than that

which coexists with the liquid at a planar interface, cf. Figs. 2.12 and 2.13.

The density of the liquid phase surrounding the gas bubble was found to be significantly

subsaturated: In all cases, the deviation between the saturated liquid density and the actual

liquid density was over four times larger than the accumulated error for both quantities.

In Tab. 2.6, further numerical results are shown that were obtained from these simulations

based on the liquid densities extracted from the present density profiles. In particular, smaller

bubbles consistently correspond to smaller liquid densities here, in agreement with capillary

theory. The excess equimolar radiusRE = Re − Rκ was found to be positive, indicating a
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Figure 2.11:Density profiles of LJTS bubbles surrounded by liquid, collected during different
sampling intervals from two MD simulation runs, both in the canonical ensemble
at T = 0.75 ǫ. The density profiles on the right side correspond to samlpling
intervals from 45 000 to 60 000 (—), 60 000 to 70 000 (– –), and 70 000 to 80
000 time steps (· · ·) after simulation onset, withN = 34 944 andV = (38σ)3,
exhibiting fast convergence and negligible fluctuations. The density profiles on
the left side, corresponding toN = 20 514 andV = (31 σ)3 with sampling
intervals from 14 to 16 (—), 24 to 26 (– –), and 34 to 36 million time steps
(· · ·) after simulation onset, alternate between configurations where a bubble is
present and homogeneous subsaturated liquid configurations. Horizontal dash-
dotted line: Density of the bulk liquid at saturation; Vertical lines: Equimolar
radii of the bubbles.

deviation from the capillarity approximation where, to first order in 1/R, the surface tension

of a droplet is larger and the surface tension of a bubble is smaller than that of the planar

vapour-liquid interface.

For the vapour phase, nanobubbles with radii above 7 or 8σ, roughly corresponding to di-

ameters above 6 nm for the LJTS fluid [63], were found to have a smaller density than the

saturated bulk vapour, cf. Fig. 2.12. This is the behaviour which should be expected from

capillary theory, based on Gibbs’ thermodynamic interpretation of the Laplace equation.

On the other hand, the vapour density in the centre of the bubble was found to increase again

for smaller bubbles, eventually even exceeding the dew density. This is not paralleled by an

increase, but rather by a further decrease of the liquid density, which shows that in terms of

the chemical potential, these extremely small bubbles are still subsaturated. This suggests that

both phases, vapour and liquid, tend to become subsaturated due to interfacial curvature, cf.

Fig. 2.9. The density in the centre of the bubble, however, experiences an additional obverse

influence due to a size-dependent phenomenon which is distinct from curvature.

The density profiles, cf. Fig. 2.12, help to isolate this effect: The density of the gas phase

is increased not due to curvature, which tends to reduceµ and thereby alsoρ′′, but because

there is not enough space available in radial direction for the density profile to converge to the

bulk density that would correspond to the respective value ofµ. This second effect should be

ascribed to the extremely small size of the nanobubbles rather than to their curvature.
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Figure 2.12:Density profiles of bubbles in equilibrium with a subsaturated liquid phase from
MD simulation of the LJTS fluid in the canonical ensemble (—) in comparison
with the vapour and liquid densities at saturation (– –), for a temperature of
T = 0.75ǫ. Top: Results for five relatively small bubbles with equimolar radii
Re = −5.6,−5.9,−8.1,−8.7, and−12.1σ (from left to right); Bottom: Results
for four relatively large bubbles withRe = −12.6,−16.0,−20.0, and−28.0σ
(from left to right).

Figure 2.13:Density in the centre over the equimolar radius of gas bubbles, which is nega-
tive here by convention, from present MD simulations of the LJTS fluid in the
canonical ensemble atT = 0.75σ (◦) in comparison with the vapour density at
saturation (—) and a thermodynamic prediction from the capillarity approxima-
tion (– –), considering curvature effects only and assumingγ = γ0 (and hence
RL = Rκ = Re), as well as a correlation (· · · ) which accounts for the deviation
from capillarity by an excess vapour density of∆ρ = −1.5/R−3

ρ , proportional to
the inverse cube of the radius.
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Regarding the thermodynamic properties of nano-dispersed fluid phases, Tröster and Binder

[164] have recently pointed out that for small droplets, there is a significant deviation from the

planar surface tension, but this effect does not consistently agree with the Tolman equation.

Therefore,«neither the capillarity approximation nor the Tolman parametrization [. . . ] should

be employed in any serious quantitative work» [164]. The present analysis supports this con-

clusion. Instead of the Tolman equation, a new theoretical framework needs to be developed

to describe the various size-dependent effects related to the curvature, the diameter, and pos-

sibly the circumference as well as the volume, which controls the magnitude of fluctuations,

in a coherent way.
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3 Fluids in contact with solid surfaces

3.1 Wetting of planar solid surfaces

Equilibrium wetting behaviour is typically classified according to the contact angle 0◦ ≤ θ ≤
180◦ of a sessile droplet.1 The contact angle depends on the interaction between the particles,

namely the fluid-fluid and the solid–fluid interactions. These can be explicitly described with

force fields and, hence, the force fields yield the contact angle. There is a significant body

of literature on predicting the contact angle with force fields, both for droplets [166–172]

and liquid cylinders [173]. However, most of that work is restricted to particular material

combinations, such as water on graphene.

In the present section, the dispersive fluid-wall interaction is varied systematically for a LJTS

model system, consisting of a single sessile droplet on a planar wall. In this way, the influence

of the unlike interaction on the contact angle in a model system is characterized. The LJTS

potential is used here for the fluid particle (f), wall particle (w), and fluid-wall (fw) interac-

tions, and both the fluid-wall interaction and the temperature are varied. The size parameter

σw of the wall particle interaction is also varied to obtain substrates of different densities,

and the fluid interaction parametersσf andσw serve as the basis to define the LJ system of

units. The results are correlated and discussed in the context of previous studies on the wetting

behaviour of LJ fluids [171, 174–176].

The wall is represented here by particles arranged in a face-centered cubic lattice with the

(100) surface exposed to the fluid. To maintain the wall in the solid state, the LJTS energy

parameter of the wall is related to that of the fluid byǫw = 100ǫf . In terms of the LJTS size

parameter for the wallσw, this yields a lattice constant ofΛ = 1.55σw and a wall density of

ρw = 1.07σ−3
w . The cutoff radius for the LJTS fluid, i.e.rc = 2.5σf , yields practically the

same lattice constant as would have been obtained forrc→ ∞, i.e. for the full LJ potential.

Unless stated otherwise, the size parameters of the solid and the fluid are the same in the

present study, i.e.σw = σf . However, for a series of simulations in which the influence of the

solid density is studied,σw is varied as well. By scaling downσw, the lattice constant of the

solid is decreased and, hence, the density is increased: For the size parametersσw = 0.8 and

1This section is based on Beckeret al. [165].
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0.646σf , the wall density isρw = 2.10 and 4.02σ−3
f , respectively. The interaction between

the fluid and the wall is also described by the LJTS potential, where the unlike size parameter

is σfw = σf , even in the cases where the size parameterσw of the solid substrate is varied.

The LJTS energy parameter of the fluid-wall interaction is given by

ǫfw = ζǫf , (3.1)

whereinζ is the reduced fluid-wall interaction energy. Its influence on the contact angle is

studied systematically in the present section. Theζ parameter is related to the coefficient ξ

from the modified Berthelot rule, cf. Eq. (1.8), byζ = 10 ξ.

Periodic boundary conditions are applied in all directions, leaving a channel for the fluid

between the wall and its periodic image. The height of the channel exceeds 30σf in all cases,

avoiding artefacts which would be caused by finite-size effects in much smaller channels

[177]. Furthermore, the wall thickness (i.e. 2.5 crystal unit cells here) exceeds the cutoff

radius of the fluid, so that fluid molecules adsorbed on opposite sides do not interact with

each other.

The interaction of a fluid particle with the wall is the cumulative interaction of that fluid

particle with all wall particles. This cumulative fluid-wall potentialuΣ depends on the density

of the wall and the distancey between the particle and the wall; insofar as the wall is not

perfectly smooth, it also depends on the lateral position above the wall, which is given byx

andz. For any lateral position (x, z), variation of they coordinate yields a minimumuΣmin(x, z)

of the cumulative potential, corresponding to a local well depth of the fluid-wall interaction.

The average well depth

W = −
〈

uΣmin(x, z)
〉

(x,z)
, (3.2)

is defined by averaging these minima over the (x, z) plane. The average well depthW is used

here to compare different expressions for the fluid-wall interaction in terms of a single scalar

value [18]. Since the LJTS potential is only positive in the extremely repulsive region with

r i j < σfw, the minimum of the cumulative fluid-wall interactionuΣmin(x, z) is negative here, and

W is a positive quantity. For the present systems, the average well depth is given by

W = 3.32ǫfw for σw = σf ,

W = 5.21ǫfw for σw = 0.8σf ,

W = 8.70ǫfw for σw = 0.646σf . (3.3)

A single sessile droplet on a planar solid wall is considered here, cf. Fig. 3.1, so that there

is no droplet on the opposite side of the periodic image of the wall. In the entire regime of

partial wetting (0◦ < θ < 180◦), this – rather than two smaller droplets on both sides – is the

thermodynamically stable configuration [178]. The wall is located in the (x, z) plane, so that
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y represents the vertical distance from the centres of the atoms of the top wall layer.

Figure 3.1: Simulation snapshots, taken with VMD [179], at a temperature ofT = 0.8ǫf . The
reduced fluid-wall interaction energy isζ = 0.25 (left) and 0.65 (right), respec-
tively, resulting in different contact angles.

For this system, MD simulations are carried out in the canonical ensemble, using thels1

mardynprogram, to obtain the contact angle dependence on the temperature and the reduced

fluid-wall interaction energy. The number of fluid molecules is 15 000, and the number of wall

particles varies according to the box dimensions. Newton’s equations of motion are integrated

via the Verlet leapfrog algorithm with a time step of 5× 10−4 σf
√

m/ǫf . The equilibration time

is at least 2.5 million time steps, followed by 3.5 million time steps of production.

The position of the vapour-liquid interface is defined by the place where the arithmetic mean

of the saturated bulk vapour and liquid densities is reached. A sphere is fitted to this interface,

excluding the region of immediate contact with the wall (which is dominated by adsorption),

and the intersection of the sphere with the wall (y = 0) is used to determine the contact angle,

cf. Fig. 3.2. The mean contact angle is determined from the density profile averaged over the

entire production period, and the simulation uncertainty is estimated by blockwise averaging

over 500 000 time steps.

In a series of MD simulations withσw = σf , reduced fluid-wall interaction energies are

systematically varied for temperatures between 0.7 and 1.0ǫf . The simulation results, which

can be correlated by

cosθ(τ, ζ) = χ(1+ τυ)(ζ − ζ0), (3.4)

are shown in Fig. 3.3. Therein,τ = (1 − T/Tc) is the thermal critical scaling parameter,

reduced by the critical temperature of the LJTS fluidTc = 1.078ǫf , cf. Vrabecet al. [63],

while χ = 1.03,υ = −0.69, andζ0 = 0.514 are the adjustable parameters of the correlation

expression.

The contact angleθ = 90◦ (i.e. cosθ = 0) occurs atζ = ζ0 and thus at a well depth of

W0 = 1.71ǫf . The value ofζ0, and hence that ofW0, is found to be independent of tempera-

ture, corroborating previous work [180]. Large values ofW correspond to a strong attraction

between the fluid and the wall, and as expected, a higher attraction between the fluid and the
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Figure 3.2: Density profiles of liquid droplets, where the local density (in units ofσ−3
f ) is

represented by colour as described in the legend (right). ForT = 0.8 ǫf and
ζ = 0.65 (left), an adsorbed fluid phase can be observed next to the droplet. A
simulation atT = 0.9ǫf with ζ = 0.25 (right) yields complete dewetting.

wall leads to a smaller contact angle. In particular, Eq. (3.4) agrees with the symmetry relation

[178, 180, 181]

cosθ(T, ζ0 + ∆ζ) = − cosθ(T, ζ0 − ∆ζ). (3.5)

To study the influence of the wall density on the contact angle, simulations are also carried out

for walls with densities ofρw = 2.10 and 4.02σ−3
f , i.e. using the size parametersσw = 0.8 and

0.646σf , respectively, for the wall potential. The simulation results for the contact angle can

be correlated by Eq. (3.4) using the same value forυ as given above, combined with newly

adjusted values forζ0 (and thus forW0) and the gradientχ. In particular, if the correlation is

expressed in terms of the well depth, i.e. by

cosθ(τ, W,ρw) = χ̄ (1+ τυ)
W−W0

Tc
, (3.6)

with a constant value ofυ = −0.69, both adjustable parametersW0(ρw) andχ̄(ρw) are found

to depend linearly on the wall density

W0

Tc
= 1.1+ 0.36

ρw

σ−3
f

, (3.7)

χ̄ = 0.38− 0.04
ρw

σ−3
f

. (3.8)

Therein,Tc always refers to the critical temperature of the fluid.

Contact angles in LJ systems have been studied by different authors before. Tab. 3.1 gives an

overview which also includes the boundary conditions from the present study. While Shahraz
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Figure 3.3: Simulation results (symbols) and correlation (lines), cf. Eq. (3.4), for the contact
angle as a function of the reduced fluid-wall interaction energy at temperatures of
T = 0.7 (◦, ), 0.8 (△, · – ·), 0.9 (�, — —), 0.95 (▽, - - - -) and 1.0ǫf (^, – – –).
The size parameter of the wall potential isσw = σf , yielding a wall density of
ρw = 1.07σ−3

f .

et al. [182] consider a simulation setup where they investigate the contact angle of an infinitely

long cylindrical LJ droplet, all other studies mentioned here consider spherical droplets.

source ρw/σ
−3
f rc

fw/σf T/ǫf W/ζTc

Ingebrigtsen and Toxvaerd [176] 0.60 ∞ 0.75 1.32
Shahrazet al. [182] 3.0 ∞ 0.7 3.61
Grzelaket al. [171] 0.58 5.0 0.7 3.0

Tang and Harris [175] 0.62 2.75 0.9 2.62
Nijmeijer et al. [174] 1.78 2.21 0.9 3.61
Nijmeijer et al. [168] 1.78 2.35 0.9 4.03

1.07 2.5 0.8 3.08
This work 2.10 2.5 0.8 4.83

4.02 2.5 0.8 8.07

Table 3.1:LJ model systems used for studies on wetting. The fluid-wall potentials of Inge-
brigtsen and Toxvaerd [176] as well as Shahrazet al. [182] are continuous LJ-9-3
models, all other potentials are particulate LJ-12-6 models. The relation between
W andζ was obtained from the literature sources either directly or by analysing
the respective wall model.

A direct comparison between present results, literature data, and the present universal corre-

lation for LJ systems is given in Fig. 3.4. In most cases, the contact angles from the literature

studies are accurately predicted by Eqs. (3.6) – (3.8), using only the information on the tem-

perature and the solid density given in the literature sources, as well as the average fluid-wall

well depth corresponding to the considered model surface. There are noticeable deviations

from the results of Nijmeijeret al. [168], who apply a long-range correction to the forces
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acting on fluid particles at distancesy > rc from the wall, but neglect long-range forces com-

pletely for y ≤ rc. However, both short-range and long-range forces are actually strongest

close to the wall. The combined potential of Nijmeijeret al. [168] is therefore defined incon-

sistently, which may explain the deviation between their work and the rest of the literature as

well as the present correlation.

Figure 3.4: Contact angle cosine over the average well depth. The lines represent the correla-
tion given by Eqs. (3.6) – (3.8), and the symbols are simulation results. This work
at a temperature ofT = 0.8ǫf : ρw = 1.07σf (N), ρw = 2.10σf (�), ρw = 4.02σf

(_). Ingebrigtsen and Toxvaerd [176],T = 0.75 ǫf , (◦); Shahrazet al. [182],
T = 0.7 ǫf , (✩); Grzelaket al. [171], T = 0.7 ǫf , (▽); Tang and Harris [175],
T = 0.9 ǫf ,(�); Nijmeijer et al. [174], T = 0.9 ǫf , (△); Nijmeijer et al. [168],
T = 0.9ǫf , (^). The simulation results and the corresponding lines have identical
colours.

3.2 Morphology of silane self-assembled monolayers

Silane self-assembled monolayers (silane SAMs) are widely used for modifying substrate sur-

faces.2 Bigelowet al. [184] first reported on self-assembled monolayers on a substrate in the

late 1940s. The covalent binding of the silane molecule to a suitable substrate and the self-

assembly process leads to a very dense and robust monolayer. A large variety of surfaces can

be modified by chemisorption of silane molecules, as for instance silicon [185], glass [186],

or polydimethylsiloxane [187]. Depending on its end group, the silane transforms those sub-

strates into highly hydrophobic or hydrophilic materials. Silane SAMs on silicon wafers are

a common model system because of their highly controllable properties. The silane mono-

layer forms an extraordinarily homogeneous surface, both chemically and topographically.

By choosing the end group of the silane, the surface wettability can be tuned.

2This section is based on Castilloet al. [183].
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Lesselet al. [185] recently developed a recipe for a wet chemical production process for

silanizing silicon wafers with methyl-terminated molecules such as dodecyltrichlorosilane

(DTS) and octadecyltrichlorosilane (OTS). Although they provide insights into the surface

parameters of the prepared silane SAMs, it is not clear how the silane molecules arrange on

the substrate. In a recent study, Gutfreundet al. [188] developed a model for the molecular

arrangement of the alkylsilanes based on X-ray scattering experiments. They employed an

empirical three-film model to relate their experimental results to the molecular structure of

the silane SAM, and found that the actual height of the silane layer is lower than the theoreti-

cal length of an elongated silane molecule, from which they concluded that the silane chains

are tilted with respect to the substrate. However, the main property that can be measured with

X-ray scattering is the electron density, which does not provide any direct information on

molecular arrangement.

The geometrical characteristics of silane SAMs on the nanometre scale determine their macro-

scopic properties. Different simulation studies have been performed to analyse these mono-

layers. Mainly, self-assembled monolayers are characterized by the coverageΓ, i.e. the num-

ber of chemisorbed substituents per surface area. In many cases, both chemisorption and

physisorption may occur, having separate contributions toΓ; to the SAMs discussed in the

present section, however, only chemisorption is of interest.

The coverage is usually invariant during a molecular simulation and has to be specified in

advance. For example, Barrigaet al. [189] ran MD simulations of OTS SAMs on silica

at high coverage, varying the substitution pattern, molecular orientation, and temperature,

finding that the OTS molecules were always aligned nearly vertically and thus highly ordered

even far from the substrate. On the other hand, Barlowet al. [190] observed that the bonded

OTS layer on silica is essentially crystalline near the substrate, but disordered and fluid-like

far from it.

The present work resolves this apparent contradiction by systematically simulating silane

SAMs on silica, varying the coverage, the substituent length (DTS as opposed to OTS), and

the dispersive interaction energy between the substituents and the substrate. It is thereby es-

tablished under which conditions the self-assembled monolayer is highly ordered and how the

tilt angle and the other geometric properties relate to each other. In the future, this approach

could replace the oversimplified models which are today commonly used for that purpose.

To evaluate the morphology of the silane SAMs, MD simulations were performed in the

isothermal-isobaric ensemble atT = 298 K andp = 1 bar, using theGROMACS 4simu-

lation package [191]. The supporting substrate was modeled as a flatβ-cristobalite (1 0 1)

surface, normal to they axis, with the dimensions 11.5× 11.1 nm2 and a thickness of about

2.3 nm. The cristobalite crystal structure is well suitable as a model for the substrate surface

of functionalized silica, since the superficial hexagonal arrangement of oxygen atoms and the

superficial oxygen-oxygen distance in cristobalite are known to be similar to amorphous silica
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[192]. The density of surface reactive groups, i.e. silanols, is 5.52 nm−2, which is therefore

also the maximal coverage here.

To simulate alkylsilane SAMs with a coverage between 1.0 and 5.52 nm−2, the corresponding

number of DTS or OTS molecules was bonded to randomly selected oxygen atoms on the

top side of the substrate. In Fig. 3.5, the DTS substituent positions are highlighted for the

case of a coverage ofΓ = 4.5 nm−2. The large grafting densities obtained experimentally

indicate that there are few, if any, multiple bonds of each molecule with the substrate, and

a low number of cross-linking bonds between silane molecules. Therefore, the study was

limited to the simplest case: A single covalent bond per substituent, where the chlorine atoms

are substituted by OH groups, and no cross-linking. Periodic boundary conditions were used

in all directions, and the height of the simulation box (iny direction) was 10 nm, which is

sufficient to avoid interactions of the monolayer with the opposite side of the periodic image

of the substrate.

Figure 3.5: Arrangement of the oxygen atoms at aβ-cristobalite (1 0 1) surface, where the
minimum oxygen-oxygen distance is about 4.4 Å. In the present case, the cover-
age isΓ = 4.5 nm−2 and therefore smaller than the superficial density of oxygen
atoms, which is 5.52 nm−2. Oxygen atoms represented by dark bullets are bonded
to an alkylsilane molecule, whereas light bullets correspond to unsubstituted oxy-
gen atoms.

The OPLS all-atom force field [193] was used for describing the interatomic interactions here,

with additional potential parameters and partial charges for modelling the silica bulk [194].

LJ potentials were truncated at a cutoff radius of 1.5 nm, and the long-range contribution of

the electrostatic interactions to the interatomic forces was computed with the particle-mesh

Ewald method. In the OPLS potential, the LJ interaction between unlike atoms is defined by
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a geometric combination rule in theσ parameter, i.e. by using the combination rule

σi j =
√
σiσ j, (3.9)

instead of Eq. (1.7). For theǫ parameter, the modified Berthelot rule was used, cf. Eq. (1.8).

The binary interaction parameterξ was generally equal to 1, except in a series of simulations

in which that factor was varied for the interaction between substituent and substrate atoms.

The initial system configuration was first subjected to an energy minimization using the conju-

gated gradient method. Subsequently, the system was equilibrated over 11 ns, and production

runs were performed for 10 ns. Geometric properties that are commonly used to characterize

silane SAMs were determined by post-processing the MD trajectories from the production

runs. This includes the thickness, the roughness, and further morphological aspects. Thereby,

the relative value of a property is defined as its actual value divided by the maximum value

that it can take. The carbon beads of the alkylsilane molecules are numbered consecutively

here such that bead 1 is the carbon atom directly bonded to the substrate, and beads 12 and 18

are the terminal carbon atoms of DTS and OTS, respectively. The roughness is defined as the

standard deviation of the thickness [195], and the definitions of the tilt angleθ, the twist angle

ψ, and the orientation angleφ, are illustrated in Fig. 3.6.

Error bars were determined as simple standard deviations, using block analysis. In simulations

of large, complex systems like the present one, the relaxation time may become extremely

long. However, system properties were calculated here over different time intervals, account-

ing for a simulation time of at least 40 ns. The values changed only slowly with time, and

usually only within the error bars. The deviation between the conformations reached in the

present simulations and the thermodynamic equilibrium state was thus found to be insignifi-

cant.

The SAM layer thicknessℓ is a property that is available from ellipsometry analysis as well

as other experimental methods. However, X-ray reflectivity and infrared spectroscopy yield

contradicting values in the measured layer thickness [196]. There is some discussion on how

to interpret the experimental layer thickness from an atomistic point of view. Typically, it

is defined as the average distance between the oxygen atom of the substrate bonded to the

alkylsilane molecule and the topmost atom of its hydrocarbon tail, projected in the direction

normal to the surface.

With this definition, the maximum layer thickness possible with the model used in this work

is 1.77 nm for DTS and 2.54 nm for OTS. Experimental studies at high coverage report layer

thicknesses between 2.4 and 2.7 nm for OTS, while for DTS, the layer thickness is reported

to be about 1.4 nm [197, 198].

It is also possible to measure the thickness of the hydrocarbon chain of the molecules, or tail

thickness. The tail thicknessℓt is equal to the average distance normal to the surface between
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Figure 3.6: Geometric parameters describing the orientation of an alkylsilane molecule at-
tached to a surface normal to they axis, measured as a function of a selected
carbon atom. The selected atom, i.e. the tenth carbon atom of a DTS substituent
here, is marked by a yellow bullet. The molecular axis for the selected atom is
defined as the axis joining that atom with the silicon atom of the molecule. Black,
carbon atoms; light grey, hydrogen atoms; dark grey, silicon atom.ℓ, distance to
the surface (see text for different possible definitions of the thickness);θ, tilt angle
between the molecular axis and they axis;ψ, twist angle: rotational angle around
the axis of the alkylsilane molecule, which is equal to zero when the distance of
the first carbon bead to the surface is maximal;φ, orientational angle between the
projection of the molecular axis on the surface and thex axis. By convention, all
angles are defined counterclockwise, looking down from the substituents to the
substrate.

the silicon atom of the alkylsilane molecule, and the topmost atom of its hydrocarbon tail.

With this definition,ℓt is always smaller than the layer thicknessℓ. In the OPLS model, the

maximum tail thicknessℓt
max is 1.49 nm for DTS and 2.25 nm for OTS.

Fig. 3.7 compares the relative tail thicknessℓt/ℓt
max from simulation with experimental data,

as a function of coverageΓ, for both DTS and OTS SAMs. Corroborating the experimental

results [198], with increasing coverage, the thickness is found to increase monotonically in

the present simulations as well. At equal coverage, the relative tail thickness is the same for

DTS and OTS. It is well represented by the quadratic correlation

ℓt

ℓt
max

= −0.031
(

Γ

nm−2

)2

+ 0.370
Γ

nm−2
− 0.117, (3.10)

except in the case of very low coverage, i.e.Γ ≤ 1 nm−2, which is not the focus of the present

study, however. The OTS roughness is always larger than the roughness of DTS except at very

high coverage. As OTS is a longer molecule than DTS, the differences in local thickness can
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be larger. The roughness has a maximum at intermediate coverage, and the OTS maximum

occurs at lower coverage than for DTS. Since the tail thickness is a property which is easier to

measure than the coverage, Eq. (3.10) can be used to estimate the coverage of a given sample

from experimental data on the tail thickness of the SAM.

Figure 3.7: Relative tail thickness as a function of coverage: Present molecular simulation
results for DTS (squares) and OTS (triangles), and experimental data for OTS
(bullet), cf. Tidswellet al. [199]; line, quadratic fit, cf. Eq. (3.10). Error bars for
simulation data are within symbol size.

Experimentally, the tilt angleθ is usually indirectly determined from the relative thickness of

the monolayer. This method is not very precise, especially at the small angles found at large

coverage [200]. It is clear that the tilt angle must be related to the coverage, and there have

been attempts to find an explicit relationship between these properties [201, 202]. Fig. 3.8

contains the present simulation results, which shows a quadratic dependence of the tilt angle

on the coverage,

θ = 1.86◦
(

Γ

nm−2

)2

− 29.5◦
Γ

nm−2
+ 108◦. (3.11)

Similar to Eq. (3.10), this equation describes how an morphological property of the SAM, in

this case the tilt angle, does not depend on the length of the alkylsilane molecule. Therefore,

differences in the tilt angle between DTS and OTS substituents in experiments, performed at

similar conditions, point to differences in coverage. As above, Eq. (3.11) is only valid for

Γ > 1 nm−2. Experimental data at high coverage indicate a tilt angle lower than 20◦ for

OTS, in good agreement with the simulation results, cf. Fig. 3.8. In particular, the simulated

tilt angle is lower than 15◦ at the highest coverage, corroborating the work of Tillmanet al.

[203].
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Figure 3.8: Til t angleθ as a function of coverage: Present molecular simulation results for
DTS (squares) and OTS (triangles); line, quadratic fit, cf. Eq. (3.11). Error bars
are within symbol size. Experimental data (closed symbols) and simulation re-
sults from the literature (open symbols) for OTS are also shown: Bullet, Tidswell
et al. [199]; diamond, Tillmanet al. [203]; triangle down, Kaushik and Clancy
[204].

A quadratic relationship is also found between the relative tail thickness and the tilt angle

θ = −37.8◦
(

ℓt

ℓt
max

)2

− 51.9◦
ℓt

ℓt
max

+ 92.6◦, (3.12)

cf. Fig. 3.9. If the alkylsilane chains were completely rigid, the curve describing this relation-

ship should instead be given by the arccosine function. Most of the experimental data from

the literature appear to confirm an arccosine-like dependency. In these cases, however, chain

rigidity is used as an assumption underlying the interpretation of the measurements, e.g. when

the tilt angle is calculated from the tail thickness determined by ellipsometry. This also ex-

plains the deviation (of the order of 10◦) found between experimental and simulated tilt angles

here.

A further series of simulations was performed in which the binary interaction parameterξ from

the modified Berthelot rule, cf. Eq. (1.8), was varied between 0.1 and 1.4 for the interactions

between the alkylsilane molecules and the substrate. In Fig. 3.10, the results for the layer

thickness are plotted as a function ofξ at low and high coverage. At high coverage, there is

hardly any influence of the unlike interaction on the layer thickness, as the molecules arrange

approximately perpendicular to the substrate and interact weakly with it.
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Figure 3.9: Til t angleθ as a function of the relative tail thicknessℓt/ℓt
max. Present simulation

results for DTS (squares) and OTS (triangles); dashed line, arccosine function;
solid line, quadratic fit, cf. Eq. (3.12); experimental data for DTS (closed sym-
bols) and OTS (crossed symbols) by Gutfreundet al. [188] (circle), Lesselet al.
[185] (diamond), and Tidswellet al. [199] (triangle down).

Figure 3.10:SAM layer thickness as a function of the binary interaction parameter of the
modified Berthelot rule, cf. Eq. (1.8), for the substituent-substrate LJ potential.
Results for DTS (squares) and OTS (triangles) at a coverage ofΓ = 1.5 (open
symbols) and 4.5 nm−2 (closed symbols). Error bars are within symbol size in
all cases.
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Even at low coverage, the influence of the binary interaction parameter on the layer thickness

remains insignificant, except for extreme parameter choices, i.e. whenξ deviates from unity

by more than 50 %. However, typical binary interaction coefficients, which were e.g. adjusted

to experimental VLE data, are rarely smaller than 0.9 or greater than 1.1. It can thus be con-

cluded that the inter-chain interactions determine the geometrical properties of the monolayer.

The precise value ofξ is of minor importance here and cannot be adjusted to experimental data

on the tilt angle or the SAM layer thickness.
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4 Scalable molecular simulation software

4.1 Large systems in molecular dynamics

For the development of MD codes, as for any software, there are trade-offs between generality

and optimization for a single purpose, which no particular implementation can completely

evade.1 Several popular MD simulation environments are tailored for studying biologically

relevant systems, with typical application scenarios including conformational sampling of

macromolecules in aqueous solution. The relaxation processes of such systems are often

several orders of magnitude slower than for simple fluids, requiring an emphasis on sampling

techniques and long simulation times, but not necessarily on large systems.

The AMBERpackage [206], for instance, scales well for systems containing up to 400 000

molecules, facilitating MD simulations that reach the microsecond time scale [51]. Similarly,

GROMACS[191] andNAMD [26], which also have a focus on biosystems, have been shown to

perform efficiently on modern HPC architectures.Tinkerwas optimized for biosystems with

polarizable force fields [207], whereasCHARMM, which was co-developed by Nobel prize

winner Martin Karplus, is suitable for coupling classical MD simulation of macromolecules

with quantum mechanics [208].

A different tendency is represented by codes such asDL_POLY [23] or LAMMPS [209],

which scale well for homogeneous fluid systems with up to tens of millions of molecules,

or ESPResSo, which emphasizes its versatility and covers both molecular and mesoscopic

simulation approaches [30]. These are highly performant codes which aim at a high degree of

generality, including many classes of pair potentials and methods. TheIMD code, which has

held the MD simulation world record in terms of system size previously [28], has a focus on

multi-body potentials for solids.

The novel MD simulation codels1 mardyn(large systems 1: molecular dynamics) expands

the temporal and spatial range of scales accessible to molecular simulation, with a focus on

inhomogeneous systems (e.g. at interfaces) and non-equilibrium thermodynamics. In many

relevant cases, such as those involving vapour-liquid coexistence, the molecule distribution

may be very heterogeneous and change over time in an unpredictable way (e.g. during phase

1This section is based on Horschet al. [2] and Niethammeret al. [205].
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decomposition or multi-phase flow). The design ofls1mardynis oriented towards three major

objectives: Modularity of the structure, interdisciplinar collaboration within the development

process, and transferability of the code base to diverse and heterogeneous HPC architectures.

Beside the LJ potential,ls1 mardynsupports point charges and higher-order point polarities

up to second order (i.e. dipoles and quadrupoles), modelling electrostatic interactions in terms

of a multipole expansion [210]. Furthermore, the Tersoff potential [211] can be used for

a variety of solid materials [212]. The latter, as a multi-body potential, is computationally

more expensive than the pair potentials for fluids. In each integration time step, the inter-

molecular interactions are evaluated, from which the resulting force and torque acting on each

molecule is obtained by summation. Newton’s equations of motion are solved numerically for

all molecules to obtain the configuration in the next time step. For this purpose,ls1 mardyn

employs the leapfrog method, which is algebraically equivalent to the Verlet method but more

accurate numerically, cf. Section 1.2.

Any system of units can be used inls1 mardynas long as it is algebraically consistent and

includes the Boltzmann constant as well as the Coulomb constant among its basic units.

Thereby, expressions for quantities related to temperature and the electrostatic interactions

are simplified. The units of size, energy and charge are related (by Coulomb’s law and the

Coulomb constant unit) and cannot be specified independently of each other. The system of

units is then expanded algebraically; for an example, see Tab. 4.1.

Table 4.1:A consistent set of atomic units (used byls1 mardynscenario generators).
Boltzmann constant kB = 1.38065× 1023 J/K = 1
Coulomb constant (4πε̃)−1 = 8.98755× 109 Jm/C2

Unit length ℓ1 = 1 RB (Bohr’s radius)= 5.29177× 10−11 m
Elementary charge q1 = 1 e= 9.64854× 109 C/mol
Unit mass m1 = 1 kg/mol

Unit density ρ1 = 1/ℓ3
1 = 11205.9 mol/l

Unit temperature T1 = q2
1/(4πε̃ℓ1) = 315 775 K

Unit pressure p1 = ρ1T1 = 2.94211× 1013 Pa
Unit time t1 = ℓ1

√
m1/T1 = 3.26585× 10−14 s

Unit velocity v1 = ℓ1/t1 = 1620.35 m/s
Unit dipole moment D1 = ℓ1q1 = 2.54176 D
Unit quadrupole moment Q1 = ℓ

2
1q1 = 1.34505 DÅ

Calculating short range interactions in dynamic systems requires an efficient algorithm for

finding neighbours. For this purpose,ls1 mardynemploys an adaptive linked-cell algorithm

[213]. The basic linked-cell algorithm divides the simulation volume into a grid of equally

sized cubic cells, which have an edge length equal to the cutoff radiusrc. This ensures that all

interaction partners for any given molecule are situated either within the cell of the molecule



4.1 Large systems in molecular dynamics 73

itself or the 26 surrounding cells. Nonetheless, these cells still contain numerous molecules

which are beyond the cutoff radius. The volume covered by 27 cells is 27 (rc)3, whereas the

relevant volume containing the interaction partners is a sphere with a radiusrc, corresponding

to 4π(rc)3/3 ≈ 4.2 (rc)3. Thus, in case of a homogeneous configuration, only 16% of all pairs

for which the distance is computed are actually considered for intermolecular interactions.

For fluids with computationally inexpensive pair potentials, e.g. molecules modeled by a sin-

gle LJ site, the distance evaluation requires approximately the same computational effort as

the force calculation. Reducing the volume which is examined for interaction partners can

therefore significantly reduce the overall runtime. This can be achieved by using smaller cells

with an edge length of e.g.rc/2, which reduces the considered volume from 27 (rc)3 to 15.6

(rc)3, so that for a homogeneous configuration, 27% of the computed distances are smaller

than the cut-off radius. However, smaller cells also carry an overhead effort, since 125 instead

of 27 cells have to be traversed. This is only beneficial for regions with high density, where the

cost of cell traversal is small compared to the cost of distance calculation. Many applications

of molecular dynamics, such as processes at interfaces, are characterized by a heterogeneous

distribution of the molecules and thus by a varying density throughout the domain. To account

for this, adaptive cell sizes depending on the local density [213] are (optionally) used byls1

mardynas illustrated by Fig. 4.1.

Molecular simulations with system dimensions that far exceed the cut-off radius, beyond

which a mean-field approach is employed for the intermolecular interactions, are most ef-

ficiently parallelized by space decomposition schemes. Thereby, the simulation volume is

subdivided into smaller subvolumes (one for each process) that ideally carry the same load

[214]. Finding an optimal balance requires a method that estimates the load corresponding to

the possible decompositions on the fly, since the particle density distribution can vary signifi-

cantly over simulation time. Inls1 mardyn, an interface class for the domain decomposition

scheme permits the generic implementation of different load balancing strategies operating on

spatial subdomains.

On the basis of the computational cost for each of the cells, load balancing algorithms can

group the linked cells together such thatnp subvolumes with approximately equal load are cre-

ated, wherenp is the number of processing units. A hierarchical tree-based approach (similar

to k-dimensional trees) turned out to be the most adequate dynamic load balancing method;

this concept was previously known to be suitable for parallelizing particle-based simulations

with short-range interactions [214]. Thereby, the simulation volume is recursively bisected by

planes with alternating orientation (normal to thex, y, z, x, . . . axes). This process is repeated

until each process is assigned one cuboid subdomain. The implementation inls1 mardyn

requires each subvolume to cover at least two cells in each spatial dimension.

In a typical simulation, the largest part of the computational cost is caused by the force and

distance calculations. IfNk andNl denote the number of molecules in cellsk and l, respec-
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Figure 4.1: Adaptive cell sizes for an inhomogeneous molecule distribution. Cells that con-
tain significantly more molecules than others are divided into smaller subcells.
According to Newton’s third law, i.e.action equals reaction, two interacting
molecules experience the same force (in opposite directions) due to their mu-
tual interaction, so that a suitable enumeration scheme can be employed to reduce
the amount of cell pairs that are taken into account. Following such a scheme, it is
sufficient to compute the force exerted by the highlighted molecule on molecules
from the highlighted cells [213].

tively, the number of distance calculationsnr(k) for cell k can be estimated by

nr(k) ≈ Nk

2
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l ∈V(k)

Nl
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











. (4.1)

The first term in Eq. (4.1), i.e.N2
k/2, corresponds to the distance calculations within cellk.

The second term represents the calculation of distances between molecules in cellk and one

of the cellsl ∈ V(k) in the vicinity ofk.

While Eq. (4.1) can be evaluated with little effort, it is far more demanding to predict the num-

ber of force calculations. Furthermore, communication and computation costs at the boundary

between adjacent subdomains allocated to different process can be significant. They depend

on many factors, in particular on the molecule density at the boundary. Therefore, even if the

load on all compute nodes is uniform and remains constant, the location of the subvolume

boundaries has an influence on the overall performance. For a discussion of detailed models

for the respective computational costs, the reader is referred to Buchholz [213]. In the present

version ofls1 mardyn, the computational costs are estimated on the basis of the number of

necessary distance calculations per cell, approximated by Eq. (4.1).
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With this technique, an excellent scalability was obtained even for heterogeneous scenarios on

up to 105 processing units of thehermitsupercomputer at the High Performance Computing

Centre Stuttgart (HLRS), cf. Figs. 4.2 and 4.3. The following scenarios, cf. Fig. 4.2, using the

internal scenario generators ofls1 mardyn, were scaled up by varying the number of molecules

N, and simulated over 1 000 time steps with disengaged final input/output:

• Bulk: Homogeneous liquid ethylene oxide at a density ofρ = 16.9 mol/l and a tempera-

ture ofT = 375 K. The molecular model for ethylene oxide consists of three LJ sites

and one point dipole [14].

• Droplet: Simulation scenario containing a LJTS nanodroplet surrounded by supersatu-

rated vapour at a temperature ofT = 0.95ǫ.

• Planar: Simulation of a planar vapour-liquid interface of the LJTS fluid at a tempera-

ture ofT = 0.95ǫ.

(a) bulk (here:N = 2048) (b) droplet
(here:N = 46 585)

(c) planar
(here: N =

102 400)

Figure 4.2: Scenarios used during the performance evaluation ofls1 mardyn.

Parallelization is associated with additional complexity due to communication and synchro-

nization between the different execution paths of the program. In comparison with sequential

execution on a single processing unit, this introduces an overhead. To determine the mag-

nitude of this overhead forls1 mardyn, theplanar scenario withN = 102 400 LJ sites was

executed onhermit, both with the sequential and the MPI parallel version of the code, us-

ing only a single process in each case. Execution of the sequential program took 530.9 s,

while the MPI parallel version took 543.4 s. This indicates that the overhead due to imperfect

concurrency amounts to around 2% only.

In addition to comparing the run times, the effectiveness of the dynamic load balancing im-

plementation inls1 mardynis supported by traces revealing the load distribution between

the processes. Fig. 4.4 shows such traces, generated withvampirtrace, for 15 processes of a
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Figure 4.3: Strong scaling of thels1 mardynprogram on thehermit supercomputer for ho-
mogeneous (bulk) and heterogeneous (droplet) scenarios.

dropletscenario simulation on thehermitsupercomputer. For a trivial domain decomposition,

where all processes are assigned equal volumes, 12 out of 15 processes are waiting in MPI

routines most of the time, while the remaining three processes have to carry the bulk of the ac-

tual computation. In contrast, the present tree-based decomposition exhibits a more balanced

distribution of computation and communication.

It can therefore be summarized thatls1 mardyn, which is publicly available as free software,2

represents the state of the art in MD simulation. It can be recommended for large-scale ap-

plications, and particularly for processes at fluid interfaces, where highly heterogeneous and

time-dependent density distributions may occur. Due to the modularity of its code base, future

work can adjustls1 mardynto newly emerging HPC architectures and further extend the range

of available molecular modelling approaches and simulation methods.

4.2 Scalable multi-trillion molecule MD simulation

Despite the development of molecular simulation for over half a century, scientists still strive

for ever larger and longer simulation runs to cover processes on greater length and time

scales.3 Due to the massive parallelism that large-scale MD typically exhibits, it is a pre-

eminent task for high-performance computing. To enable a simulation breaking the MD world

record, the codels1 mardynwas optimized for the SuperMUC cluster at the Leibniz Super-

computing Centre. Based on the further development of the memory optimization described

by Eckhardt and Neckel [216], an extremely low memory requirement of only 32 bytes per

molecule was achieved.

2http://www.ls1-mardyn.de/
3This section is based on Eckhardtet al. [215].
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(a) Equivoluminar domain decomposition

(b) Tree-based domain decomposition

Figure 4.4: Traces for thedropletscenario onhermit, generated withvampirtrace. The pro-
gram state over two time steps is shown for 15 parallel processes. Computation
is indicated by blue colour, communication by red colour. Vertical lines indicate
message passing between processes.

The present work continues a series of efforts towards extreme-scale MD simulation. In 2000,

Rothet al. [28] performed a simulation of 5× 109 molecules, the largest simulation ever at

that time. Kadauet al. [217] as well as Germann and Kadau [218] followed up, establishing

the world record atN = 1012 molecules. These simulations demonstrated the state of the

art on the one hand, and showed the scalability and performance of the respective codes.

Subsequently, Kabadshowet al. [219] evaluated the intermolecular forces for a configuration

containing 3× 1012 molecules, however, without integrating the equations of motion.

In accordance with preceding large-scale simulations [218], single-precision variables are

used here for the computation. For each molecule, only its position (3× 4 bytes), velocity

(3 × 4 bytes), and an identifier (8 bytes) are stored, i.e. 32 bytes in total. All molecule data

are stored in dynamic arrays, i.e. contiguous memory blocks, assigned to the respective linked

cells, to avoid additional memory for pointers. Thus, the organization of the linked-cells

data structure causes only a small overhead. The force vector does not need to be stored

permanently, because the time integration of the equations of motion is carried out on the fly,

as detailed in Section 1.2.
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The ls1 mardyncode was optimized on the micro-architecture level for a specific processor:

The Intel Sandy Bridge EP, and in particular the SuperMUC cluster operated by the Leibniz

Supercomputing Centre in Garching. This system features 147 456 cores with a theoretical

double precision peak performance of more than 3 PFLOPS, and at the time when the simu-

lations were carried out (in 2013), it was the biggest x86 system worldwide. The system was

assembled by IBM and features a highly efficient hot-water cooling solution. In contrast to

supercomputers offered by Cray, SGI or even IBM’s own BlueGene, the machine is based on

a high-performance network: A FDR-10 infiniband pruned-tree topology by Mellanox. Each

of the 18 leafs, or islands, consists of 512 nodes with 16 cores at 2.7 GHz clock speed (turbo

mode is disabled) sharing 32GB of main memory. Within one island, all nodes can commu-

nicate at full FDR-10 data-rate. In case of inter-island communication, four nodes share one

uplink to the spine switch. Since the machine is operated without hard disks, a significant

fraction of the node memory has to be reserved for the operation environment.

The main innovation of the Intel Sandy Bridge EP processor, introduced in January 2012,

is the advanced vector extensions (AVX) instruction set. In order to execute code with high

performance and to increase the number of instructions per clock, major changes were applied

to the previous core micro-architecture, which was called Nehalem by Intel internally. The

changes are highlighted by italic characters in Fig. 4.5. Since the vector-instruction width has

been doubled with AVX (which is available with two vector widths: AVX128 and AVX256),

also the load port (i.e. port 2) width needs to be doubled. However, doubling a load port width

would impose tremendous changes on the entire chip architecture. In order to avoid this, Intel

changed two ports by additionally implementing in each port the other port’s functionality as

shown for ports 2 and 3. Through this trick, the load bandwidth has been doubled from 16

bytes to 32 bytes per cycle at the price of reduced instruction-level parallelism.

Changes to the ALUs were straightforward: Ports 0, 1 and 5 were simply doubled, and they

provide the classical SSE functionality for AVX instructions and extensions for blend and

mask operations. However, this bandwidth improvement still does not allow for an efficient

exploitation of AVX256 instructions, as this would require a load of 64 bytes per cycle and

a bandwidth of 32 bytes per cycle. (This increase will be implemented with the up-coming

Haswell micro-architecture.) Due to these boundary conditions, AVX128 codes can often

yield the same performance as AVX256 on Sandy Bridge, while they are much better than

SSE4.2 on an equally clocked Nehalem chip. This can also be attributed to the fact that 16-

byte load instructions have a three times higher throughput (0.33 cycles) than 32-byte load

instructions (here, ports 2 and 3 have to be paired and cannot be used independently).

With AVX, a register allocation in each compute unit of the core would be too expensive in

terms of transistors required, and therefore, aregister filewas implemented: Register con-

tents are stored in a central directory. Shadow registers and pointers allow for an efficient

out-of-order execution. Furthermore, a general performance enhancement was added to the
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Figure 4.5: TheIntel Sandy Bridge architecture. Changes with respect to the Intel Nehalem
architecture are highlighted by italic characters: Trace cache for decoded instruc-
tions, AVX support, and physical register file.
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Sandy Bridge architecture: A cache for decoded instructions, boosting the performance of

kernels with small loop bodies, such as the force calculation in MD. Furthermore, the Sandy

Bridge EP cores feature Intel’s hyperthreading technology which helps to increase the core’s

utilization in workload scenarios where the instruction mix is not optimal or the application is

suffering from high memory latencies.

Since ls1 mardynis written in C++ and therefore applies standard object-oriented design

principles, with cells, molecules, etc. as objects, the approach developed by Eckhardt and

Heinecke [220] is followed concerning memory organization and vectorization: By using a

simple proxy application and not the entirels1 mardyncode base, the LJ-12-6 force calcula-

tion inside a linked cell algorithm can be vectorized on x86 processors. For the present work,

the previous implementation was extended by the potential energy and the virial.

The object-oriented memory layout is cache-efficient by design, because molecules belonging

to a cell are stored closely together. However, implementing molecules in a cell as anarray

of structures(AoS) forbids easy vectorization, at least without gather and scatter operations,

which are not available on Intel Sandy Bridge. Only in simple cases (such as updating a

single molecule) this drawback does not matter, because prefetch logic inside the hardware

loads only cache-lines containing data which actually have to be modified.

Implementing the LJ force calculation on arrays of structures poses major challenges: The

upper part of Fig. 4.6(a) shows elements scattered across several cache-lines. Taking into ac-

count that only a small portion of the members is needed for the force calculation, a temporary

structure of arrays(SoA) can be constructed to reduce cache-line pollution and increase vec-

torization opportunities, as illustrated in the lower part of Fig. 4.6(a). Fig. 4.6(b) sketches the

vectorization applied to the LJ potential: In contrast to other methods, which vectorize across

the spatial coordinates [221, 222], the present approach can exploit vector units of arbitrary

length.
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(a) AoS to SoA conversion: In order
to allow for efficient vectorization,
corresponding elements have to be
stored for data streaming access.
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(b) Kernel vectorization: The vectorization of
the LJ force calucation is optimized by dupli-
cating one molecule and streaming four other
molecules.

Figure 4.6: Optimizing LJ force calculation by an SoA storage scheme and vectorization.

In this work, single-precision AVX128 instructions are employed. The calculation is per-
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formed on pairs of molecules, therefore the required data of onemolecule are broadcast-

loaded in the first register, and the second register is filled with data from four other molecules.

Dealing with four molecule pairs at once reduces the number of operations by a factor of four,

theoretically. Since the force calculation may be required for all, some or none of the pairs

in the vector register, pre- and post-processing is required, which is performed by regular

logical operations: It has to be determined whether for at least one molecule pair, the dis-

tance is smaller thanrc (pre-processing), because only then the force calculation has to be

executed. If the force calculation has been executed, the calculated results need to be zeroed

by a mask for all molecule pairs whose distance is larger thanrc (post-processing). Intrinsics

are used to ensure a vectorization of the kernel. Due to the cutoff-radiusif condition inside

the innermost loop, current compilers (gccandicc) deny to vectorize the loop structure iter-

ating over molecules in cell pairs. For the chosen simulation scenario with a cutoff radius of

rc = 3.5σ, a speedup of three is possible on a single core by using the proposed SoA structure

and vectorization.

With increasing vector length, this masking technique becomes a major bottleneck. It can

then occur that more elements are being masked than computed. Therefore, moving to a

wider vector-instruction set may result in more instructions being executed. However, if the

vector-instruction set featuresgatherandscatterinstructions, this issue can be overcome be-

cause only the molecule pairs taking part in the interaction are processed, which has been

successfully demonstrated by Rapaport with the layered-linked-cell algorithm [223].

A different issue inhibiting the efficient usage of the Sandy Bridge core is the lack of instruction-

level parallelism in the compute kernel. The evaluation of distances, pair potentials, and forces

requires significantly more multiplications than additions, so that the ADD unit cannot be

fully utilized. Even worse, the calculation of the repulsive term of the LJ potential requires

a sequence of dependent multiplications. Therefore, the superscalarity of a Sandy Bridge

core cannot be exploited optimally. The behaviour is improved here, however, by using the

hypterthreading technology.

We restricted ourselves to AVX128 instructions for several reasons. Firstly, the Intel Sandy

Bridge architecture is not able to handle AVX256 instructions at full speed, and as discussed

by Eckhardt and Heinecke [220], AVX256 instructions are only beneficial when the cutoff

radius becomes very large. Moreover, AMD Interlagos also plays an important role, since

this chip is used as processor in most Cray supercomputers. AMD Interlagos features two

128bit FPUs shared between two integer units. Therefore, an AVX128 code is essential for a

good performance on Interlagos. With present code base, only slight changes are required for

migrating to an Interlagos machine.

To reduce the memory requirement to only 32 bytes per molecule, the linked-cells algorithm

is implemented with asliding window, following the approach of Eckhardt and Neckel [216],

which is based on the observation that the access pattern of the cells can be described by a
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sliding window that moves through the domain. After a cell has been searched for interacting

molecules for the first time in a time step, its data will be required for several successive force

calculations with molecules in neighbouring cells. If the force calculation proceeds according

to the cell index as depicted in Fig. 4.7, these data accesses happen within a short time period,

until the interactions with all neighbours have been computed. While the cells in the window

are accessed several times, they naturally move in and out of the window in FIFO order.

(a) Sliding window in 2D (cells inside the
bold frame). Molecules in cells in the
window will be accessed several times,
cells 2 through 24 are covered by the
window in FIFO order. For the force
calculation for the molecules in cell
13, cell 24 is searched for interacting
molecules for the first time in this it-
eration. The molecules in cell 2 are
checked for the last time for interac-
tions.

(b) Extension of the sliding window for
multi-threading. By increasing the
window by five cells, two threads
can independently work on three cells
each: thread 1 works on cells 13, 14,
15; thread 2 works on cells 16, 17, 18.
To avoid that multiple threads work on
the same cells simultaneously, a bar-
rier is required after each thread has fi-
nished its first cell.

Figure 4.7: Illustration of the sliding-window algorithm and its extension for multi-threading.

Molecule data outside the the sliding window are stored in form of C++ objects in an AoS ar-

rangement, containing only the position, the velocity, and an identifier. In each cell,Molecule

objects are stored in dynamic arrays. When the sliding window is shifted further and covers

a new cell, the positions and velocities of the molecules in that cell are converted to SoA

form. Additionally, arrays for the forces have to be allocated. The force calculation is now

performed on the molecules as described above. When a cell has been considered for the last

time during an iteration, its molecules are converted back to the AoS layout. Therefore, the

calculation of forces, potential energy and virial pressure can be performed efficiently using

SoA data structures, while the remaining parts of the simulation code can be kept unchanged

according to their object-oriented layout. To avoid the overhead of repeated memory (de-

)allocations when molecule data in a cell are converted, dynamic arrays are allocated initially,

leaving enough space for a maximum number of molecules per cell (which can be estimated

heuristically from the pair potential). This memory is then reused as the sliding window

moves through the subdomain of a single MPI process. Since the sliding window covers three

layers of cells, these buffers consume a comparably small amount of memory, while the vast

majority of the molecules is stored memory-efficiently. At this point, it becomes apparent

that the traversal order imposed by the sliding window also supports cache reusage: When
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molecule data are converted to the SoA representation, these data are placed in the cache and

will be reused several times soon after.

To reduce the memory requirement to 32 bytes per molecule and to further improve the hard-

ware utilization, two further revisions are necessary: The time integration has to be performed

on the fly, and opportunity for multi-threading needs to be created. Since the forces are not

stored with the molecule objects, the time integration has to be performed during that con-

version, i.e. new velocities have to be computed at that moment. The correct traversal of the

molecules is ensured, because cells that have been converted are not required for the force

calculation during this time step any more, and the update of the linked-cell data structure, i.e.

the assignment of molecules to cells, takes place only between time steps.

To make use of hyperthreading, a lightweight shared-memory parallelization was imple-

mented: By extending the size of the sliding window as shown in Fig. 4.7, two threads can

perform calculations concurrently on three independent cells. While exploiting Newton’s

third law and considering each cell pair only once, it is avoided that threads work on directly

neighbouring cells simultaneously. Therefore, a barrier, causing comparably little overhead

on a hyperthreading core, is required after each thread has processed a cell. This allows the

execution of one MPI rank per core with two OpenMP threads to create sufficient instruction

level parallelism, leading to a 12% performance improvement.

To evaluate the present optimized version ofls1 mardyn, single-centre LJ molecules were

distributed on a regular grid on a body-centered cubic lattice with a density ofρ = 0.78σ−3,

and the cutoff radius was specified to berc = 3.5σ. The integration time step was set to

tδ = 1 fs. For the MPI parallelization, an equivoluminar spatial domain decomposition was

employed, which is appropriate for a homogeneous fluid scenario.

Multiple series of test simulations were carried out on the SuperMUC supercomputer. With

respect to strong scaling behaviour, a scenario withN = 4.8× 109 molecules is considered,

which perfectly fits onto 8 nodes; 18 GB per node are needed for molecule data. Fig. 4.8

shows that a very good scaling was achieved for up to 146 016 cores using 292 032 threads at

a parallel efficiency of 42 % (comparing 128 to 146 016 cores).

In this case, less than 20 MB (5.2× 105 molecules) of main memory were used per node,

which fits well into the cache of the individual processors. The excellent scaling behaviour

of ls1 mardyncan be explained by analysing Fig. 4.9. Therein, results are shown concerning

the achievable GFLOPS, depending on the number of molecules, from simulations on eight

nodes. Already forN = 3 × 108 molecules, occupying approximately 8 % of the available

memory, a performance of roughly 550 GFLOPS is reached. The same performance is also

obtained forN = 4.8× 109 molecules.

The present weak-scaling analysis, cf. Fig. 4.8, also includes the multi-trillion test case, break-

ing the MD world record. Thereby, due to MPI buffers on all nodes, the number of molecules
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Figure 4.8: Weak and strong scaling for 2 048 to 146 016 cores on SuperMUC. An approx-
imately ideal scaling was achieved in case of weak scaling, whereas a parallel
efficiency of 42 % was reached in the strong scaling tests. The present diagram
is cut off at 2 048 cores, where a parallel efficiency of 91.1 % in case of strong
scaling (compared to 128 cores) and 98.6 % in case of weak scaling (compared
to one core) was obtained.

per node was specified as 4.52× 108. Roughly 1 GB per node had to be reserved for the

buffers, using one MPI rank per core. However, this slight overhead does not have a signif-

icant impact on the overall performance: On 146 016 cores of SuperMUC, a simulation of

N = 4.125× 1012 molecules was carried out with an execution time of roughly 40 seconds

per MD integration time step. For this scenario, a speedup of 133 183 (compared to a single

core) was achieved with an absolute performance of 591.2 TFLOPS. This corresponds to 9.4

% peak performance efficiency.

4.3 Molecular simulation of thermodynamic properties

With the advance of computing power, the scope of application scenarios for molecular si-

mulation is widening, both in terms of complexity of a given simulation and in terms of

high throughput.4 Nowadays, the predictive simulation of entire phase diagrams has become

feasible. To rely on the simulation results, the methodology needs to be sound and the imple-

mentation must be thoroughly verified. The present section discusses the most recent release,

i.e. version 2.0, of thems2program (molecular simulation: second generation). Results from

ms2have been verified, and the implementation was found to be robust and efficient.

4This section is based on Glasset al. [224] and Reiseret al. [225].
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Figure 4.9: GFLOPS depending on the number of molecules and the cutoff for simulations
with the present optimized version ofls1 mardynon 128 cores of the SuperMUC
supercomputer.

The ms2code is openly available5 for academic users. In version 2.0 ofms2, the MPI par-

allelization of the MD simulation is hybridized with OpenMP, leading to an excellent per-

formance on multi-core processors. On this basis, a wide scope of thermodynamic bulk pro-

perties becomes accessible for homogeneous systems. The focus ofms2is on vapour-liquid

equilibria by Grand Equilibrium simulation [8] as well as thermodynamic properties of homo-

geneous bulk fluids [10]. The considered molecular models are the same as forls1 mardyn,

i.e. rigid models with LJ sites, point multipoles, and point charges. In its present version,ms2

features evaluating free energy derivatives in a systematic manner. This augments the range

of sampled properties significantly, and it allows to straightforwardly develop competitive

fundamental equations of state from a combination of experimental VLE data and molecular

simulation results [226].

This approach is based on the fact that the fundamental equation of state contains the complete

thermodynamic information about a system, which can be expressed in terms of various ther-

modynamic potentials [227], e.g. internal energyE(N, V, S), enthalpyH(N, p, S), Helmholtz

free energyA(N, V, T), or Gibbs free energyG(N, p, T). These representations are equivalent

in the sense that any other thermodynamic property can be expressed using partial derivatives

of the fundamental quantity. The form

Aβ = Φ (N, V,β) , (4.2)

known as the Massieu potential, is preferrable for practical reasons, as outlined by Lustig

[6, 228]. Therein,β = 1/T is the inverse temperature. The statistical-mechanical formalism

5http://www.ms-2.de/
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derived by Lustig [6, 228, 229] allows for the simultaneous sampling of multiple normalized

derivatives of the Massieu potential

Φkl = β
kρl ∂

k+lΦ

∂βk ∂ρl
= Φid

kl +Φ
res
kl , (4.3)

from a single simulation in the canonical ensemble, separatingΦkl into an ideal partΦid
kl and a

residual partΦres
kl . The computation of the residual part is the target of molecular simulation.

In ms2, the derivativesΦres
10 , Φres

01, Φres
20 , Φres

11, Φres
02 , Φres

30, Φres
21 , andΦres

12 are implemented for

the canonical ensemble. The ideal part can be obtained by independent methods, e.g. from

spectroscopic data or ab-initio calculations. However, it can be shown that for any Massieu

potential derivativeΦkl with l > 0, the ideal part is either zero or depends exclusively on the

density, so that it is precisely known [228]. From five of these derivatives (i.e.Φ10, Φ01, Φ20,

Φ11, andΦ02), every measurable thermodynamic property can be expressed [226], with the

exception of phase equilibria.

The calculation of the derivatives of to the order ofl ≤ 2 requires the explicit evaluation

of ∂Epot/∂V and∂2Epot/∂V2. For this purpose, the second-order virial, which is analogous

to the virial but based on the second derivatived2ui j/dr2
i j of the pair potentialui j (r i j ), has to

be determined [6, 228, 229]. For common molecular force fields of the LJ+ point charge

and multipole type supported byms2, these derivatives can be computed straightforwardly.

Thereby, in many cases, a long-range correction contribution needs to be considered, even

though the simulated systems are homogeneous. The mathematical form of the LRC depends

on the molecular interaction potential and the cutoff mode, i.e. based on the individual inter-

action sites or on the molecular centre of mass, cf. Section 1.4. Inms2, both the reaction-field

method and Ewald summation are implemented, with the reaction field as default [10].

Transport properties are determined by equilibrium MD simulation, employing the Green-

Kubo formalism [230]. This approach offers a direct relationship between transport coeffi-

cients and the time integral over the autocorrelation function of the corresponding fluxes. An

extended time step is introduced to evaluate the fluxes, the autocorrelation functions, and their

integrals. The extended time step isnt times longer than the specified MD time step, where

nt is a user defined variable. The autocorrelation functions are then evaluated in one out of

nt MD integration time steps. As a consequence, the memory demand for the autocorrelation

functions can be tuned, and the size of the restart files, which contain the current state of the

autocorrelation functions and time integrals, can be limited. In particular, this approach is

applied here to the electric conductivity of aqueous electrolyte solutions.

The evaluation of the electric conductivityκ is a measure for the mobility of ions in solution.

The Green-Kubo formalism offers a direct relationship betweenκ and the time-autocorrelation
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function of the electric current fluxJe(t) [231]

κ =
1

3VT

∫ ∞

0
〈Je(t) Je(0)〉 dt. (4.4)

Note that only the ions in the solution have to be considered here, not the electro-neutral

molecules. In this way, the temperature dependence of the density and the electric conduc-

tivity of aqueous alkali halide salt solutions is investigated here for solutions containing all

soluble combinations of alkali cations (Li+, Na+, K+, Rb+, and Cs+) with halide anions (F−,

Cl−, Br−, and I−) using thems2program.

The force fields of the ions, which consist of one LJ site and a point charge, are taken from

Reiseret al. [232]. They were adjusted to data of the density of the solutions, the self-

diffusion coefficient of the ions in solution and the position of the first maximum of the radial

distribution function of water around the ions [232, 233]. Water is modelled with the SPC/E

force field [234], and the Lorentz-Berthelot combining rule is employed, cf. Eqs. (1.7) and

(1.8). This choice is discussed in detail by Reiseret al. [232].

In a series of isothermal-isobaric MC simulations, the liquid density of aqueous alkali halide

salt solutions was determined atp = 1 bar, for various temperatures and compositions. De-

pending on the composition, the simulation volume contained 10, 30, or 50 anions and cations,

respectively. The total particle numberN = 1 000 was the same for all of these simulations.

To compute the electric conductivities, additional canonical MD simulations were carried out

with N = 4 500 particles, using the density determined from the first series of simulations.

The sampling length of the velocity and the electric current autocorrelation functions was set

to 11 ps and the separation between the origins of two autocorrelation functions was 0.2 ps.

As Mouckaet al. [235] observes, when the SPC/E water model is used, the force fields for

the sodium cation and the chloride anion from Deubleinet al. [233] as well as Smith and

Dang [236] give the best results, among the available SPC/E compatible force fields, for the

density of relatively dilute aqueous NaCl solutions at 293.15 K and 1 bar. For the Reiser

et al. [232] potential parameters, which constitute a minor modification of those given by

Deubleinet al. [233], a good agreement with experimental data concerning the density can

therefore be expected. The present simulation results confirm this expectation. Fig. 4.10

compares experimental and simulation data for the normalized density ˜ρ = ρ/ρp of aqueous

alkali halide salt solutions, which is defined as the ratio of the densityρ of the electrolyte

solution and the densityρp of the pure solvent, i.e. the density of real water (for experimental

data) or the SPC/E model (for simulation results).

The temperature dependence of the electric conductivityκ of aqueous NaCl salt solutions was

investigated for ion mole fractions up to 0.018 mol/mol in the temperature range from 293.15

to 333.15 K. This specific salt was chosen because experimental data are available over the

entire investigated temperature range [237]. As shown in Fig. 4.11, the electric conductivity
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Figure 4.10:Normalized density of aqueous alkali halide salt solutions as a function of the
ion mole fraction at 1 bar. Present simulation results (symbols), using thems2
program, are compared with correlations of experimental data (lines), cf. Reiser
et al. [225], for T = 293.15 (◦, —) and 333.15 K (x,· · · ). In several cases,
the respective values are so close to each other that they cannot be distinguished
visually in the present representation. LiF is only soluble in trace amounts;
hence, no data for LiF are shown here.

predicted at 293.15 K is in excellent agreement with the experimental data. The deviations are

below 6 % over the entire concentration range; the dependence ofκ on the salt concentration at

constant temperature was discussed earlier by Reiseret al. [232]. The increase of the electric

conductivity with increasing temperature is reproduced by the simulation qualitatively, but

the quantitative deviation between experimental data and simulation results increases. The

greatest deviation (reached at 333.15 K) is 17 %, for an ion mole fraction of 0.018 mol/mol.

Over the entire investigated composition range, the electric conductivity of the NaCl solution

is increasingly underestimated with increasing temperature. This deviation can be attributed

to the underestimation of the self-diffusion coefficients of the ions by the present force field.

Furthermore, the computation of the thermal conductivityλ, implemented for pure fluids by

Deubleinet al. [10], was extended to mixtures forms2version 2.0. The thermal conduc-
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Figure 4.11:Electric conductivity of aqueous NaCl salt solutions as a function of the ion mole
fraction at 1 bar. Simulation results (solid symbols) are compared to experimen-
tal data (empty symbols), cf. Lobo [237]. The statistical simulation uncertainties
of the electric conductivities were found to be about±8 % for all investigated
concentrations at all temperatures.
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tivity is determined from the autocorrelation function of the microscopic heat fluxJh. This

relationship is given by

λ =
1

3VT2

∫ ∞

0

〈

Jh(t) Jh(0)
〉

dt. (4.5)

In mixtures, energy transport and diffusion are coupled, and the heat flux for a mixture ofn

components is [238]

Jh =
1
2

n
∑

k=1

Nk
∑

i=1

















mkv
2
i + ωiI kωi +

n
∑

l=1

Nl
∑

j=1

ukl(r i j )

















vi

−1
2

∑

1≤k,l≤n

Nk
∑

i=1

Nl
∑

j=1

r i j

(

vi
∂ukl(r i j )

∂r i j
+ ωiM i j

)

−
n

∑

k=1

hk

Nk
∑

i=1

vi, (4.6)

wherehk is the partial molar enthalpy of componentk, ωi is the angular velocity vector of

moleculei, I i is its inertial tensor, andM i j is the torque due to the interaction of the molecules

i and j. The partial molar enthalpy is accessible withms2by isothermal-isobaric simulations.

Figure 4.12:Speedup of hybrid MPI/OpenMP vs. pure MPI forms2on thehermit super-
computer, using 2 048 cores with a varying number of threads per MPI process,
regarding systems containing 1 024 (empty triangles), 2 048 (solid triangles),
4 096 (circles), and 8 192 water molecules (bullets).

Systems investigated withms2typically contain of the order of 1 000 molecules. While for

MC simulations, a perfect scaling behaviour up to large numbers of cores can be trivially

achieved, MD domain decomposition – the de facto standard for highly scalable MD – is

not feasible for such system sizes, because the cutoff radius is in the same range as half the

edge length of the simulation volume. This excludes domain decomposition and limits the

scalability of the MPI parallelization.

The present release ofms2features an OpenMP parallelization, which was hybridized with
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MPI. At the point where MPI communication becomes a bottleneck,a single process still

has enough load to distribute to multiple threads, improving the scalability. Three parts of

ms2were parallelized with OpenMP: the interaction partner search, the energy computation

and the force computation. All OpenMP-parallel regions rely on loop parallelism, as the

computationally intensive parts of the algorithm all feature a loop over the molecules.

Table 4.2:Run-time performance results withms2version 2.0 for MD simulations of pure
water atT = 298.15 K andρ = 55.345 mol/l. The number of time steps was
100 000 for every simulation, and the cutoff radius was identical for simulations
with the same number of molecules. All simulations were performed in the same
computing environment.

cores threads N run time [s]
8 8 MPI 500 416
8 8 MPI 1 000 874
8 8 MPI 2 000 4 461

16 16 MPI 500 233
16 16 MPI 1 000 477
16 16 MPI 2 000 2 298
32 32 MPI 500 152
32 32 MPI 1 000 296
32 32 MPI 2 000 1 286
64 64 MPI 500 119
64 64 MPI 1 000 228
64 64 MPI 2 000 814

128 128 MPI 500 105
128 128 MPI 1 000 197
128 128 MPI 2 000 557

8 1 MPI · 8 OMP/MPI 500 483
8 1 MPI · 8 OMP/MPI 1 000 975
8 1 MPI · 8 OMP/MPI 2 000 4 831

16 2 MPI · 8 OMP/MPI 500 253
16 2 MPI · 8 OMP/MPI 1 000 517
16 2 MPI · 8 OMP/MPI 2 000 2 514
32 4 MPI · 8 OMP/MPI 500 167
32 4 MPI · 8 OMP/MPI 1 000 316
32 4 MPI · 8 OMP/MPI 2 000 1 362
64 8 MPI · 8 OMP/MPI 500 119
64 8 MPI · 8 OMP/MPI 1 000 217
64 8 MPI · 8 OMP/MPI 2 000 785

128 16 MPI· 8 OMP/MPI 500 101
128 16 MPI· 8 OMP/MPI 1 000 172
128 16 MPI· 8 OMP/MPI 2 000 496

In the force calculation, race conditions need to be considered, because every calculated force

is written to both interacting molecules. Introducing atomic updates or critical sections leads

to massive overheads. Instead, it is more efficient to assign forces from individual interactions
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to the elements of a list (or an array) which is subsequently summed up. The same approach

is followed for computing the rotational torques.

In Fig. 4.12, the speedup ofms2with hybrid MPI/OpenMP parallelization (compared to pure

MPI) is shown for 2 048 cores on thehermitsupercomputer, varying the number of OpenMP

threads per MPI process as well as the number of molecules in the simulation volume. It can

be seen that using two to four threads per MPI process delivers a speedup of around 20 % for

2 048 cores. Additional run-time performance comparisons are given in Tab. 4.2.
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5 Conclusion

Molecular modelling is a reliable method for describing and predicting thermodynamic pro-

perties.1 Moreover, massively-parallel MD simulation of large heterogeneous systems can

contribute to elucidating the molecular effects that underlie transport processes at interfaces.

Reaching quantitative agreement with real fluid properties, this constitutes a promising ap-

proach for optimizing engineering processes, in particular, if solid surfaces and their contact

with the fluid are represented realistically.

In nanosystems, many relationships known from macroscopic systems break down due to

the predominance of surface over bulk effects as well as the interference between continuous

variations of thermodynamic properties and the discrete structure of matter at the molecular

level. In Section 1.3, it was shown that for systems on an extremely small scale, the Gibbs

adsorption equation does not hold strictly. For systems interacting by Lennard-Jones (and

LJTS) potentials, finite-size effects on the vapour-liquid surface tension were investigated

systematically in Chapter 2. In particular, it was addressed that without knowingγ precisely,

e.g. because it is a quantity that is not given in advance but needs to be determined, the

Laplace radiusRL = 2γ/∆p is not accessible directly. Instead, in Section 2.1, Tolman’s theory

of spherical interfaces was reformulated in terms of the capillarity radiusRκ = 2γ0/∆p, on the

basis of the known surface tension of a macroscopic planar vapour-liquid interface.

Thereby, it was shown that the curvature dependence (to first order in 1/R) of the surface

tension of nanodroplets is relatively weak, corresponding to a small Tolman lengthδ. On the

other hand, the presence of a curvature-independent size effect was proven for the surface

tension of thin liquid films in Section 2.2, an effect which is expected to be at least similarly

strong for spherical interfaces as the first-order curvature effect from Tolman’s law. In this

light, Tolman’s law cannot be upheld any longer. In Section 2.3, it was shown for nanobubbles

how curvature-dependent and curvature-independent size effects interfere. For bubbles with

an intermediate size, the vapour density at the centre of a bubble in equilibrium, e.g., is much

smaller than the dew density corresponding to a macroscopic saturated vapour over a planar

vapour-liquid phase boundary at the same temperature. Extremely small bubbles, however,

exhibit an increased density which cannot be ascribed to the influence of curvature and the

increased pressure, following the Laplace equation, but only to the small volume available

1This chapter is partly based on Horsch and Hasse [239].
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to the dispersed phase. The crossover between both regimes was found to occur at a bubble

radius of 9σ, i.e. about 3 nm.

A particular challenge for molecular methods consists in reaching quantitative reliability for

modelling adsorption, cf. Chapter 3. Beside the force field for the fluid, this also requires a

representation of the solid phase and the interaction between fluid molecules and the adsorber

surface. Moreover, the substrate can possess regular and irregular structures that combine to

form a complex morphology [240]. Developments in this direction are promising, and they

profit from various advantages of molecular simulation over purely empirical methods. On

the basis of validated molecular models, multiple adsorbed layers can be predicted without

resorting to overly simplified approximations from phenomenological thermodynamics [240,

241].

Wetting of a solid by a fluid can be considered by simulating the three-phase contact between

a vapour-liquid interface and the surface of a solid substrate, cf. Section 3.1. In such simula-

tions, multiple ordered adsorbed layers from the liquid phase and a single adsorbed layer from

the gas phase can be discerned, cf. Fig. 3.2. This linear order interferes in a non-trivial way

with the approximately spherical shape of the droplet and yields a molecular structure that

cannot be uncovered experimentally and can hence only be revealed by molecular simulation.

Contact angles from the simulation can be compared to experimental data to parameterize

the fluid-wall interaction [240], assuming that the structure of the experimentally considered

system is realistically modelled, accounting for surface roughness, irregularities, and other

imperfections of the surface, such as residual adsorbed matter .

Furthermore, transport properties such as thermal conductivities, viscosities, and diffusion

coefficients are experimentally accessible and highly relevant for numerous applications in

process engineering. As commented in Section 1.1,processes at interfacesare a particularly

promising application of molecular methods, where Computational Molecular Engineering

is close to achieving significant breakthroughs. In heterogeneous systems, e.g. at a wall or

close to a phase boundary, the dissipation occurring by heat, momentum, and mass transfer

is often non-linear or characterized by complex boundary conditions [242], which have to

be understood to accurately describe mass transfer through nanoporous materials [243–245].

Molecular simulation can help to understand these boundary conditions and non-linear phe-

nomena [246–248].

There are numerous applications in micro- and nanofluidics simulation [243], e.g. concerning

flow through nanoporous membranes [244, 245]. Collective diffusion coefficients of fluids in

contact with a nanostructured solid substrate can be computed by NEMD with Ható’s dæmon

[249] or Avendaño’s dæmon [244], which acts on a part of simulation volume to acceler-

ate differently labelled, but otherwise identical molecules in opposite directions. Analogous

simulation methods can capture the local shear viscosity of the fluid and the pressure drop

in a nanofluidics scenario. Thereby, molecular simulation can reproduce entrance and exit
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effects, cf. Fig. 5.1, which can be particularly relevant for filtration. The main advantage of

non-equilibrium over equilibrium MD simulation is that it also applies to transport processes

in the non-linear regime, e.g. for non-Newtonian fluids or extreme driving forces.

Figure 5.1: Visualization of configurations from NEMD simulations of pressure-gradient
driven Poiseuille flow of water through nanoporous carbon, represented here by a
planar slit pore.

Due to its molecular resolution, MD simulation is particularly suitable for investigating cou-

pled heat and mass transfer during a phase transition such as vaporization by pool boiling

or condensation in a supersaturated vapour. These processes are activated, starting from a

metastable state, and are initialized by the formation of dispersed nanoscopic nuclei of the

phase that is thermodynamically stable under the respective conditions. The first step of the

process is nucleation, by which supercritical nuclei emerge after a free energy barrier has

been overcome. Even though nucleation, as an activated process, is more complex than spon-

taneous relaxation processes, it can also be simulated directly. In this case, a single MD

simulation can reproduce the whole phase transition. A related NEMD approach consists in

simulating the pseudo-grand canonical ensemble with McDonald’s dæmon: This Maxwellian

dæmon removes large nuclei of the emerging dispersed phase, and the nucleation rate can be

determined from the frequency of these interventions [246].

By massively-parallel high performance computing, e.g. using thels1 mardynprogram,2

molecular simulation becomes an experimentin silico. Due to their heterogeneous struc-

ture, systems with a phase boundary have stronger long-range interactions which also need

to be taken into account, cf. Section 1.4. As shown in Sections 4.1 and 4.2, load balancing

by recursive bisection of the simulation volume, using an adaptive linked-cell data structure,

significantly improves the scalability of the code. In this way, supercomputers with a large

number of cores can be used efficiently both for homogeneous and heterogeneous systems.

2http://www.ls1-mardyn.de/
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In Section 4.3, thems2program3 for molecular simulations of homogeneous fluid systems

was presented, which is presently available in its second release. By building a consistent

tool kit for molecular modelling and simulation on the basis of these two highly performant

engines, computational molecular engineering and its applications in the chemical industry

will be further advanced in the coming years.

3http://www.ms-2.de/
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