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List of symbols

A Helmholtz free energy
B virial coefficient
C heat capacity
D dipole moment
E energy (kinetic energy Ekin, potential energy Epot)
F,F force
f function; in particular, the Mayer f function
G Gibbs free energy
g radial distribution function
H enthalpy
H ,Ĥ Hamiltonian (energy) function H and operator Ĥ
h Planck constant, i.e. h= 6.63 · 10−34 Js
i, j, k,ℓ indices
L angular momentum
L length
M ,M number of systems or coexisting phases
m mass (of a single molecule)
N ,N number of molecules or microscopic degrees of freedom
N number of intensive thermodynamic degrees of freedom
n repulsive interaction exponent, e.g. n = 12
P pressure
p,p momentum
Q electric charge (partial or point charge)
Q partition function
q,q position, configuration
R radius
r, r distance, radial coordinate
S entropy
s surface area
T temperature
T instantaneous microscopic temperature
t time
u interaction potential
V volume
w attractive interaction exponent, e.g. w = 6
X macroscopic thermodynamic quantity
x , y, z spatial coordinates
x ,x, y,y mole fraction, composition (in mol mol−1)
Y packing fraction

3



List of symbols

α polarizability
βT isothermal compressibility
Γ phase space
Γ E adsorption
γ surface tension
γ,γ microstate
δ Dirac delta function
ǫ energy parameter
ζ,ζ random number
η binary size parameter
ϑ azimuthal angle
κ number of components in a mixture
Λ normalization length scale
λ logarithmic scaling variable
µ,µ chemical potential
µ̃ reduced residual chemical potential
Ξ multipole moment (charge Ξ0 =Q, dipole Ξ1 = D, quadrupole Ξ2, . . . )
ξ binary energy parameter
Π virial
π probability
ρ fluid density ρ = N/V , phase space density ρ(γ)
σ size parameter
ϕ orientational angle
χ microscopic observable
ψ wave function
Ω grand potential
ω frequency
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1 Concepts of Statistical Mechanics

1.1 Molecular Mechanics

Molecular mechanics relies on a classical mechanical (non-quantum-mechanical) and particle
based (rather than continuous) representation of matter and the forces acting on it.1

Continuum mechanics Molecular mechanics Quantum mechanics

Continuous matter,
continuous energy

Discrete molecules,
continuous energy

Particle-wave duality,
discrete energy levels

Gradients as driving
forces
(∇x , ∇T , ∇P, . . . )

Forces between molecules
(gradients of potentials) Schrödinger equation

Transport coefficients,
equation of state

Classical mechanical
force field (pair potential)

Energy levels,
wave functions

The hierarchy of these levels implies the following relationship between the simulation ap-
proaches:

• Molecular force field parameters are sometimes adjusted using results of quantum
mechanical computations (beside experimental data, which should always be used for
model parameterization);

• Molecular simulation results can potentially be used to determine thermodynamic pro-
perties of fluids which are needed for continuum methods such as CFD (however, this
is almost never done in actual practice).

The design of molecular force fields, i.e. molecular modelling, always needs to make com-
promises between competing objectives:

• Numerical simplicity vs. detailed description of physical reality;

• Presence of free parameters, to allow fitting to experimental data, but not too many,
so that overfitting is avoided and the models can be used for predictions;

• Agreement with experimental data for property I vs. property II, property III, etc.

Typical force fields for low-molecular fluids are rigid pair potentials (absence of internal
degrees of freedom and absence of multibody interactions). Quantitative conflicts between
multiple design criteria, which concern the parameterization of the model within a given
model parameter space, can be treated by multicriteria optimization methods.

1Recommended book for the CHE 622A module: Allen and Tildesley, Computer Simulation of Liquids, Claren-
don, Oxford, 1987 [1].
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1 Concepts of Statistical Mechanics

1.2 Statistical Ensemble

In statistical mechanics, an ensemble is a set of M systems with different, and varying,
microscopic states, but with the same, and constant, macroscopic boundary conditions.
Accordingly, each system 1≤ k ≤ M has a microstate γk(t) of the type γ= (p,q), where

• p is the vector containing all momentum coordinates, i.e. 3N scalar values in the case
of N point masses, and

• q, which is also called the configuration of the system, is the vector containing all
position coordinates, of which there are as many as momentum coordinates,

which evolve over the course of time t. The macroscopic boundary conditions depend on
the type of ensemble.

isolated systems closed systems
open systems
(control volumes)

mechanically
coupled systems

Each system has
constant N , V, E

Each system has
constant N and V

Each system has
constant V

Each system has
constant N

Exchange of energy
(heat is transferred)

Exchange of
energy and matter

Exchange of energy
(work is done)

Ensemble invariant:∑
i Ei

Ensemble
invariants:∑

i Ni and
∑

i Ei

Ensemble
invariants:∑

i Vi and
∑

i Ei

microcanonical
(NV E ensemble)

canonical
(NV T ensemble)

grand canonical
(µV T ensemble)

isothermal-isobaric
(N PT ensemble)

Macroscopic thermodynamic properties are associated with the ensemble as a whole, not
with the individual systems.

1.3 Phase Space

The phase space Γ is the set2 of possible microstates γ ∈ Γ . For systems with N point
masses, it is 6N -dimensional with

γ = (p1, p2, . . . , pN , q1, q2, . . . , qN), (1.1)

Γ = R3 ×R3 × · · · ×R3 × V × V × · · · × V. (1.2)

At any time t, the systems have the microstates γ1(t),γ2(t), . . . ,γM(t). On average, this
yields a distribution,3 the phase space density ρ(γ). The phase space density is determined
by

2Cf. Allen and Tildesley [1], Section 2.1: Sampling from Ensembles.
3Here, both ensemble averages (over the systems) and time averages (for a single system) will be considered,

cf. below, Section 2.1: Ergodic Hypothesis. However, for a finite number of systems M , a probability distri-
bution is only obtained by averaging over time. The systems of an ensemble are all assumed to be equal, so
that the result is the same for all systems and only depends on the ensemble.
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1.4 Thermodynamic Limit

1. the thermodynamic boundary conditions,

2. the intermolecular interactions,

and nothing else. The probability π(Γ ′) of finding any given system within a region Γ ′ ⊆ Γ
of the phase space4 at any given time is proportional to

∫

Γ ′

dp1x · · · dpNz dq1x · · · dqNz ρ(γ),

where we simplify the notation to

dp = dp1x dp1y · · · dpNz, (1.3)

dq = dq1x dq1y · · · dqNz, (1.4)

dγ = dpdq. (1.5)

Hence, on average, there are

M ′(Γ ′) =
M
∫
Γ ′

dγρ(γ)
∫
Γ

dγρ(γ)
(1.6)

systems of the ensemble to be found within the region Γ ′.

1.4 Thermodynamic Limit

Transition to thermodynamically relevant5 ensembles:

• Large numbers of molecules (N ≫ 1020), effectively N →∞;

• Law of large numbers, M →∞, for statistics over the systems.6

For the transition to the limit N →∞, certain intensive quantities such as the fluid density
ρ = N/V and the temperature T can be chosen as invariants, while all extensive quantities
such as the volume V , the energy E, and the entropy S diverge.

In the limit M →∞, the phase space density ρ(γ) becomes a distribution of systems over
the phase space at any given time, rather than being only a time average. The transition
to infinite M is carried out at invariant macroscopic boundary conditions for the systems.
The ensemble average of a microscopic observable χ(γ), i.e. of any quantity which depends
only on γ and nothing else, is then given by the weighted average

〈χ〉 =
∫
Γ

dγχ(γ)ρ(γ)
∫
Γ

dγρ(γ)
. (1.7)

Unless stated otherwise, it will be assumed here that the limit M →∞ is considered, and
that M and all other extensive quantities are large enough to neglect finite-size effects.

4Note the analogy between a system with the microstate γ(t), which moves through the phase space Γ , and
a particle with the position q(t), which moves through a volume V . Hence, the same symbol ρ is used here
for the fluid density and the phase space density.

5Exception: Thermodynamics of small systems, where finite size effects and deviations from the macroscopic
behaviour are explicitly of interest [2].

6In case of the NV T , µV T , and N PT ensembles, this also corresponds to the limit of an infinite heat bath,
and in case of the µV T ensemble, to the limit of an infinite reservoir of molecules surrounding the system.
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1 Concepts of Statistical Mechanics

1.5 Trajectory

The trajectory γ(t) of a system is the development of its microstate over time. It is
determined here by the initial value γ(t0) and the classical mechanical equations of motion,
e.g. following Hamilton

ṗℓ = −∂H
∂ qℓ

= Fℓ,

q̇ℓ =
∂H
∂ pℓ

=
pℓ

m
. (1.8)

Therein, m is the mass of a particle, for simplicity assumed here to be a point mass, ℓ is
one of the 3N microscopic degrees of freedom (DOF) for a three-dimensional system with
N particles, and the Hamiltonian (function)

H (γ) =H (p1x , p1y , . . . , pNz, q1x , q1y , . . . , qNz) = Ekin(p) + Epot(q) (1.9)

evaluates to the total energy of the system. This notation is particularly suitable for the
separation of coordinates into momenta p on the one hand, which determine the kinetic
energy

Ekin(p) =
p2

2m
=

1
2m

∑

1≤i≤N

�
p2

i x
+ p2

i y
+ p2

iz

�
, (1.10)

and the configuration q, which determines the potential energy Epot(q), on the other hand.
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2 Microcanonical Ensemble

2.1 Ergodic Hypothesis

By following the trajectory γk(t) of a single system k between two points in time t0 and t1,
for any microscopic observable χ(γ), a time average can be determined

χ̄ =
1

t1− t0

t1∫

t0

d t χ (γ(t) ) , (2.1)

while the ensemble average 〈χ〉 is given1 by Eq. (1.7).
Ergodic hypothesis: For any system 1 ≤ k ≤ M and any region Γ ′ ⊆ Γ , the fraction of

the time interval t0 ≤ t ≤ t1 = t0 +∆t with γk(t) ∈ Γ ′ converges to

lim
∆t→∞

t ′

∆t
=

∫
Γ ′

dγ ρ(γ)
∫
Γ

dγ ρ(γ)
. (2.2)

This means that all systems travel through the whole phase space in the same way. In the
limit M →∞, it also means that ensemble averaging over all systems (at a single point in
time) and time averaging over a trajectory (for a single system) necessarily yield the same
outcome, since the distribution of microstates in both cases is exactly the same.

Quasiergodic behaviour: For any system 1 ≤ k ≤ M , the time average of a given micro-
scopic observable χ(γ), converges to

lim
∆t→∞

χ̄ = 〈χ〉 (2.3)

in the infinite time limit.
The ergodic hypothesis does not always hold, and even where it holds, this is hard to prove

formally. In practice, nonetheless, quasiergodic behaviour holds for all thermodynamically
relevant microscopic observables in all thermodynamically relevant cases.2 The validity of
the ergodic hypothesis, i.e. ergodicity, is a property of the ensemble only, whereas quasi-
ergodicity is a property of a microscopic observable in combination with the macroscopic
boundary conditions.

1For a finite number of systems M in the ensemble, the average value of χ will vary over time, so that 〈χ〉
is to be understood as an average over all systems and over time. In the thermodynamic limit M →∞,
the average value at any given time can be taken, and it is constant, assuming (as we do here throughout)
that the ensemble as a whole is in equilibrium at any given time, whereas the microscopic obervables within a
single system may fluctuate over time. In particular, we will assume here that the initial conditions for the
ensemble are such that it is in equilibrium already, so that there is no relaxation from initial non-equilibrium
conditions towards equilibrium. This assumption does not carry over directly to molecular simulation in
practice, where such phenomena in general do occur.

2Counterexamples exist. These include cases where a system is subdivided into various compartments which
are isolated from each other, where there is no coupling between certain microscopic degrees of freedom,
or where a quantity (e.g. the overall angular momentum of the system) is invariant, but not specified mac-
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2 Microcanonical Ensemble

2.2 Liouville’s Theorem

It is assumed that the ensemble as a whole is in equilibrium at any given time. Hence, the
phase space density is time-independent

∂ ρ

∂ t
= 0. (2.4)

On this basis, Liouville’s theorem addresses the question: How does the phase space density
vary along a trajectory, i.e. what is the time derivative Dρ/Dt in the moving frame of
reference following the trajectory γ(t) of a system through the phase space?

The frame of reference follows the evolution of the microstate over time, moving through
Γ with the velocity γ̇ = (ṗ1x , . . . , ṗNz, q̇1x , . . . , q̇Nz). The time derivative of ρ in this frame
of reference is3

Dρ

Dt
=

∑

ℓ∈{1x , ..., Nz}
ṗℓ
∂ ρ

∂ pℓ
+

∑

ℓ∈{1x , ..., Nz}
q̇ℓ
∂ ρ

∂ qℓ
= γ̇∇ρ. (2.5)

By analogy between the motion of systems trough phase space and the motion of fluid
matter through a volume, the continuity equation from fluid dynamics

∂ ρ

∂ t
= −

∑

ℓ

∂ (ρ ṗℓ)

∂ pℓ
−
∑

ℓ

∂ (ρq̇ℓ)

∂ qℓ
= −∇(ργ̇) (2.6)

holds for the time derivative ∂ ρ/∂ t of the phase space density in the stationary frame of
reference. Since ∇(ργ̇) = ρ∇γ̇+ γ̇∇ρ, it follows from Eqs. (2.4) to (2.6) that

Dρ

Dt
= −ρ∇γ̇ = −ρ

�∑

ℓ

∂

∂ pℓ
ṗℓ +

∑

ℓ

∂

∂ qℓ
q̇ℓ

�
. (2.7)

The classical mechanical equations of motion, cf. Eq. (1.8), permit us to replace ṗℓ and q̇ℓ
such that

Dρ

Dt
= −ρ

�
−
∑

ℓ

∂

∂ pℓ

∂H
∂ qℓ

+
∑

ℓ

∂

∂ qℓ

∂H
∂ pℓ

�
. (2.8)

According to Schwarz’s theorem, applied to the Hamiltonian H (p1x , . . . , pNz, q1x , . . . , qNz),
the applied partial differentiation operations are commutative4

∂ 2H
∂ pℓ ∂ qℓ

=
∂ 2H
∂ qℓ ∂ pℓ

, (2.9)

roscopically, so that different systems which belong to the same ensemble continue to behave differently
for an arbitrarily long time. Then the choice of initial conditions for the microstate of a system becomes
significant. These counterexamples typically either represent undesired artefacts, which can be removed,
or they are designed for the specific purpose of discussing non-ergodic behaviour. We will not consider such

special cases, and (quasi-)ergodicity will be assumed throughout.
3Here, ∇ is the divergence operator, which can be thought of as the vector of partial differentiation operators
∇ = (∂ /∂ p1x , . . . , ∂ /∂ qNz).

4Assuming, as we do here, that the mentioned derivatives do exist. This is not strictly the case for systems
containing hard bodies, where the potential energy is discontinuous in q, corresponding to infinite repulsive
forces. However, this case can be treated in the same way, by treating the hard potential as the limit of a
series of soft potentials which become increasingly steep.

10



2.3 Dirac Delta Function

and Eq. (2.8) simplifies to
Dρ

Dt
= 0. (2.10)

Liouville’s theorem: On a trajectory γ(t) which obeys the classical mechanical equations of
motion, the phase space density ρ(γ(t)) is constant.

2.3 Dirac Delta Function

The phase space density was shown to be a conserved quantity of the equations of motion.
However, for mechanical systems in general, the only conserved quantities are

• the total energy E of the system,

• the total momentum p of the system,

• the total angular momentum L of the system,

• and functions of these quantities f (E,p,L).

Hence, it must be possible to express ρ(γ) as a function of these quantities. Assuming that
the system as a whole is at rest and does not rotate, it follows that the phase space density
is a function of the energy only, which is expressed microscopically by the observable H (γ).
We can therefore write

ρ(γ) = ρ(H (γ) ). (2.11)

In the microcanonical ensemble, E is specified as a macroscopic boundary condition which
is constant and equal for all systems. Microstates with H (γ) 6= E cannot occur, hence their
probability is zero. Microstates with H (γ) = E may occur, and following Eq. (2.11), the
phase space density needs to be the same for all of these values of γ. The probability

π(Γ ′) =

∫
Γ ′

dγρ(γ)
∫
Γ

dγρ(γ)
(2.12)

of finding a system within a region Γ ′ ⊆ Γ of the phase space is therefore given by the
fraction of the microstates with H (γ) = E which are inside this region. This is expressed
mathematically by

ρN V E(γ) = δ(H (γ)− E), (2.13)

where δ is the Dirac delta function. This generalized function is defined by its integral

∫
d x δ( f (x) ) = || {x | f (x) = 0} || , (2.14)

which evaluates to the magnitude of the set of zeros of the function f (x); wherever f (x) 6= 0,
the Dirac delta function is zero. Hence,

∫
Γ ′

dγδ(H (γ)− E) is a measure for the size of that
part of the region Γ ′ where the system has the specified value of E.

11



2 Microcanonical Ensemble

2.4 Partition Function

In the microcanonical ensemble, the magnitude of the set of microstates that satisfy the
condition H (γ) = E is proportional to

∫
Γ

dγρ(γ), the phase space integral over the phase
space density. By normalization, this can be converted into a dimensionless effective number
of states, called the partition function Q.

Discretization: Following the Heisenberg uncertainty principle, ∆pℓ∆qℓ ≥ h holds for
the product of the uncertainties of associated momentum and position coordinates; therein,
h= 6.63·10−34 Js is the Planck constant. A single quantum mechanical state corresponds to
a subvolume of h3N of the phase space for a system of N point masses with 3N microscopic
DOF. Hence, the phase space integral over ρ(γ) needs to be divided by h3N . Thereby, the
dimension of dγ= dpdq, which is (Js)3N , cancels out, yielding a dimensionless quantity.

Permutation correction: In the representation

γ= (p1,p2, . . . ,pN ,q1,q2, . . . ,qN), (2.15)

all N molecules are distinguished by their order; exchanging molecules 1 and 2 yields a
different microstate, whether these molecules are physically different or not. For a pure
component system, where all molecules are identical, every microstate thereby appears in
N ! permutations which are indistinguishable physically. Hence, the phase space integral over
ρ(γ) needs to be divided by N ! (or by Ni! N j! · · · in case of a mixture of the components i,
j, etc.).

The partition function is therefore given by

Q = 1
h3N

1
N !

∫

Γ

dγρ(γ), (2.16)

for the case of a single component.

12



3 Entropy and Temperature

3.1 Definition of Entropy

The entropy is defined by the logarithm of the partition function in the microcanonical
ensemble1

S = lnQN V E = ln
1

h3N N !

∫

Γ

dγ δ (H (γ)− E) . (3.1)

The logarithm of the partition function is an extensive quantity:

�
1
�

N1, V1, E1

�
2
�

N2, V2, E2 · · ·
�
M
�

NM , VM , EM

If M (sub-)systems are combined to a greater system, as above, the microstate of the
combined system is given by γ = (γ1,γ2, . . . ,γM ), the phase space by the product set
Γ = Γ1 × Γ2 × · · · × ΓM , and hence,2 the partition function by

Q = Q1Q2 · · ·QM
lnQ = lnQ1 + lnQ2 + · · ·+ lnQM . (3.2)

Accordingly, the entropy is an extensive quantity, since its value for the combined system is
given by the sum over the entropy of the subsystems.

3.2 Ideal Gas Entropy

The ideal gas is defined by the absence of intermolecular interactions. Hence, Epot = 0 and
H (γ) = Epot(p) = p2/2m. For this special case, the partition function can be determined
analytically

QN V E =
1

h3N N !

∫

R3N




∫

V N

dq



 dpδ(Ekin(p)− E), (3.3)

1This equation is often written as S = kB lnQ. Here, following a widespread convention in statistical mecha-
nics, we define the Boltzmann constant kB = 1.38065·10−23 J/K to be unity, i.e. 1 K= 1.38065·10−23 J. The
Boltzmann constant thereby becomes a conversion factor between units of temperature and energy, which
are commensurable quantities (with the same dimension), similar to the relation between heat and work as
commensurable quantities which convert by the ratio 1 kcal = 4 184 J.

2To see this, either separate the partition function as defined by Eq. (2.16) into M independent factors, or
consider its intuitive interpretation as the effective number of available states.
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3 Entropy and Temperature

by separation of variables. The configurational integral, given in square brackets, evaluates
to V N . Hence,

QN V E =
V N

Λ3N N !
·
�
Λ

h

�3N
∫

R3N

dp δ

�
1

2m

�
p2

1x
+ p2

1y
+ · · ·+ p2

Nz

�
− E

�
, (3.4)

which decomposes into a factor from the configurational integral and a factor from the
integral over the momentum coordinates

QN V E = Qconf
N V E

· Qmom
N V E

S = lnQconf
N V E

+ lnQmom
N V E

. (3.5)

Therein, the length Λ is used to normalize both factors of the partition function.3 With the
Stirling approximation, ln N ! ≈ N(ln N − 1), the configurational contribution simplifies to

lnQconf
N V E

= N ln VΛ−3 − N(ln N − 1) = N

�
1+ ln

V

Λ3N

�
. (3.6)

The integral ∫

R3N

dp δ

�
1

2m

�
p2

1x
+ p2

1y
+ · · ·+ p2

Nz

�
− E

�

corresponds to the hypersurface area of the hypersphere4 in the 3N -dimensional momentum
space R3N with the radius R=

p
2mE. Therefore, the second contribution to the entropy is

lnQmom
N V E

= ln
�
Λ

h

�3N

+ ln

�
[2πmE]3N/2

(3N/2)!

�
+O (ln N) ≈ 3N

2

�
1+ ln

Λ2

h2

4πmE

3N

�
(3.7)

Combined, in the thermodynamic limit, this yields the Sackur-Tetrode equation

S

N
=

5
2
+ ln

V

Λ3N
+

3
2

ln
4πmΛ2

3h2

E

N
. (3.8)

3.3 Canonical Ensemble

In the NV T ensemble, the systems are closed, but thermally coupled. Hence, they can
exchange energy by heat transfer:

�
1
�

N , V ↔E

�
2
�

N , V ↔E · · · ↔E

�
M
�

N , V MN , MV, M 〈E〉

The M systems together are described by the state

γ= (γ1,γ2, . . . ,γM), (3.9)

3Overall, Λ cancels out, so that its magnitude is irrelevant.
4The surface area of a k-dimensional sphere with the radius R is s = 2πk/2Rk−1/(k/2)!; for odd values of k,

the factorial is replaced with the corresponding value of the gamma function.
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3.4 Boltzmann Distribution

and since the ensemble as a whole is isolated, together behave like a microcanonical system.5

In the thermodynamic limit (infinite heat bath), the microstates of all systems are statisti-
cally independent

ρ(γ) = ρN V T (γ1) · ρN V T (γ2) · · · ρN V T (γM). (3.10)

The following questions remain to be clarified:

• How exactly are the boundary conditions related to the temperature?

• What is the canonical partition function ρN V T (γk) for a single system k?

3.4 Boltzmann Distribution

The microcanonical phase space density, which characterizes the probability distribution for
the M systems of a canonical ensemble together, is given by the Dirac delta function

ρ(γ) = δ

�
M∑

k=1

H (γk)−M 〈E〉
�

, (3.11)

where γ ∈ Γ M and the energy M 〈E〉 describe the systems 1, 2, . . . , M together. Analogously,
for the ensemble without the first system, Γ ′ = Γ M−1 denotes the combined phase space,
γ′ ∈ Γ ′ the vector of microstates, and

E′(γ′) =
M∑

k=2

H (γk) (3.12)

the energy of the systems 2 to M together. By separating the first system from the others,
Eq. (3.11) transforms to6

ρ(γ1,γ′) = δ
�
H (γ1) + E′(γ′)−M 〈E〉

�

=

∞∫

−∞

dE1 δ (H (γ1)− E1) δ
�
E′(γ′)− [M 〈E〉 − E1]

�
. (3.13)

The relative statistical weight7 of any given microstate γ1 ∈ Γ1, where Γ1 = Γ is the phase
space for the first system, is given by the integral over the phase space density in combination

5As the systems are closed and each molecule is therefore confined to a single system, this is not exactly the
case. However, thermal coupling will be discussed here in terms of the exchange of energy, so that the
deviations from microcanonical behaviour, which concern the configurational integral only, cancel out.

6The delta function δ(H (γ1)− E1) is used here to separate the variables. It is zero except forH (γ1) = E1, at
which point the integral over δ(H (γ1)− E1) yields a contribution of 1. Therefore, in the right hand factor,
H (γ1) can be replaced with E1, eliminating the variable γ1 from that factor.

7Introducing the canonical phase space density as a relative statistical weight permits us to discard constant
prefactors which do not depend on γ1, which we will do repeatedly.
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3 Entropy and Temperature

with all microstates γ′ ∈ Γ ′ for the other systems

ρN V T (γ1) ∼
∫

Γ ′

dγ′ ρ(γ1,γ′)

∼
∫

Γ ′

dγ′




∞∫

−∞

dE1 δ (H (γ1)− E1)



 δ
�
E′(γ′)− [M 〈E〉 − E1]

�

∼
∫

Γ ′

dγ′ δ
�
E′(γ′)− [M 〈E〉 − E1]

�
, (3.14)

where the integral over dE1 in square brackets evaluates to 1, since for any given γ1, there
is exactly one energy value E1 such that H (γ1)− E1 = 0. By comparison with Eq. (3.1) for
the partition function Q′ of the combined system8 consisting of the systems 2 to M

Q′
N ′,V ′(M 〈E〉 − E1) =

1
h3N ′N ′!

∫

Γ ′

dγ′ δ
�
E′(γ′)− [M 〈E〉 − E1]

�
, (3.15)

the canonical phase space density can be given as

ρN V T (γ1) ∼ Q′
N ′,V ′(M 〈E〉 −H (γ1))

∼ exp S′
N ′,V ′ (M 〈E〉 −H (γ1)) ,

∼ exp

�
S′

N ′,V ′(M 〈E〉)−H (γ1)

�
∂ S′

∂ E′

�

N ′,V ′
+O

�
[H (γ1)]

2
��

, (3.16)

where the higher-order contribution inH (γ1) can be neglected in the thermodynamic limit.9

With the identity �
∂ S

∂ E

�

N ,V
=

1
T

(3.17)

from phenomenological thermodynamics, this simplifies to

ρN V T (γ1) ∼ exp S′
N ′,V ′ (M 〈E〉) · exp

�
− H (γ1)

T

�
. (3.18)

Since M 〈E〉 does not depend on γ1, the first factor is also constant and can be discarded.
The phase space density in the NV T ensemble can therefore be specified as

ρN V T (γ) = exp
�
− H (γ)

T

�
, (3.19)

which is the Boltzmann distribution. Hence, the probability of a microstate under ther-
malized boundary conditions is immediately related to the temperature of the system.

8Since the total number of molecules N ′ = (M − 1)N and volume V ′ = (M − 1)V for the systems 2 to M

does not depend on the microstate γ1 of the first system, these quantities can here be treated as constant.
Similarly, the prefactor 1/(h3N ′N ′!) of the partition function Q′ is independent of γ1.

9For M → ∞, the overall energy M 〈E〉 becomes infinitely greater than the the energy of the first system
H (γ1), and non-linear perturbations of the entropy are strictly absent.
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4 Kinetic Gas Theory

4.1 Maxwell Distribution

The Boltzmann distribution can be split into a configurational contribution and a contribu-
tion of each individual momentum coordinate

H (γ) = Epot(q) +
p2

1x

2m
+

p2
1y

2m
+ · · ·+

p2
Nz

2m
, (4.1)

ρN V T (γ) = exp
�
− H (γ)

T

�

= exp
�
−Epot(q)

T

�
exp

�
−

p2
1x

2mT

�
exp

�
−

p2
1y

2mT

�
· · · exp

�
−

p2
Nz

2mT

�
. (4.2)

Accordingly, different momentum coordinates pk and pℓ are statistically independent, and
the probability distribution function

ρN V T (pℓ) ∼ ρN V T (γ) ·
�
ρN V T (q)

∏

k 6=ℓ
ρN V T (pk)

�−1

(4.3)

depends on the temperature only. In this way, an immediate relation between the tempera-
ture and the motion of individual molecules can be deduced. By normalization

∞∫

−∞

dpℓρN V T (pℓ) = 1, (4.4)

with ∞∫

−∞

d x exp(−cx2) =

s
π

c
, (4.5)

this yields the Maxwell distribution

ρN V T (pℓ) =
exp(−p2

ℓ
/2mT )

∫
dpℓ exp(−p2

ℓ
/2mT )

=
1p

2πmT
exp

�
−

p2
ℓ

2mT

�
, (4.6)

which is a Gaussian bell-shaped function. As a consequence, the fraction of momentum
coordinates with |pℓ|> pref is given by a Gaussian error function

2

∞∫

pref

dpℓρN V T (pℓ) = 1− erf

�
pref

p
2mT

�
. (4.7)
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4 Kinetic Gas Theory

4.2 Equipartition Theorem

At a given temperature, all momentum coordinates obey the Maxwell distribution.1

On this basis, the equipartition theorem addresses the question: How much does each
microscopic degree of freedom contribute to the ensemble average of the kinetic energy of
the system?

By integrating over all permitted values −∞< pℓ <∞ for a momentum coordinate pℓ,
with ℓ ∈ {1x , 1y, . . . , Nz} and

∞∫

−∞

d x x2 exp(−cx2) =
1
2

s
π

c3
, (4.8)

one obtains



Ekin
ℓ

�
N V T
=

�
p2
ℓ

2m

�

N V T

=

∞∫

−∞

dpℓρN V T (pℓ)
p2
ℓ

2m
,

=

∞∫

−∞

dpℓ
1p

2πmT
exp

� −p2
ℓ

2mT

�
p2
ℓ

2m

=
T

2
. (4.9)

For a system with N point masses, it follows that the ensemble average of the total kinetic
energy is 3N/2, from the 3N external translational DOF of the point masses. However, the
shape of typical molecules is not well represented by point masses, and all microscopic DOF
contribute equally to the kinetic energy on average, which is therefore



Ekin

�
= NDOF T

2
(4.10)

for a system with NDOF degrees of freedom.

4.3 Ideal Gas Heat Capacity

The equipartition theorem for the average contribution of a momentum coordinate pk to
H (γ) was deduced on the following bases:

• The Boltzmann distribution applies, and as a consequence, the value of pk is statisti-
cally independent of all other position and momentum coordinates;

• The contribution of pk to H (γ) is proportional to p2
k
.

The contribution of a harmonic oscillator to the potential energy can be discussed in the
same way, assuming that it is only negligibly coupled to other microscopic DOF. Since the
contribution of such a position coordinate qℓ to the Hamiltonian is also quadratic, this yields



E

pot
ℓ

�
N V T
=

�
cq2
ℓ

2

�

N V T

=
T

2
(4.11)

1In particular, the momenta are entirely independent of the configuration of the molecules.
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4.4 Low-Temperature Effects

on average, by the same proof as given above.2 To a reasonable accuracy, the fully excited
internal degrees of freedom of a molecule can usually be modelled by harmonic potentials.
Therefore, the isochoric ideal gas heat capacity3 is

lim
ρ→0

CV = lim
ρ→0

�
∂ E

∂ T

�

N ,V
= lim

ρ→0

��
∂ Ekin

∂ T

�

N ,V

+

�
∂ Epot

∂ T

�

N ,V

�
,

=
1
2

NDOF
ext + NDOF

int . (4.12)

Therein, NDOF
ext is the number of external DOF, and NDOF

int is the effective number of harmonic
oscillators corresponding to the excited internal DOF of the molecules. Since each fully
excited internal DOF contributes T/2 to the kinetic and T/2 to the potential energy on
average, its overall contribution to the isochoric heat capacity is 1.

Each molecule has three external translational DOF and zero to three external rota-
tional DOF, depending on the number of axes which carry a significant moment of inertia.4

The remaining DOF are internal ;5 however, the internal DOF are not always fully excited.
Whether an internal DOF is fully excited, partially excited, or effectively rigid (in which case
it can be neglected), depends on effects which are due to the discretization of the accessible
energy levels following quantum mechanics.

4.4 Low-Temperature Effects

At low temperatures, quantum effects may become significant for thermodynamic proper-
ties.6 In quantum mechanics, the wave function ψi(q) takes the place of the microstate γ.
Solving the Schrödinger equation, which in the stationary case is

Ĥ (ψ) = Eψ, (4.13)

yields an enumerable set of wave functions ψ0(q),ψ1(q),ψ2(q), . . . which are the eigen-
functions of the Hamiltonian (i.e., energy) operator Ĥ , associated with a series of discrete
energy levels E0 < E1 < E2 < . . . which are the eigenvalues of the Ĥ operator.

At a given temperature T , the Boltzmann distribution applies

ρ(ψi) = exp
�− Ei

T

�
, (4.14)

where the following regimes can be distinguished:

2Since in the result, T/2 per DOF, the coefficient 1/2m cancels out, the same result is obtained for any quantity
with a quadratic contribution to the Hamiltonian, independent of the coefficient of the quadratic term.

3Defined by the limit ρ→ 0, where intermolecular interactions can be neglected, so that the potential energy
only consists of the contributions of the internal degrees of freedom of the molecules.

4For an ideal gas atom, the number of external rotational DOF is zero, whereas it is two for molecular oxygen
or CO2 (with a symmetry axis), and three for all molecules which do not have a symmetry axis.

5For a system or a molecule with Na atoms, the overall number of DOF is 3Na. The number of internal DOF
can be obtained by subtracting the number of external DOF from this value.

6The QM results can be included in the present classical mechanical approach by correlations for the ideal
contribution, e.g. in the form of correction terms which are added to the molecular simulation results. In
many cases, however, no such correction expressions are needed.
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4 Kinetic Gas Theory

• As absolute zero temperature is approached, T → 0, the only permitted state is ψ0(q),
the ground state, which is associated with the lowest energy level E0;

• At low temperatures, the only two relevant energy levels are E0 and E1, since the
probability of the higher energy levels is comparably small;

• At intermediate temperatures, which are of the same order as the separation between
adjacent energy levels Ei and Ei+1, many different states need to be considered, but
quantum effects remain significant;

• At higher temperatures, so many energy levels become accessible that they can be
approximated by a continuum; the system behaves like in classical mechanics.

Due to quantum effects, the isochoric heat capacity converges to CV → 0 for T → 0. At
low temperatures (T < 0.1 TD), following Debye,7 the contribution of a DOF which is not
fully excited scales with the factor

fD(T )≈
4π4

5

�
T

TD

�3

, (4.15)

where TD is the Debye temperature associated with the respective degree of freedom. At
intermediate temperatures, fD(T ) becomes more complex (see below), and at high tempera-
tures, the QM correction to the heat capacity converges to unity.

For internal vibrational DOF of molecular fluids, the Debye temperature can be of the
order of ambient temperature, e.g. TD = 310 K for I2, or greater, e.g. TD = 2200 K for O2.

7P. Debye, Zur Theorie der spezifischen Wärmen, Ann. Phys. 344(14), 789–839, 1912.
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5 Equation of State

5.1 Mechanical and Chemical Coupling

The grand canonical (µV T) ensemble consists of open systems, which are in chemical and
thermal equilibrium with each other:

�
1
�

V ←→N ,E

�
2
�

V ←→N ,E

�
3
�

V ←→N ,E · · · ←→N ,E

�
M
�

V

The grand canonical phase space density is

ρµV T (N ,p,q) = exp
�
µN −H (p,q)

T

�
. (5.1)

Therein, γ= (N ,p,q) is the microstate, and N is a variable quantitiy. The ensemble average
of a microscopic observable χ is then obtained by

〈χ〉µV T =
1
QµV T

M〈N〉∑

N=0

1
h3N N !

∫

R3N

dp

∫

V N

dqρµV T (N ,p,q)χ(N ,p,q). (5.2)

In the isothermal-isobaric (N PT ) ensemble, the systems can exchange volume and are in
mechanical equilibrium with each other. They can also exchange heat and are therefore in
thermal equilibrium:

�
1
�

N |←→E
←→V

�
2
�

N |←→E
←→V

�
3
�

N |←→E
←→V

· · · |←→E
←→V

�
M
�

N

This yields the phase space density1

ρN PT(V,p,q) = exp
�−PV −H (p,q)

T

�
, (5.3)

where γ= (V,p,q) is the microstate. The N PT ensemble average of an observable is

〈χ〉N PT =
1
QN PT

1
h3N N !

∫

R3N

dp

M〈V〉∫

0

dV

∫

V N

dqρN PT(V,p,q)χ(V,p,q). (5.4)

Therein, the configurational integral is carried out over system dimensions which depend on
the variable value2 of V .

1To prove this, consider the effect that a volume change of the system (at constant energy) has on the entropy
of the environment (systems 2 to M) if the ensemble consisting of M systems is isolated. To compensate for
the volume work done by the system, the same amount of heat is transferred from the environment, which
reversibly yields T∆Senv = −P∆V sys. The same reasoning then applies by which the Boltzmann distribution
was also deduced. Similarly, in the grand canonical ensemble, changing the number of molecules in the
system (at constant system energy) yields a heat transfer of µ∆N sys from the system to the environment.

2Usually, the limit M →∞ is considered, so that the upper summation limit M 〈N〉 in Eq. (5.2) and the upper
integration limit M 〈V 〉 in Eq. (5.4) are both replaced with∞.
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5 Equation of State

5.2 Fundamental Equation of State

The logarithm of the partition function for each of the ensembles is immediately related to
the corresponding thermodynamic potential

NVT − T lnQN V T = −T ln
1

h3N N !

∫

Γ

dγ exp
�−H (γ)

T

�
,

= Helmholtz free energy A, (5.5)

NPT − T lnQN PT = −T ln
1

h3N N !

∫

R3N

dp

∞∫

0

dV

∫

V N

dq exp
�−PV −H (γ)

T

�
,

= Gibbs free energy G, (5.6)

µVT − T lnQµV T = −T ln
∞∑

N=0

1
h3N N !

∫

Γ (N)

dγ exp
�

Nµ−H (γ)
T

�
,

= grand potential Ω, (5.7)

i.e. the quantity that is spontaneously minimized under the respective boundary conditions.3

These potentials are related by

E = A+ TS = G + TS − PV = Ω + TS + G. (5.8)

The dependence of the thermodynamic potential on its associated boundary conditions, e.g.
a function A(N , V, T ), is a fundamental equation of state (EOS). The other thermodynamic
properties can be obtained from it by differentiation4

dA =
∑

i

µidNi − PdV − SdT, (5.9)

dG =
∑

i

µidNi + V dP − SdT, (5.10)

dΩ = −
∑

i

Nidµi − PdV − SdT, (5.11)

−dS =
∑

i

µi

T
dNi −

P

T
dV − 1

T
dE. (5.12)

These and other similar relationships can be memorized using the Guggenheim square.5

S ← E → V

↑ ↑
H A

↓ ↓
P ← G → T

3In the microcanonical ensemble, the negative entropy −S = − lnQN V E plays a comparable role.
4The summation here refers to multiple components i in a mixture; in the preceding discussion, it was impli-

citly assumed that the system contains a pure fluid. Note that the negative entropy is related to the partition
function by −S = − lnQ, whereas A, G, and Ω are obtained as −T lnQ. This explains why a factor 1/T is
present in the coefficients of the total differential for −S, but not in the other total differentials.

5See also J. M. Phillips, Mnemonic diagrams for thermodynamic systems, J. Chem. Educat. 64(8), 674–675,
1987.
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5.3 Ideal Gas Law

5.3 Ideal Gas Law

If intermolecular interactions are assumed to be absent, the ideal gas law is obtained as an
equation of state. With H (γ) = p2/2m and6

P = −
�
∂ A

∂ V

�

N ,T
= T

�
∂ lnQN V T

∂ V

�

N ,T

= T
∂

∂ V
ln

1
h3N N !

∫

Γ

dγ exp
�
−H (γ)

T

�

= T
∂

∂ V
ln



 1
Λ3N N !

∫

V N

dq ·
�
Λ

h

�3N
∫

R3N

dp exp

�
−p2

2mT

�

 , (5.13)

and the Stirling approximation (ln N ! ≈ N ln N −N), the pressure is given by

P = T
∂

∂ V



N ln
V

Λ3 N
+ N + ln




�
Λ

h

�3N
∫

R3N

dp exp
−p2

2mT







 , (5.14)

wherein only the first term depends on V . Accordingly, differentiation eliminates the other
terms, and it follows that

P =
T∂

∂ V

�
N ln

V

Λ3

�
= ρT. (5.15)

Any deviation of real fluid properties from the ideal behaviour is therefore due to the con-
tribution of intermolecular interactions to the partition function.

5.4 Virial Equation of State

The virial equation is the expansion

P

T
=

∞∑

k=1

Bkρ
k = ρ + B2ρ

2 + B3ρ
3 + B4ρ

4 + . . . , (5.16)

wherein the parameter Bk is called the k-th virial coefficient. The leading contribution to
non-ideal behaviour is therefore given by the second7 virial coefficient8

B2(T ) = lim
ρ→0

1
ρ

�
P

ρT
− 1

�
= lim

ρ→0

1
ρ

�
−1+

1
ρ

∂

∂ V
lnQN V T

�

= lim
ρ→0

1
ρ



−1+
V∂

N ∂ V
ln

∫

V N

dq exp
�
− Epot(q)

T

�


 . (5.17)

6A contribution of internal degrees of freedom to the Hamiltonian, if present, cancels out, since it does not
depend on the volume.

7The first virial coefficient would be B1 = 1, since the contribution ∼ ρ is always exactly ρ; hence no such
coefficient is used.

8The contribution of the momenta (and, similarly, of the 1/N ! prefactor) does not depend on the volume and
therefore cancels out by differentiation, so that only the configurational contribution remains.
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5 Equation of State

The partial derivative is taken at constant N and T . If the potential energy is given by a
pair potential

Epot(q) =
∑

{i, j}
ui j(ri j), (5.18)

where ri j is the distance between two molecules i and j, the Mayer f function

fi j(ri j) = exp

�
−

ui j(ri j)

T

�
− 1 (5.19)

can be used for a cluster expansion9

exp
�
− Epot(q)

T

�
=

∏

{i, j}
exp

�
−

ui j

T

�

=
∏

{i, j}

�
1+ fi j

�

= 1+
∑

fi j +
∑

fi j fi′ j′ +
∑

fi j fi′ j′ fi′′ j′′ . . . , (5.20)

where the higher-order terms become negligible in the ρ → 0 limit. This justifies the
approximation exp(−Epot/T ) ≈ 1+

∑
fi j. It follows that10

B2(T ) = lim
ρ→0

1
ρ



 ∂

∂ ln V N
ln

1
V N
+

∂

∂ ln V N
ln

∫

V N

dq

 
1+

∑

{i, j}
fi j

!



= lim
ρ→0

1
ρ

ln







 1
V N

∫

V N

dq



+ 1
V N

N 2

2

∫

V N

dq f12





= lim
ρ→0

1
ρ2

∂

∂ V
ln



1 +
1
V



 1
V N−1

∫

V N−1

dq2 dq3 · · · dqN



 N 2

2

∞∫

0

dr 4πr2 f (r)





= lim
ρ→0

1
ρ2

∂

∂ V
ln



1 +
N 2

V

∞∫

0

dr 2πr2 f (r)





= lim
V→∞

V

N 2
V



 ∂

∂ V

N 2

V

∞∫

0

dr 2πr2 f (r)







1+
N 2

V

∞∫

0

dr 2πr2 f (r)




−1

= − lim
V→∞

�
1∫∞

0
dr 2πr2 f (r)

+
N 2

V

�−1

= −
∞∫

0

dr 2πr2 f (r). (5.21)

Hence, the second virial coefficient is given by a volume integral over the Mayer f function.
9J. E. Mayer, The statistical mechanics of condensing systems, J. Chem. Phys. 5(1), 67–73, 1937.

10Note that the expressions given in square brackets evaluate to 1.
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6 Short Range Interactions

6.1 Repulsive Interaction

In molecular force-field mechanics, the quantum mechanical and multi-body phenomena
underlying the inter- and intramolecular interactions are reduced to classical mechanical
pair1 potentials ui j(ri j,ϕi,ϕ j) which are expressed as functions of the distance between two
interaction sites ri j and, in some cases, the orientation ϕi and ϕ j of the two sites. A
molecular model can consist of a single interaction site or of multiple sites. By pairwise
additivity, cf. Eq. (5.18), the potential energy of the system is obtained as a sum over all
pairwise interactions.

Molecular models need to reflect the physical reality qualitatively, and they need to fa-
cilitate accounting for real fluid properties quantitatively by including adjustable model
parameters. In all cases, with the single exception of the ideal gas model, it is necessary
to reproduce the short-range repulsive interaction between the molecules. At very close
distances, the orbitals of adjacent molecules interact

• by overlapping, which causes repulsive forces and an increase in the potential energy
of the electrons due to Coulomb’s law,

• and by influencing each other, shifting the molecule oribtals to less favourable energy
levels, which also induces a repulsive force between the interacting molecules.

Effectively, this yields a soft repulsion of the order of

u
rep
i j
(ri j) ∼ exp(− cri j). (6.1)

For some purposes, it is sufficient to approximate this by a hard repulsion, as in the hard
sphere model, where the pair potential is given by

ui j(ri j) =

§ ∞, for ri j < σ◦,
0, for ri j ≥ σ◦,

(6.2)

Therein, σ◦ is the diameter of the hard spheres. In this model, the total potential energy of
the system is either Epot(q) = 0, if there is no overlap between particles, or Epot(q) =∞, if
at least two particles overlap; due to their infinite energy, such configurations never occur,2

so that Epot is always zero (and E = Ekin).

1While this is generally a practical approach for modelling fluids, this simplification is not particularly suitable
for most typical solid materials. There, instead, multi-body potentials are commonly used which have the
form of a pair potential, but include a parameter which depends on the local order of the surrounding atoms.
The most widespread approach in this case is the embedded atom method (EAM) for metals, cf. M. S. Daw
et al., Mater. Sci. Rep. 9(7–8), 251–310, 1993; models for carbon, silicon, and ceramics are based on the
Tersoff potential, cf. J. Tersoff, Phys. Rev. B 39(8), 5566–5568, 1989.

2As a consequence, T has no influence on the configurations of the hard sphere model. Its state is only
controlled by the density ρ = N/V , which is by convention expressed as a packing fraction Y = ρσ3

◦π/6.
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6 Short Range Interactions

6.2 Dispersive Interaction

By fluctuations of the charge distribution (i.e. dispersion), non-polar molecules obtain a
dipole moment, which varies at a short time scale. However, assuming that all orientations
of these temporary dipoles are equally probable, and that the magnitudes and orientations of
the charge fluctuations of multiple molecules are statistically independent, any contributions
from this effect would strictly cancel out due to the symmetry of Coulomb’s law:

In reality, this symmetry is broken by the influence of the surrounding molecules on the
charge fluctuations, since configurations with a lower potential energy are favoured by the
Boltzmann term exp(−Epot/T ) in the phase space density.3 In this way, a temporary dipole
moment is induced by the charge distribution in the immediate environment of a molecule.

By dispersion, the potential energy of the system is reduced, and molecules are attracted to
each other by London forces, which are also called van der Waals forces. Following London,4

for two interacting sites with the polarizabilities αi and α j coupled to harmonic potentials
with the eigenfrequencies ωi and ω j, the average interaction potential is

u
disp
i j
(ri j) = −

3αiα j

2(ω−1
i
+ω−1

j
)

r−6
i j
+ O

�
r−7

i j

�
. (6.3)

Hence, the leading contribution of dispersion to the potential energy is negative and ∼ r−6
i j

,
and the leading contribution to the force Fi j = −dui j/dri j is attractive and ∼ r−7

i j
.

3Even in the NV E ensemble, where the phase space density does not contain a Boltzmann factor explicitly,
the same relation holds, at least for changes ∆Epot(q) which are small compared to E. The reason is that a
lower value of Epot(q) increases Ekin(p), by which a greater region of of the phase space becomes available.

4F. London, Über einige Eigenschaften und Anwendungen der Molekularkräfte, Z. Phys. Chem. 11, 222–251,
1930.
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6.3 Lennard-Jones Potential

6.3 Lennard-Jones Potential

The Lennard-Jones (LJ) potential5

uLJ
i j
(ri j) = 4ǫ

��
σ

ri j

�12

−
�
σ

ri j

�6�
, (6.4)

with the energy parameter ǫ and the size parameter σ, is a model for short-range repulsive
and dispersive interactions. The force6 corresponding to this pair potential

F LJ
i j
(ri j) = −

duLJ
i j

dri j

=
24ǫ
σ

�
2

�
σ

ri j

�13

−
�
σ

ri j

�7�
, (6.5)

is repulsive at close distances ri j < 21/6σ and attractive for greater distances ri j > 21/6σ.

A modification of the LJ potential consists in truncating and shifting it

ui j(ri j) =

�
uLJ

i j
(ri j)− uLJ

i j
(rc), for ri j < rc,

0, for ri j ≥ rc,
(6.6)

at a cutoff radius rc. This modification eliminates all long-range interactions over distances
beyond rc from the model, which decreases the computational effort. The shift by uLJ(rc)

avoids a discontinuity in the pair potential. With a cutoff at the potential minimum,

5Conventionally credited to J. E. Jones, Proc. Roy. Soc. A, 106(738), 463–477, 1924. While this work indeed
considers intermolecular forces of the general form F(r) = cnr−n−cwr−w, it proposes to specify 14≤ n≤ 25
and w = 5, so that the attractive contribution to the pair potential is ∼ r−4. Such generalized forms of the
LJ potential are today, also incorrectly, attributed to Mie, see below.

6Here, by convention, negative forces Fi j < 0 indicate an attraction, and positive forces Fi j > 0 indicate a
repulsion between two sites i and j. The distance vector between i and j is defined by ri j = q j − qi , so that
the unit vector pointing from i to j is ri j/ri j . The force (vector) exerted by i on j is Fi jri j/ri j , and the force
(vector) exerted by j on i is F jir ji/r ji , where Fi j = F ji according to Newton’s third law.
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6 Short Range Interactions

rc = 21/6σ, where the potential shift has the magnitude +1ǫ, this yields the Weeks-
Chandler-Andersen (WCA) potential,7 a model for soft repulsion. Following Binder,8 a
cutoff at rc = 27/6σ is used. The most common implementation of this approach9 is the
Lennard-Jones truncated-shifted (LJTS) potential with rc = 2.5σ.

Generalizations of the LJ potential include the Mie potential10

ui j(ri j) =
n

n−w

�
n

w

�1/(nw−1 −1)
ǫ

��
σ

ri j

�n

−
�
σ

ri j

�w�
, (6.7)

which has four parameters (energy ǫ, size σ, repulsive exponent n, attractive exponent w),
and the Buckingham potential11

ui j(ri j) =
c1

exp(c2ri j)
− c3

r6
i j

, (6.8)

which has three parameters. The Buckingham potential correctly reproduces the exponential
soft repulsion, cf. Eq. (6.1), as well as the r−6 scaling of the dispersive interaction. As a
downside, it contains an exponential function, which is computationally unfavourable.

All of these potentials aim at accounting for all short-range intermolecular interactions,12

repulsive and dispersive, by a single expression.

6.4 Unlike Interaction

The force field for a mixture is defined by the like interaction – i.e. the interaction site i is
like the interaction site j – and the unlike interaction which applies to interactions between
different species.13 A combining rule may be required for this purpose, depending on the
type of the pair potential.14 For hard spheres, the unlike interaction is given by the Lorentz

7J. C. Weeks, D. Chandler, H. C. Andersen, Role of repulsive forces in determining the equilibrium structure
of simple liquids, J. Chem. Phys. 54(12), 5237–5247, 1971.

8Originally introduced by Virnau et al., J. Chem. Phys. 121(5), 2169–2179, 2004.
9See also Allen and Tildesley [1], Section 5.2.4 (Shifted and shifted-force potentials).

10Incorrectly attributed to Mie [Ann. Phys. 316(8), 657–697, 1903] who, instead, employed a Taylor expansion
of the pair potential around r = σ. It would be more just to refer to Grüneisen [Ann. Phys. 344(12), 257–
306, 1912] as a source; however, the term Mie potential, whether correct or not, is now established.

11R. A. Buckingham, The classical equation of state of gaseous helium, neon and argon, Proc. Roy. Soc. A

168(933), 264–283, 1938.
12The intramolecular interactions, corresponding to internal degrees of freedom, are also short-range interac-

tions. They can be modelled by harmonic potentials, cf. Section 4.3, but for many purposes, in particular for
relatively small molecules, they can be neglected and rigid models can be used. In both cases, whether rigid
or internally flexible molecular models are employed, it may be necessary to include correction expressions
for quantum mechanical effects, cf. Section 4.4, to reach a good accuracy for the heat capacity and related
properties. In the temperature range 0.1 TD ≤ T ≤ TD, where TD is the Debye temperature, it is impossible
to account for a partially excited IDF correctly by classical mechanics.

13For molecular models with multiple LJ interaction sites, the interaction between sites with different LJ para-
meters is also a unlike interaction, even if the interacting molecules are identical.

14Cf. Allen and Tildesley [1], Section 1.4.2 (Building the model potential). It should be noted that the long
range electrostatic interactions, which will be discussed below, do not require any combining rule; there,
Coulomb’s law can be applied without any further considerations.

28



6.4 Unlike Interaction

combining rule15

σi j =
1
2

�
σi +σ j

�
. (6.9)

The Lorentz combining rule is often also applied to the LJ potential, together with the
Berthelot combining rule16

ǫi j =
p
ǫiǫ j. (6.10)

In case of the LJ potential, the unlike interaction is often adjusted to experimental data for
the mixture. For this purpose, two binary interaction parameters η and ξ are introduced
for each pair of components (both are usually close to 1) and used in the modified Lorentz-
Berthelot combining rule

σi j =
ηi j

2

�
σi +σ j

�
, (6.11)

ǫi j = ξi j

p
ǫiǫ j. (6.12)

15H. A. Lorentz, Über die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase, Ann. Phys.

12(1), 127–136, 1881; Addendum: Ann. Phys. 12(4), 660–661, 1881.
16D. Berthelot, Sur le mélange des gaz, Compt. Rend. Hebd. Acad. Sci. 126, 1703–1706, 1857–1858, 1898.
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7 Long Range Interactions

7.1 Electrostatic Interactions

The electrostatic interaction between two charged bodies, approximated by point charges,
is given by Coulomb’s law1

ui j =
Q iQ j

ri j

. (7.1)

This is a long range interaction, as the pair potential decays with u ∼ r−1, and the force
with

Fi j = −
dui j

dri j

=
Q iQ j

r2
i j

∼ r−2
i j

. (7.2)

A series of higher order polarities, which interact over a long range2 electrostatically, is given
by the multipole expansion of the charge distribution.3

Q i = Ξ
0
i

Di = Ξ
1
i

Ξ2
i

Ξ3
i

. . . Ξ
j

i
. . .

charge dipole quadrupole octopole . . . 2 j-pole . . .

Q i =
∑

k Q ik Di =
∑

k qikQ ik see Eq. (7.3)
scalar vector matrix 3-tensor . . . j-tensor . . .

The quadrupole tensor is given by

�
Ξ2

i

�
j j
=

∑

k

Q ik

�
3
�
q
( j)

ik

�2
− q2

ik

�
,

�
Ξ2

i

�
jℓ
=

∑

k

3Q ikq
( j)

ik
q
(ℓ)

ik
(for j 6= ℓ). (7.3)

1By convention, the Coulomb constant kC = 1/4πǫ0 = 8.988 · 109 V m C−1 = 1.4400 · 10−9 eV m e−2 is
specified to be kC = 1, where e = 1.602 · 10−19 C is the elementary charge, and ǫ0 = 0.005526 e(VÅ)−1 is
the vacuum permittivity.

2Defined here by u ∼ r−k with k ≤ 5. For electrostatic interactions with k ≥ 6, the effective pair potential
can either be fused with dispersion (case k = 6, 7, or 8, probably), e.g. by adjusting the LJ parameter ǫ
accordingly, or it is dominated by the dispersive interactions and can be neglected (case k≫ 6). The orien-
tational contribution also plays a role. The deviation of the pair potential from radial symmetry becomes less
pronounced for higher-order multipole moments. Up to the quadrupole-quadrupole interaction, however,
a significant preference is found for intermolecular orientations which are energetically more favourable;
this is neglected whenever the quadrupole is fused with dispersion, even though the r−5 scaling of the
quadrupolar interaction is similar to the r−6 scaling of the dispersive interaction.

3The following expressions assume that the charge distribution of molecule i is given by a set of point charges
Qik. If the charge distribution is given as a continuum, e.g. by a wave function, all summation terms need
to be replaced by integrals.
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7.2 Force Field Design

The unit of the dipole moment is the Debye (D), with 1 D = 0.20819 eÅ; e.g., water has
a dipole moment of 1.85 D, and for carbon monoxide it is 0.1 D. The unit of the quadrupole
moment is the Buckingham (B) or Debye Ångström (DÅ); e.g., the quadrupole moment of
CO is 2 DÅ, for CO2 it is 4.4 DÅ. While D and DÅ are not SI units, they are most frequently
used for this purpose.

The series of multipoles is usually expanded around the centre of the lowest-order multi-
pole with a non-zero moment.4 In many cases, however, it is sufficient to consider only the
lowest-order multipole moment, i.e. the charge of an ion, neglecting its dipole moment, or
the dipole moment of an uncharged, but polar molecule (neglecting its quadrupole moment).

The interaction potentials and forces between a k-th order multipole at the site i as well
as a ℓ-th order multipole at the site j scale as

u
�
Ξk

i
,Ξℓ

j

�
∼ r−k−ℓ−1

i j
, (7.4)

F
�
Ξk

i
,Ξℓ

j

�
∼ r−k−ℓ−2

i j
. (7.5)

These interactions can become repulsive or attractive, and the contribution to the potential
energy can be positive or negative, depending on the orientation, e.g.

u
D,D
i j
(ri j,ϕi,ϕ j,ϑi j) =

�
sinϕi sinϕ j cosϑi j − 2cosϕi cosϕ j

� | Di | | D j |
r3

i j

, (7.6)

for the pair potential acting between two dipoles. Therein, the orientational angle ϕi is the
angle between Di and ri j, and ϕ j is defined in the same way. The azimuthal angle ϑi j is the
angle between a plane which is parallel to ϕi and ri j and another plane which is parallel to
ϕ j and ri j. The trigonometric functions in Eq. (7.6) simplify to scalar product expressions
and can therefore be computed with comparably little numerical effort.

7.2 Force Field Design

The following pair potentials are most frequently used to model the different types of
interactions:

interaction pair potential

long range
(intermolecular)

electrostatics
(charge distribution)

point charges,
point dipoles,
point quadrupoles

short range
(intermolecular)

dispersion and
repulsion

Lennard-Jones potential,
Mie potential, etc.

short range
electrostatics
(intermolecular)

hydrogen bonding point charges

intramolecular
interactions

internal degrees
of freedom

harmonic potential or
rigid models (neglecting IDF)

4For an ion, e.g., the centre of charge Q−1
i

∑
k qikQik should be used as the origin of the multipole expansion.
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7 Long Range Interactions

Multiple interaction sites can be used as building blocks and combined to construct a force
field which accounts for all, or the most important, interactions between the molecules.
Three basic approaches corresponding to different degrees of abstraction can be distin-
guished.

• All-atom models: There is at least one interaction site for each atom.5

• United-atom models: Interaction sites can correspond to multiple atoms. A functional
group or two small adjacent functional groups are represented by a single site.6

• Coarse grained models: Force fields at a higher level of abstraction may simplify the
detailed chemical structure of the molecule – e.g. polymers represented by connected
beads – or the intermolecular interactions, e.g. with a Mie potential for water.7

The decision for a particular force field design controls the number of adjustable parameters,
i.e. the dimension of the parameter space.

A greater number of parameters increases the adjustability of the model to experimental
data; however, this carries the risk of overfitting, by which a model actually becomes
worse even though its agreement with specified numerical values is improved. This oc-
curs whenever the avaialble data set does not provide a sufficient amount of information,
e.g. because of redundant or contradictory data, or simply due to a lack of data. The prin-
ciple of Ockham’s razor applies:8 For two models which reach the same accuracy for a given
data set and both capture the essential aspects of the modelled phenomenon qualitatively,
the model with fewer parameters usually has the greater predictive power.

Furthermore, it is harder to characterize a parameter space with a greater dimension.
Rapid fine-tuning of a model or a systematic exploration of the entire parameter space
(e.g., by multicriteria optimization) may be easy for a coarse grained model, but very hard
or impossible to achieve for an all-atom model of the same compound.

7.3 Separation of Scales

Even if pairwise additivity is assumed, Epot =
∑

ui j, it is usually too expensive computa-
tionally to evaluate the pairwise interactions between all N(N − 1)/2 pairs of molecules
explicitly. Therefore, a cutoff radius rc is introduced9 to separate the near field from the
far field. For low-molecular fluids, rc is often of the order of 15 to 20 Å. In the near field

5The molecular models with the greatest level of detail are reactive force fields. There, even the formation of
covalent bonds is modelled by classical mechanical multi-body potentials. The reactive force field approach
is at the boundary to quantum mechanics/molecular mechanics or Car-Parrinello molecular dynamics where
the classical mechanics are coupled to a QM solver from which effective forces are obtained at run time.

6Most typically, this means that the hydrogen atoms are fused with the atom to which they are bonded.
7All molecular force fields, even with coarse graining, represent each molecule as a discrete entity. At a higher

level of abstraction, dissipative particle dynamics and the discrete element method, which also employ classical
mechanical pair potentials, neglect the role of individual fluid molecules.

8«Frustra fit per plura quod potest fieri per pauciora» – i.e., it is useless to do by more what can be done by
fewer; from W. Ockham, Summa Totius Logicæ, 1323/26.

9The separation between the near field and the far field by a cutoff radius is a numerical technique for evaluating
a pair potential which includes long-range effects. This needs to be distinguished from truncated pair
potentials such as WCA and LJTS, where the cutoff is part of the molecular model and long range interactions
are strictly absent.
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7.3 Separation of Scales

(ri j < rc), the discrete nature of the molecules needs to be taken into account; the pair
potentials are evaluated explicitly, at an effort which scales with O

�
Nρr3

c

�
.

In the far field, the fluid matter is treated as a continuum, and the interactions beyond
the cutoff radius (ri j ≥ rc) are taken into account by a long range correction (LRC). For a
homogeneous LJ system, the LRC contribution to the potential energy is given by

ELJ
LRC =

1
2

N∑

i=1

∞∫

rc

dr · 4πr2 · ρ · 4ǫ
�
σ

r

�6
= − 8π

3
σ6

r3
c

ρN . (7.7)

The division into short range and and long range terms

ELJ(q)≈ − 8πσ6ρN

3r3
c

+

ri j<rc∑

{i, j}
uLJ

i j
(ri j) (7.8)

significantly reduces the number of pair potentials which have to be evaluated individually.
For electrostatic interactions, multiple LRC approaches exist.

• Reaction field method: Assumption of a dielectric continuum in the far field which
balances the local polarity of the near field; this approach is very straightforward, but
applies to homogeneous systems only.10

• Ewald summation techniques: The electrostatic interactions are split into a truncated
and shifted short range term and a term which contains long range effects; the long
range interactions are computed in inverse space, i.e. by Fourier transformation.11

• Fast multipole method : Recursive subdivision of the volume into subvolumes for which
the multipole expansion is developed up to a high order; the summation is conducted
in Cartesian space.12.

10L. Onsager, Electric moments of molecules in liquids, J. Am. Chem. Soc. 58(8), 1486–1493, 1936.
11P. P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Ann. Phys. 369(3), 253–287,

1921.
12V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comp. Phys. 60(2), 187–207,

1985
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8 Molecular Simulation Algorithms

8.1 Molecular Dynamics

Molecular dynamics (MD) simulation follows the trajectory of a system by numerical in-
tegration of the classical mechanical equations of motion on the basis of a given molecular
force field model. This approach was introduced by Alder and Wainwright in 1957.1

Starting with a given initial configuration, the evolution of the system is simulated over
time. For numerical purposes, time is discretized into time steps corresponding to intervals
∆t which are usually2 of the order of 1 fs ≤∆t ≤ 5 fs. The force3 acting on molecule i is
obtained by summation over all interaction partners4

Fi =
∑

j

F ji = −
∑

j

du ji

dr ji

r ji

r ji

. (8.1)

Therein, for multi-site models, the intermolecular pair potential u ji is given by the sum of
all pairwise interactions of the sites of molecule i with the sites of molecule j. Following
Verlet,5

new velocity = old velocity + change by acceleration,
qi(t +∆t)− qi(t)

∆t
=

qi(t)− qi(t −∆t)

∆t
+

Fi∆t

mi

, (8.2)

so that

qi(t +∆t) = 2qi(t)− qi(t −∆t)− ∆t2

mi

∑

j

du ji

dr ji

r ji

r ji

, (8.3)

and the integration can be carried out without the explicit computation (and storage) of
velocities; however, the previous position of all particles needs to be stored. Implicitly, the
velocities at half time steps are used here.

1B. J. Alder, T. E. Wainwright, Phase transition for a hard sphere system, J. Chem. Phys. 27, 1208–1209, 1957.
2For solids and dense liquids, ∆t ≈ 1 fs; if molecular models with internal degrees of freedom are used, and

the vibration of covalent bonds is simulated explicitly, much smaller time steps ∆t ≪ 1 fs may be required.
The magnitude of the time step also depends on the numerical integration scheme which is used.

3Analogously, for multi-site models with external rotational degrees of freedom, the position coordinates in-
clude the orientation of the molecule, which can be efficiently implemented by using quaternion notation, cf.
Rapaport [J. Comp. Phys. 60, 306–314, 1985], and the tangential components of the intermolecular forces
are added up to determine the torques.

4Index order ji is used here to signify that j acts on i. By Newton’s third law, ui j = u ji and Fi j = F ji , each pair
of molecules needs to be considered only once in each time step, rather than twice. Interactions beyond the
cutoff radius rc are neglected at this stage and evaluated separately by a long range correction scheme.

5L. Verlet, Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones mo-
lecules, Phys. Rev. 159, 98–103, 1967.
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8 Molecular Simulation Algorithms

If the velocities need to be computed, e.g. to obtain microscopic observables and to reg-
ulate the temperature, the Verlet leapfrog algorithm can be used.6 This integration scheme
explicitly determines position coordinates and forces at full time steps and momentum co-
ordinates at half time steps, iteratively proceeding as follows:

1. Computation of position coordinates qi(t) = qi(t −∆t) + pi(t −∆t/2)∆t/mi,

2. computation of forces Fi(t) =
∑

j F ji(q j(t),qi(t)) as given by Eq. (8.1),

3. computation of momentum coordinates pi(t +∆t/2) = pi(t −∆t/2) + Fi(t)∆t.

Many integration algorithms exist; ideally, these algorithms are all equivalent realizations of
the classical equations of motion, exactly following the system trajectory which is uniquely
defined by the initial conditions γ(t0) and the intermolecular interactions.

In fact, all numerical schemes have a certain error, and the nonlinear character of
multibody dynamics causes the simulated trajectory γsim(t) to diverge exponentially, in
t − t0, from the exact solution γ(t). This deviation is of little importance, however, since
the simulated and exact trajectories are similar enough to be equivalent for practical pur-
poses.7

8.2 Thermostat and Barostat

The integration of the equations of motion conserves the energy of the system (as well
as N and V ), corresponding to the microcanonical ensemble. For an MD simulation at a
specified temperature, a thermostat is introduced.

• Isokinetic thermostat: It is ensured that the instantaneous microscopic temperature
T (γ) = p2/mNDOF is constant,8 with T (γ) = T , by rescaling all momentum coordi-
nates by the factor

p
T/T (γ) in every time step.9

6R. W. Hockney, The potential calculation and some applications, pp. 135–211 in B. Alder, S. Fernbach, M.
Rotenberg (eds.), Methods in Computational Physics, vol. 9 (Plasma Physics), London: Academic Press,
1970.

7The same phenomenon is found for weather forecasts which also follow nonlinear dynamics. For 24 hours,
a good precision is expected, and beyond, the quality of the prediction will decay. Nonetheless, even over
months, the predicted weather will follow the general tendencies of the local climate and therefore give a
correct description of the average weather.

8This method is both simple and efficient and therefore used very often; however, it fails to capture the
fluctuations of the total kinetic energy of the system. In this way, e.g., the NV T ensemble is approximated
by a NV Ekin ensemble.

9Rescaling all momentum coordinates by the same factor becomes a problem whenever a collision of two
molecules i and j is not resolved at sufficient accuracy by the integrator, which can lead to an extremely
high value of ui j . The scaling factor is then extremely small, so that only i and j continue to move, and the
rest of the system is frozen. Similarly, in case of simulations where the average integration error is significant,
but not of the same magnitude everywhere in the simulation volume (e.g. phase coexistence, with a greater
deviation from energy conservation in the phase with greater density), the isokinetic thermostat artificially
produces a temperature gradient.
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8.3 Monte Carlo Method

• Andersen thermostat: Random degrees of freedom ℓ are assigned new, Maxwell dis-
tributed, random momenta pℓ.

10

• Nosé-Hoover thermostat: An additional microscopic degree of freedom with the mo-
mentum p̃ (units of kg m2 s−1), the position q̃ (dimensionless), and the mass em (units
of kg m−2) is introduced. The Hamiltonian is extended such that

H (p, p̃,q, q̃) =
1

2m

�
p

q̃

�2

+
p̃2

2em + Epot(q) + NDOFT ln q̃, (8.4)

by which the Maxwell distribution is correctly reproduced.11

The pressure can be regulated by a barostat, e.g. following Andersen12

H (p′, pV ,q′, V ) =
1

2m
(V 1/3p′)2 +

p2
V

2mV

+ Epot(V 1/3q′) + PV, (8.5)

where P is specified, the volume V becomes an additional microscopic DOF, mV is an
effective piston mass associated with the volume, and reduced coordinates are employed

(p′,q′) =
(p,q)
V 1/3

. (8.6)

In this way, at each small change of the volume ∆V , all momenta and positions are scaled
proportionally, ∆ ln p=∆ ln q= (∆ ln V )/3.

8.3 Monte Carlo Method

The ensemble average of any observable χ is formally given by

〈χ〉 =
∫
Γ

dγχ(γ)ρ(γ)
∫
Γ

dγρ(γ)
, (8.7)

which is a high-dimensional integral, since the dimension of Γ is greater than 1000 for all
reasonable values of N . A numerical evaluation of this integral cannot be based on a grid
of points in Γ , since the grid would have to consist of over 21000 microstates.

To address this challenge, former Manhattan Project scientists at Los Alamos developed
the Monte Carlo (MC) method as a randomized integration approach. The general basic
idea13 is to compute a high-dimensional integral by an averaging over the value of the

10See H. C. Andersen, J. Chem. Phys. 72(4), 2384–2393, 1980; This thermostat should not be used for sim-
ulations of nonequilibrium scenarios, e.g. in nanofluidics, where deviations from the Maxwell distribution
occur. In equilibrium scenarios, the ensemble average of microscopic observables is obtained correctly (as-
suming ergodicity). However, time-dependent quantities such as transport coefficients are perturbed if new
momenta are assigned too frequently.

11S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(2), 255–
268, 1984; W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31(3),
1695–1697, 1985.

12Ibid.
13N. Metropolis, S. Ulam, The Monte Carlo method, J. Am. Stat. Assoc. 44(247), 335–341, 1949.
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8 Molecular Simulation Algorithms

integrand at a series of random points. The accuracy increases as the number of points
increases; if the integration space is sufficiently homogeneous with respect to the integrand,
i.e. quasiergodicity holds, the required effort becomes computationally tractable.

In case of phase space integrals for molecular systems where the momenta are known to
follow the Maxwell distribution, we define14

χ(q) =
1

(2πmT )3N/2

∫

R3N

dp exp

�
− p2

2mT

�
χ(p,q), (8.8)

and only random configurations q(1), q(2), . . . need to be generated. If these configurations
are chosen at random from V N following a uniform distribution, the ensemble average is
obtained as

〈χ〉 ≈
∑

kχ(q
(k))ρ(q(k))∑

kρ(q
(k))

, (8.9)

where the definition of ρ(q) is also given by Eq. (8.8).

8.4 Metropolis Algorithm

A uniform distribution for q(k) ∈ V N is unsuitable in practice, since most configurations
generated in this way contain overlapping particles; hence, Epot(q) is large, ρ(q) is very
small, and the relevant contributions to the quantity χ(q)ρ(q) are sampled very poorly.

Solution following Metropolis et al.:15 If a configuration q(k) has already been accepted
as a representative state of the system, it can be used to obtain a new configuration q′ by
altering the position of a random molecule i such that

q′
j
=

�
q
(k)

j
, for i 6= j,

q
(k)

i
+ r̃ζ, for i = j,

(8.10)

where ζ is a vector containing (uniformly distributed) random values between −1 and +1,
and the displacement length scale r̃ is a simulation parameter. Following the Metropolis
acceptance criterion, the new configuration is accepted as representative with the probability

π(q(k),q′) = min
�

1,
ρ(q′)

ρ(q(k))

�
, (8.11)

which compares the phase space densities of the old and the new state;16 in particular,
configurations with ρ(q′) > ρ(q(k)), corresponding to a decrease in potential energy, are
always accepted. Iteratively, the Metropolis algorithm proceeds as follows:

1. Select a random molecule i and generate a random test configuration q′ on the basis
of the present configuration q(k) according to Eq. (8.10).

14The integral over momentum space is also high dimensional. However, since all individual momentum co-
ordinates pℓ are statistically independent, this can usually be simplified further, yielding the ideal gas result
for the considered observable.

15N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. N. Teller, E. Teller, Equation of state calculations by
fast computing machines, J. Chem. Phys., 21(6), 1087–1092, 1953.

16For a good sampling performance, the displacement length scale r̃ should be tuned such that about 50% of
the generated configurations are accepted and 50% are rejected.
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8.4 Metropolis Algorithm

2. Compute the potential energy change

Epot(q′)− Epot(q(k)) =
∑

i 6= j

�
ui j(q

′
i
− q

(k)

j
)− ui j(q

(k)

i
− q

(k)

j
)
�

(8.12)

and the acceptance probability17 from Eq. (8.11)

π(q(k),q′) = min
�
1, exp([Epot(q(k))− Epot(q′)]/T )

�
. (8.13)

3. Accept q′ with the probability π(q,q′). If accepted, q(k+1) = q′; if rejected, q(k+1) = q(k).

The Metropolis acceptance criterion ensures that the distribution of the accepted con-
figurations agrees with the phase space density. Hence, the series of configurations
q(1),q(2), . . . ,q(ℓ) is representative for the ensemble, and an unweighted arithmetic mean

〈χ〉 ≈ 1
ℓ

ℓ∑

k=1

χ(q(k)) (8.14)

yields the ensemble average of the observable χ.

Remark: Periodic Boundary Conditions

Both for MC and MD simulation, periodic boundary conditions are usually employed to
approximate the macroscopic surroundings by periodically displaced identical replicas of the
system:

i

j

i’

j’

k

Accordingly, e.g., whenever a molecule leaves the simulation volume on the left side, it
reappears on the right side.

17In general, all degrees of freedom need to be considered; this includes the external rotational DOF and the
internal DOF of the molecules (if present in the molecular model) and additional quantities which may
be varied within the ensemble, e.g. V in the isothermal-isobaric ensemble, or N in the grand canonical
ensemble. All microscopic DOF need to be varied stochastically, and the Metropolis acceptance criterion
needs to be applied accordingly; thereby, Eq. (8.11) holds in general, whereas Eq. (8.13) only applies to the
variation of the position of a selected molecule i.
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9 Microscopic Observables

9.1 Computation of Macroscopic Quantities

By MD simulation, a series of microstates

γ(1), γ(2), . . . , γ(ℓ),

is obtained, which are representative1 for the thermodynamic boundary conditions corres-
ponding to the simulated ensemble. Accordingly, for a microscopic observable χ which is
known to correspond to the macroscopic thermodynamic quantity X , the value of X is
determined from

X = lim
ℓ→∞

1
ℓ

ℓ∑

k=1

χ
�
γ(k)

�
. (9.1)

In a MC simulation, a series of configurations

q(1), q(2), . . . , q(ℓ)

is obtained, and X is given by

X = lim
ℓ→∞

1
ℓ

ℓ∑

k=1

χ
�
q(k)

�
, (9.2)

where χ(γ) and χ(q) are related by Eq. (8.8). Examples for the canonical ensemble:

E(N , V, T ) = 〈H (γ) 〉N V T =
NDOF

2
T + 〈 Epot(q) 〉N V T , (9.3)

CV =



H (γ)2

�
− 〈H (γ)〉2

T 2
=

NDOF

2
+
�


Epot(q)2
�
− 〈Epot(q)〉2

�
. (9.4)

An observable χ matching a quantity X can in many cases be found by expressing X as
a derivative of the thermodynamic potential and evaluating this derivative in terms of the
partition function. This is shown below for the pressure

P = −
�
∂ A

∂ V

�

N ,T
, (9.5)

cf. Section 9.2, and the chemical potential

µ =

�
∂ A

∂ N

�

V,T
, (9.6)

cf. Section 9.3, in the canonical ensemble.
1Assuming quasiergodic behaviour, and excluding the initial equilibration stage, during which the sampled

microstates cannot be assumed to be representative of the ensemble.
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9.2 Virial and Pressure

9.2 Virial and Pressure

For a cuboid system with V = LxLyLz, a variation of the volume, cf. Eq. (9.5), can be
carried out in different ways. In general, the pressure is a tensorial quantity.2 A surface
oriented perpendicular to the x axis experiences the pressure

P x x = −
�
∂ A

∂ V

�

Ly ,Lz ,N ,T
= − 1

LyLz

�
∂ A

∂Lx

�

Ly ,Lz ,N ,T

= − Lx

V

�
∂ A

∂Lx

�

Ly ,Lz,N ,T

, (9.7)

corresponding to a variation of the volume where all x coordinates are proportionally scaled
by a differential amount

dλ = d ln V = d lnLx = d ln qi x (∀i) = d ln ri j (∀i, j), (9.8)

while the y and z coordinates are unaffected. The reduced coordinates

q′
i
=




q′

i x

q′
i y

q′
iz



 =




qi x/Lx

qi y/Ly

qiz/Lz



 , (9.9)

for all molecules i, are invariant during this transformation. Accordingly, dq′
i
= dqi/V and

dq′ = dq′1dq′2 · · · dq′
N
= V−Ndq. (9.10)

For radially symmetrical pair potentials ui j(ri j), separating QN V T =Q id
N V T
Qconf

N V T
such that3

Qconf
N V T

= V−N

∫

V N

dq exp
�
− Epot(q)

T

�
=

(1,1,...,1)∫

(0,0,...,0)

dq′ exp

 
− 1

T

∑

{i, j}
ui j(ri j)

!
, (9.11)

with dλ = V−1dV and d lnQconf
N V T
= (Qconf

N V T
)−1dQconf

N V T
, Eq. (9.7) in terms of Qconf

N V T
becomes

P x x =
T∂

∂ V
lnQN V T =

T

V

∂

∂ λ

�
lnQ id

N V T
+ lnQconf

N V T

�

= ρT +
T

VQconf
N V T

∂

∂ λ

(1,...,1)∫

(0,...,0)

dq′ exp

 
− 1

T

∑

{i, j}
ui j(ri j)

!

= ρT +
T

V

1

Qconf
N V T

(1,...,1)∫

(0,...,0)

dq′ exp

 
− 1

T

∑

{i, j}
ui j(ri j)

!

− 1
T

∑

{i, j}

dui j

dri j

∂ ri j

∂ λ



 , (9.12)

where the partial derivative is taken at constant Ly ,Lz, N , T . Therein, exp(−Epot(q′)/T )

is the statistical weight of the reduced configuration q′, while Qconf
N V T

is the integral of
exp(−Epot(q′)/T ) over the reduced configuration space,4 cf. Eq. (9.11).

2In case of a homogeneous fluid system in equilibrium, without a phase boundary and in absence of an external
potential, the diagonal elements of the pressure tensor are all equal, P x x = P y y = Pzz = P, and the off-
diagonal elements, which are not discussed here, are all zero.

3Using this normalization,Qconf
N V T
= 1 holds for the ideal gas. Hence, in case of the ideal gas, the configurational

contribution to the pressure vanishes; accordingly, the contribution from Q id
N V T

yields ρT , cf. Section 5.3.
4Hence, for an observable χ(q′), the canonical ensemble average is (Qconf

N V T
)−1

∫
dq′ χ(q′)exp(−Epot(q′)/T ).
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9 Microscopic Observables

Eq. (9.12) can be simplified to

P x x = ρT +
T

V

*
− 1

T

∑

{i, j}

dui j

dri j

∂ ri j

∂ λ

+

N V T

= ρT +
〈Π x x〉

V
, (9.13)

where Π x x , given by5

Π x x(q) = −
∑

{i, j}

dui j

dri j

∂ ri j

∂ λ

=
∑

{i, j}
Fi j

∂

∂ λ

�
r2

i j,x + r2
i j,y + r2

i j,z

�−1/2
=
∑

{i, j}
Fi j

1
2 (r2

i j
)1/2

∂

∂ λ

�
r2

i j,x + r2
i j,y + r2

i j,z

�

=
∑

{i, j}

Fi j r
2
i j,x

ri j

=
∑

{i, j}
Fi j,x ri j,x , (9.14)

is the x component of the virial,6 i.e. the microscopic observable corresponding to the
configurational contribution to the pressure acting in x direction. The thermodynamic
pressure, as a directional average7

P =
P x x + P y y + Pzz

3
= ρT +

〈Π〉
3V

, (9.15)

is obtained from the virial

Π(q) = Π x x +Π y y +Πzz =
∑

{i, j}

Fi j

ri j

�
r2

i j,x + r2
i j,y + r2

i j,z

�
=
∑

{i, j}
Fi j ri j. (9.16)

9.3 Widom’s Test Particle Method

The chemical potential can be expressed in terms of the partition function as

µ =

�
∂ A

∂ N

�

V,T
=

�
− T

∂ lnQ id
N V T

∂ N

�
+ T ·

�
−
∂ lnQconf

N V T

∂ N

�
= µid + T µ̃, (9.17)

where µid is the ideal contribution to µ, and µ̃ is referred to as the reduced residual chemical
potential. If Qconf

N V T
is defined by Eq. (9.11), the ideal partition function is

Q id
N V T

=
QN V T

Qconf
N V T

=
V N

h3N N !

∫

R3N

dp exp

�
−p2

2mT

�

=
V N

N !



1
h

∞∫

−∞

dp exp

�
−p2

2mT

�


3N

=
V N

N !

�p
2πmT

h

�3N

. (9.18)

5For the present variation, dr2
x
/r2

x
= d ln r2

x
= 2d ln rx = 2 dλ, whereas dr2

y
= dr2

z
= 0, for all distances r.

6In the same way as the pressure, the virial can be expressed as a tensor; Πx x is on the diagonal of this tensor.
However, Π is also often used as a scalar quantity, defined by summation over the diagonal elements of the
virial tensor, cf. Eq. (9.16).

7This expression for the pressure corresponds to P = −(∂ A/∂ V )N ,T for a variation of the volume where all

coordinate axes are scaled equally, i.e. dλ = d lnLx = d lnLy = d lnLz = (d ln V )/3.
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9.3 Widom’s Test Particle Method

With Λ= h/
p

2πmT , and approximating ln(1/N !) ≈ −N ln N−N = −
∫

dN ln N , this yields

µid = − T
∂ lnQ id

N V T

∂ N
≈ −T

∂

∂ N

�
N ln VΛ−3 − N ln N − N

�
= T lnρΛ3. (9.19)

For the reduced residual chemical potential,8

µ̃ = −
�
∂ lnQconf

N V T

∂ N

�

V,T

= − lnQconf
N+1,V,T + lnQconf

N V T
= − ln

Qconf
N+1,V,T

Qconf
N V T

, (9.20)

where the configuration of the molecules 1 to N will be denoted by q = (q1, . . . ,qN) and
the position of the additional molecule by qN+1. Defining ∆Epot(q,qN+1) by

E
pot
N+1,V,T(q,qN+1) = E

pot
N V T (q) + ∆Epot(q,qN+1), (9.21)

for the system containing N + 1 molecules, Eq. (9.11) becomes

Qconf
N+1,V,T = V−N−1

∫

V N+1

dq dqN+1 exp

�
−

E
pot
N+1,V,T(q,qN+1)

T

�

= V−N

∫

V N

dq



V−1

∫

V

dqN+1 exp
�
− ∆Epot

T

�


 exp

�
−

E
pot
N V T (q)

T

�
. (9.22)

In this way, inserting Eq. (9.11) for Qconf
N V T

,

µ̃ = − ln
V−N

∫
dq
�
V−1

∫
dqN+1 exp(−∆Epot/T )

�
exp(−E

pot
N V T/T )

V−N
∫

dq exp(−E
pot
N V T/T )

= − ln

*
1
V

∫

V

dqN+1 exp
�−∆Epot

T

�+
= − ln

� 
exp

�−∆Epot

T

�·

qN+1

�

N V T

(9.23)

a microscopic observable for µ̃ is found.9 It can be computed by test particle insertion:10

• Conduct a regular MC or MD simulation with N molecules, as usual.

• Between simulation steps, insert a virtual test particle at a uniformly distributed ran-
dom position qN+1 ∈ V and, if applicable, with a random orientation. The test particle
does not remain in the system, and it does not influence the other molecules.

• For each test particle insertion, compute ∆Epot =
∑

i ui,N+1 from the pairwise inter-
actions of the test particle with all other molecules i. The simulation result for µ̃ is
determined from Eq. (9.23) using the average value of exp(−∆Epot/T ).

8Since N is a discrete quantity which can only be varied in steps of ±1, the partial derivative is replaced by a
difference quotient. This is not an approximation, but rather the more accurate expression.

9For the implementation as a simulation method, it is crucial that in Eq. (9.23), q is distributed according to
the phase space density for the N -molecule system, whereas qN+1 is distributed uniformly.

10B. Widom, Potential-distribution theory and the statistical mechanics of fluids, J. Chem. Phys. 86(6), 869–
872, 1982. The method is not restricted to the canonical ensemble or to pure fluids. Analogous expressions
are obtained for the NV E and N PT ensembles and for mixtures, where µ̃i is obtained in the same way,
i.e. from the potential energy of virtual test particles which belong to the component i.
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10 Local Order

10.1 Radial Distribution Function

Beside computing thermodynamic properties from ensemble averages of microscopic observ-
ables, cf. Section 9, MC and MD simulation can be employed to investigate the structure
of fluid matter at the molecular level.

The radial distribution function (RDF), which is also known as the pair correlation function
and denoted by g(r), expresses the local density at a given distance r from a molecule; this
density is normalized by the overall density ρ = N/V , i.e.

g(r) =
local density at distance r from a molecule

overall density ρ

=
fraction of N

fraction of V

=
V

4πr2



δ(ri j − r)

�
, (10.1)

such that g(r)→ 1 holds at r →∞, for a Dirac function with1

∞∫

0

dr δ(ri j − r) = 1, ∀0≤ ri j <∞, (10.2)

considering any given, but arbitrary, pair of molecules i and j. Hence, it is impossible for
g(r) to be smaller than 1 everywhere, or greater than 1 everywhere; any local density surplus

1Accordingly, the value of δ(ri j − r) is not dimensionless here; it needs to have units of m−1.
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10.2 Local Order and Thermodynamics

needs to cancel out with a local density deficit

∞∫

0

dr g(r)
4πr2

V
=

∞∫

0

dr


δ(ri j − r)

�
= 1. (10.3)

The RDF is determined by a combination of

• effects of the pairwise interaction – where u(r) is smaller, g(r) tends to be greater,

• and multibody order effects, which become relevant at high densities.

In the case of an ideal gas, and similarly, for a real fluid in the T →∞ limit,2 all configur-
ations are equally probable, so that g(r) = 1 holds for all r.

10.2 Local Order and Thermodynamics

In systems with pairwise additive interactions, some thermodynamic properties are immedi-
ately related to the RDF. In particular, assuming that g(r) is known, the potential energy3

Epot =

*
∑

{i, j}
ui j(ri j)

+

=

∞∫

0

dr u(r)
N



# neighbours j of i with ri j = r
�

2

=
N 2

2

∞∫

0

dr u(r)


δ(ri j − r)

�
=

2πN 2

V

∞∫

0

dr r2 g(r)u(r), (10.4)

and the ensemble average of the virial4

〈Π〉 =
*
∑

{i, j}
Fi j ri j

+
=

2πN 2

V

∞∫

0

dr r2 g(r)Π(r) (10.5)

can be determined, and accordingly, the energy E = Ekin + Epot and the pressure

P = ρT +
〈Π〉
3V

= ρT +
2πρ2

3

∞∫

0

dr r2 g(r)Π(r). (10.6)

2The strongly repulsive region needs to be excluded, however, since it is unrealistic that sufficiently high
temperatures can be reached.

3The identity


δ(ri j − r)

�
= 4πr2 g(r)/V is used here.

4Notation: Π(r) = Πi j(ri j) = ri j Fi j(ri j), cf. Eq. (9.16), and Π = Π(q) =
∑
Πi j(ri j).
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11 Fluid Phase Equilibria

11.1 Thermodynamic Equilibrium

For a thermodynamic equilibrium between M phases in a mixture of κ components, the
chemical, mechanical, and mechanical equilibrium conditions apply as follows:

µ′1 = µ′′1 = . . . = µ
(M )
1

...
...

... ⇒ chemical equilibrium
µ′
κ
= µ′′

κ
= . . . = µ(M )

κ

P ′ = P ′′ = . . . = P(M ) ⇒ mechanical equilibrium

T ′ = T ′′ = . . . = T (M ) ⇒ thermal equilibrium

In this way, the phase equilibrium is characterized by κ+ 2 scalar variables which need to
have identical values in all coexisting phases. However, these quantities are not independent.
By the equation of state, a relation of the type

f (i)
�
µ
(i)

1 , . . . ,µ(i)
κ

, P(i), T (i)
�
= 0 (11.1)

is given for each phase 1 ≤ i ≤M , yielding M additional conditions in terms of µ, P, and
T . The number of remaining intensive thermodynamic properties which can be varied inde-
pendently, i.e. the number of intensive thermodynamic degrees of freedom N is therefore
related to the number of phases M and the number of components κ by

M +N = κ+ 2, (11.2)

which is known as the Gibbs phase rule.1 For equilibria between two phases,2 e.g. vapour-
liquid equilibria (VLE) and liquid-liquid equilibria (LLE), this reduces to N = κ.

11.2 Grand Equilibrium Method

For a VLE, µ, P, and T are the same in the vapour phase and the liquid phase. In case of
a pure fluid, this is represented by the intersection of an isotherm in a µ− P diagram with
itself; since (∂ µ/∂ P)T = 1/ρ, the steep branch of the isotherm corresponds to the vapour
(greater value of 1/ρ), and the flat branch corresponds to the liquid.

1Additionally, the size of each phase can be varied freely, so that M extensive thermodynamic DOF exist
at given µ, P, T . Counting both intensive and extensive thermodynamic quantities, there are (κ + 2 −
M ) +M = κ+ 2 macroscopic DOF, irrespective ofM . This corresponds to the number of properties that
determine the ensemble, e.g. N1, . . . , Nκ, V, T for canonical boundary conditions.

2For the VLE of a pure fluid (κ = 1), the thermodynamic state of the coexisting phases is determined by a
single intensive property, such as the boiling temperature or the saturated vapour pressure. For the VLE or
LLE of a mixture, κ independent intensive thermodynamic properties need to be given.
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11.2 Grand Equilibrium Method

Two isotherms (T = 0.75 und 0.9 ǫ) of the LJTS fluid in a µ− P diagram;3 all values are given in

LJ units, i.e., in units of ǫ for the chemical potential and in units of ǫ/σ3 for the pressure.

For the liquid phase, the dependence of µ on P can usually be captured as follows:4 In the
N PT ensemble at a given reference pressure P = Pref, the density ρ′(Pref) is given by N/ 〈V 〉
and its first derivative by the isothermal compressibility

βT =

�
∂ lnρ
∂ P

�

T

=
1
〈V 〉 T

�

V 2
�
− 〈V 〉2

�
. (11.3)

If µ′(Pref) is also available, e.g., by Widom’s test particle method, the liquid branch of the
isotherm in the µ− P diagram can be expanded to second order as

µ′(P) = µ′(Pref) +
1

ρ′(Pref)
[P − Pref] −

βT (Pref)

2ρ′(Pref)
[P − Pref]

2
+ O

�
[P − Pref]

3
�
. (11.4)

For the vapour phase, ρ depends strongly on P, and such an expansion would be unsuitable.
Instead, by Grand Equilibrium simulation,5 consecutive simulation runs are conducted for
the liquid phase and the vapour phase, and for the vapour, an adaptive chemical potential
is imposed to ensure a convergence to thermodynamic equilibrium conditions:

• Given properties:6 Temperature T and liquid composition x.

• First simulation: Liquid phase, isothermal-isobaric ensemble, at the temperature T

(in case of a mixture, with the specified composition x) and a reference7 pressure Pref.
Widom’s test particle method or a different method for µ is employed. Computed
quantities: µ′(Pref), ρ

′(Pref), βT (Pref); for a mixture: µi(Pref) and vi(Pref), for all i.

3arXiv:1703.08719 [cond-mat.soft], J. Chem. Phys. (submitted), 2017.
4This is discussed for a pure fluid here; for mixtures, an analogous treatment can be developed. There, the

first derivative of µi , for component i, is given by the partial molar volume vi (instead of 1/ρ). Widom’s
test particle method can be extended to compute vi ; cf. D. M. Heyes, Mol. Sim. 8(3–5), 227–238, 1992.

5J. Vrabec, H. Hasse, Grand Equilibrium: Vapour-liquid equilibria by a new molecular simulation method,
Mol. Phys. 100(21), 3375–3383, 2002.

6As above, properties of the κ components are denoted by vectors, i.e., x = (x1, x2, . . . , xκ), µ = (µ1, . . . ,µκ),
and so on. The compositions x and y are given as mole fractions, i.e., in units of mol mol−1. Since the sum
over all mole fractions is

∑
k xk = 1, only κ− 1 independent quantities are given by specifying x; counting

T also, κ intensive quantites are specified, in agreement with the Gibbs phase law.
7The reference pressure is not the actual saturated vapour pressure, which is not known in advance, but an

estimate. The method is quite robust; even Pref = 0 works in many cases.
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11 Fluid Phase Equilibria

From these results, the vapour pressure Psat and the chemical potential µsat at saturation,
for both phases, are known to be related by Eq. (11.4) or its generalization to mixtures;
therein, the higher-order terms are neglected.

• Second simulation: Vapour phase, pseudo-grand-canonical simulation, at the temper-
ature T , specifying a chemical potential µ′′ which is calcluated, and varied, at runtime
by µ′′ = µ′(P(q)) following Eq. (11.4), where P(q) = ρT +Π(q)/3V is obtained8 from
the instantaneous virial Π(q).

• Determined properties: Pressure P and vapour composition y.

The Grand Equilibrium method can be implemented both by MC and MD simulation. In
this way, a phase equilibrium can be simulated with relatively small homogeneous systems
(e.g., N = 1000), considering the coexisting phases separately and avoiding the presence of
an interface in the simulation volume.

11.3 Interfacial Properties

• Phenomenological point of view: The phase boundary is a strictly two-dimensional
surface; thermal, chemical, and mechanical equilibrium conditions apply.

• Molecular point of view: Between adjacent fluid phases, a three-dimensional boundary
region exists; equilibrium conditions apply for average quantities, but instantaneous
deviations occur due to fluctuations.

Approach developed by Gibbs:9 Quantities and relations from phenomenological thermody-
namics are applied to configurations and observables at the molecular level by introducing
a virtual, strictly two-dimensional microscopic dividing surface which partitions the volume
of the system into coexisting phases

V = V ′ + V ′′. (11.5)

At a point far away from the interface (and, in particular, macroscopically), the coexisting
phases are characterized by their intensive properties µ, P, and T which are related to
each other – and to all other intensive properties – by the equation of state. In the Gibbs
approach, thermodynamic properties of the two phases are formally identified with the
thermodynamic properties of homogeneous reference systems which have the respective
intensive properties and the respective volumes, i.e. V ′ and V ′′.10

By comparing extensive properties of the two-phase system with the homogeneous refer-
ence systems, interfacial excess quantities are obtained from11

EE = E − E′ − E′′,

SE = S − S′ − S′′,
8For a mixture, analogously, chemical potentials µ′′

i
= µ′

i
(P(q)) are calculated on the fly from Π(q).

9J. W. Gibbs, On the equilibrium of heterogeneous substances, Transact. Connectic. Acad. Arts Sci. 3, 343, 1878.
Recommended literature: Chapter 2, J. S. Rowlinson, B. Widom, Molecular Theory of Capillarity, 1982 [3].

10The properties of the reference systems need not agree with the actual, microscopically observed behaviour
of the two-phase system; e.g., from the thermodynamic conditions, ρ′ is known, from which with V ′ we
obtain N ′ = ρ′V ′. The average number of molecules present in the liquid region of the two-phase system,
however, may deviate from this value. This deviation contributes to the adsorption.

11From Eq. (11.5), the excess volume is V E = 0.
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11.3 Interfacial Properties

NE = N − N′ − N′′,

AE = A − A′ − A′′, (11.6)

and so on. In this way, the established relations from phenomenological thermodynamics
can be applied to interfacial properties as well, since the right-hand side of these expressions
contains only properties of homogeneous systems. The microscopic dividing surface may
be positioned arbitrarily as long as it is parallel to the macroscopic dividing surface.12 The
specific excess number of molecules is known as the adsorption

Γ E =
NE

s
=

�
NE

1

s
,
NE

2

s
, . . . ,

NE
κ

s

�
, (11.7)

where s is the surface area. The surface tension is defined by [3]

γ =

�
∂ AE

∂ s

�

NE,T
=

�
∂ A

∂ s

�

N,V ′,V ′′,T
, (11.8)

where depending on the position of the dividing surface, AE varies, whereas γ does not [3].
For a differential distortion of the volume V = LxLyLz by d lnLx = d ln qi x = dλx ,

d lnLy = d lnqi y = dλy , and d lnLz = d lnqiz = dλz, cf. Section 9.2 and therein Eqs. (9.7)
to (9.10), the invariant volume boundary condition of the partial derivative corresponds to

d ln V = d lnLx + d lnLy + d lnLz = dλx + dλy + dλz = 0, (11.9)

while in case of two interfaces13 perpendicular to the z axis, the area s = 2LxLy varies by

d ln s = d lnLx + d lnLy = dλx + dλy = − dλz = − d lnLz. (11.10)

With the tangential pressure Pt = P x x = P y y and the normal pressure Pn = Pzz from

Pℓℓ = − 1
V

�
∂ A

∂ lnLℓ

�

Lk 6=ℓ,N,T

, (11.11)

cf. Eq. (9.7), the variation of the free energy during this transformation is obtained as

dA = −P x x V dλx − P y y V dλy − PzzV dλz = −V (Pn− Pt) dλz. (11.12)

Inserting Eq. (9.15) and dλz = −d ln s, the surface tension can be computed as

γ =
dA

ds
=

V (Pn− Pt) d ln s

s d ln s
=
Lz

2


Πn(q)

V
− Πt(q)

V

·

N V T

=
〈Πn(q)−Πt(q)〉

s
, (11.13)

where Πn and Πt is the virial in normal and in tangential direction.

12The exact values of V ′ and V ′′ depend on the choice of dividing surface; accordingly, all extensive prop-
erties associated with the homogeneous reference systems and, hence, almost all excess properties of the
interface depend on this choice. This has the disadvantage that most quantitative statements, at least at
the microscopic level, need to be supplemented with a statement on how the dividing surface was defined.
However, it also has the advantage that the dividing surface can be positioned such that a particular excess
term becomes zero; e.g., the equimolar dividing surface, defined by NE = 0, is frequently used.

13Periodic boundary conditions are used in most cases; this results in an arrangement of the type vapour —

liquid — vapour in the simulation volume which then contains two parallel vapour-liquid interfaces.
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