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Helmholtz free energy

virial coefficient

heat capacity

dipole moment

energy (kinetic energy EX", potential energy EP*)
force

function; in particular, the Mayer f function
Gibbs free energy

radial distribution function

enthalpy

Hamiltonian (energy) function 5 and operator #
Planck constant, i.e. h =6.63-10734 Js

indices

angular momentum

length

number of systems or coexisting phases

mass (of a single molecule)

number of molecules or microscopic degrees of freedom
number of intensive thermodynamic degrees of freedom
repulsive interaction exponent, e.g. n =12
pressure

momentum

electric charge (partial or point charge)

partition function

position, configuration

radius

distance, radial coordinate

entropy

surface area

temperature

instantaneous microscopic temperature

time

interaction potential

volume

attractive interaction exponent, e.g. w =6
macroscopic thermodynamic quantity

spatial coordinates

mole fraction, composition (in mol mol™)
packing fraction
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1 Concepts of Statistical Mechanics

1.1 Molecular Mechanics

Molecular mechanics relies on a classical mechanical (non-quantum-mechanical) and particle
based (rather than continuous) representation of matter and the forces acting on it.?

Continuum mechanics

Molecular mechanics

Quantum mechanics

Continuous matter,
continuous energy

Gradients as  driving

Discrete molecules,
continuous energy

Forces between molecules

Particle-wave duality,
discrete energy levels

forces Schrédinger equation

(Vx, VT, VP ) (gradients of potentials)

Classical mechanical
force field (pair potential)

Transport coefficients,
equation of state

Energy levels,
wave functions

The hierarchy of these levels implies the following relationship between the simulation ap-
proaches:

e Molecular force field parameters are sometimes adjusted using results of quantum
mechanical computations (beside experimental data, which should always be used for
model parameterization);

e Molecular simulation results can potentially be used to determine thermodynamic pro-
perties of fluids which are needed for continuum methods such as CFD (however, this
is almost never done in actual practice).

The design of molecular force fields, i.e. molecular modelling, always needs to make com-
promises between competing objectives:

e Numerical simplicity vs. detailed description of physical reality;

e Presence of free parameters, to allow fitting to experimental data, but not too many,
so that overfitting is avoided and the models can be used for predictions;

e Agreement with experimental data for property | vs. property I, property I, etc.

Typical force fields for low-molecular fluids are rigid pair potentials (absence of internal
degrees of freedom and absence of multibody interactions). Quantitative conflicts between
multiple design criteria, which concern the parameterization of the model within a given
model parameter space, can be treated by multicriteria optimization methods.

'Recommended book for the CHE 622A module: Allen and Tildesley, Computer Simulation of Liquids, Claren-
don, Oxford, 1987 [1].



1 Concepts of Statistical Mechanics

1.2 Statistical Ensemble

In statistical mechanics, an ensemble is a set of M systems with different, and varying,
microscopic states, but with the same, and constant, macroscopic boundary conditions.
Accordingly, each system 1 < k < M has a microstate y,(t) of the type y = (p,q), where

e p is the vector containing all momentum coordinates, i.e. 3N scalar values in the case
of N point masses, and

e g, which is also called the configuration of the system, is the vector containing all
position coordinates, of which there are as many as momentum coordinates,

which evolve over the course of time t. The macroscopic boundary conditions depend on
the type of ensemble.

open systems mechanically

isolated systems

closed systems

(control volumes)

coupled systems

Each system has
constant N,V  E

Each system has
constant N and V

Each system has
constant V

Each system has
constant N

Exchange of energy
(work is done)

Exchange of energy
(heat is transferred)

Exchange of
energy and matter

Ensemble
invariants:

2. Viand 2 E;

Ensemble
invariants:

2. Ni and 3 E;

Ensemble invariant:

2B

microcanonical canonical grand canonical isothermal-isobaric
(NVE ensemble) (NVT ensemble) (uVT ensemble) (NPT ensemble)

Macroscopic thermodynamic properties are associated with the ensemble as a whole, not
with the individual systems.

1.3 Phase Space

The phase space I is the set? of possible microstates y € I'.  For systems with N point
masses, it is 6N-dimensional with

(1.1)
(1.2)

Y = (pla P2, -5 Pn> 915 Q25 .- qN)s
I' = REXR3X---XR¥XVXVX---XV.

At any time t, the systems have the microstates y,(t),v,(t),...,yu(t). On average, this
yields a distribution,3 the phase space density p(y). The phase space density is determined
by

2Cf. Allen and Tildesley [1], Section 2.1: Sampling from Ensembles.

3Here, both ensemble averages (over the systems) and time averages (for a single system) will be considered,
cf. below, Section 2.1: Ergodic Hypothesis. However, for a finite number of systems M, a probability distri-
bution is only obtained by averaging over time. The systems of an ensemble are all assumed to be equal, so
that the result is the same for all systems and only depends on the ensemble.




1.4 Thermodynamic Limit

1. the thermodynamic boundary conditions,

2. the intermolecular interactions,

and nothing else. The probability (I'") of finding any given system within a region I C T’
of the phase space* at any given time is proportional to

Jdplx ++dpy, dqy - dqy, P(7),
1"/

where we simplify the notation to

dp = dplxdply "'deza (1.3)
dq = dqlxdqu ”'quz) (1.4)
dy = dpdq. (1.5)
Hence, on average, there are
M |, dyp(y)
iy < Mrdre) 1.6)
[ drp()

systems of the ensemble to be found within the region I".

1.4 Thermodynamic Limit

Transition to thermodynamically relevant® ensembles:

o Large numbers of molecules (N > 10%°), effectively N — oo;

e Law of large numbers, M — oo, for statistics over the systems.®

For the transition to the limit N — oo, certain intensive quantities such as the fluid density
P =N/V and the temperature T can be chosen as invariants, while all extensive quantities
such as the volume V, the energy E, and the entropy S diverge.

In the limit M — oo, the phase space density p(y) becomes a distribution of systems over
the phase space at any given time, rather than being only a time average. The transition
to infinite M is carried out at invariant macroscopic boundary conditions for the systems.
The ensemble average of a microscopic observable y(y), i.e. of any quantity which depends
only on y and nothing else, is then given by the weighted average

_Jrdrxe)
= [rdye(r)

Unless stated otherwise, it will be assumed here that the limit M — oo is considered, and
that M and all other extensive quantities are large enough to neglect finite-size effects.

(1.7)

“Note the analogy between a system with the microstate y(t), which moves through the phase space I', and
a particle with the position q(t), which moves through a volume V. Hence, the same symbol p is used here
for the fluid density and the phase space density.

SExce . . . . . . . . .

ption: Thermodynamics of small systems, where finite size effects and deviations from the macroscopic
behaviour are explicitly of interest [2].

%In case of the NVT, uVT, and NPT ensembles, this also corresponds to the limit of an infinite heat bath,

and in case of the uV T ensemble, to the limit of an infinite reservoir of molecules surrounding the system.



1 Concepts of Statistical Mechanics

1.5 Trajectory

The trajectory y(t) of a system is the development of its microstate over time. It is
determined here by the initial value y(t,) and the classical mechanical equations of motion,
e.g. following Hamilton

oA

Py 361@ /2]

) o4

@ = Z-=E (1.8)
1% m

Therein, m is the mass of a particle, for simplicity assumed here to be a point mass, £ is
one of the 3N microscopic degrees of freedom (DOF) for a three-dimensional system with
N particles, and the Hamiltonian (function)

A7) = (P11, P1ys- - > Prz> Qi Qiys - - Q) = E9"(P) + EP*(q) (1.9)

evaluates to the total energy of the system. This notation is particularly suitable for the
separation of coordinates into momenta p on the one hand, which determine the kinetic
energy

2
in P 1 2 2 2
EX == 2 +p2 +p?), 1.10
(p) o = o 1<§i<N: (plx p;, plz) (1.10)

and the configuration q, which determines the potential energy EP°'(q), on the other hand.



2 Microcanonical Ensemble

2.1 Ergodic Hypothesis

By following the trajectory v,(t) of a single system k between two points in time t, and t;,
for any microscopic observable y(y), a time average can be determined

ty

Jdt x (r(6)), 2.1

to

xR
Il

1 0

while the ensemble average (y) is given! by Eq. (1.7).
Ergodic hypothesis: For any system 1 < k < M and any region I'" C I', the fraction of
the time interval t, <t < t; =ty + At with y,(t) € I'" converges to

4 d
lim ro_ M (2.2)

ameo At [ dy p(y)
This means that all systems travel through the whole phase space in the same way. In the
limit M — oo, it also means that ensemble averaging over all systems (at a single point in
time) and time averaging over a trajectory (for a single system) necessarily yield the same
outcome, since the distribution of microstates in both cases is exactly the same.
Quasiergodic behaviour: For any system 1 < k < M, the time average of a given micro-
scopic observable y(y), converges to

lim 7 =(x) (2.3)

in the infinite time limit.

The ergodic hypothesis does not always hold, and even where it holds, this is hard to prove
formally. In practice, nonetheless, quasiergodic behaviour holds for all thermodynamically
relevant microscopic observables in all thermodynamically relevant cases.? The validity of
the ergodic hypothesis, i.e. ergodicity, is a property of the ensemble only, whereas quasi-
ergodicity is a property of a microscopic observable in combination with the macroscopic
boundary conditions.

For a finite number of systems M in the ensemble, the average value of y will vary over time, so that {y)
is to be understood as an average over all systems and over time. In the thermodynamic limit M — oo,
the average value at any given time can be taken, and it is constant, assuming (as we do here throughout)
that the ensemble as a whole is in equilibrium at any given time, whereas the microscopic obervables within a
single system may fluctuate over time. In particular, we will assume here that the initial conditions for the
ensemble are such that it is in equilibrium already, so that there is no relaxation from initial non-equilibrium
conditions towards equilibrium. This assumption does not carry over directly to molecular simulation in
practice, where such phenomena in general do occur.

2Counterexamples exist. These include cases where a system is subdivided into various compartments which
are isolated from each other, where there is no coupling between certain microscopic degrees of freedom,
or where a quantity (e.g. the overall angular momentum of the system) is invariant, but not specified mac-



2 Microcanonical Ensemble

2.2 Liouville’s Theorem

It is assumed that the ensemble as a whole is in equilibrium at any given time. Hence, the
phase space density is time-independent

ap
— =0
ot

On this basis, Liouville's theorem addresses the question: How does the phase space density
vary along a trajectory, i.e. what is the time derivative Dp /Dt in the moving frame of
reference following the trajectory y(t) of a system through the phase space?

The frame of reference follows the evolution of the microstate over time, moving through
I' with the velocity ¥ = (P1ys--+>Pnz>ixs--->dnz)- 1he time derivative of p in this frame
of reference is®

(2.4)

Dp . dp . dp .
T Z pf8_+ Z Qo = YVp. (2.5)
(e{1x,..., Nz} Pe ey ng e

By analogy between the motion of systems trough phase space and the motion of fluid
matter through a volume, the continuity equation from fluid dynamics

dp _ x9pp) < 9(pd) o .
5 = Zg: 5. Zg: 5 = VD (2.6)

holds for the time derivative dp/dt of the phase space density in the stationary frame of
reference. Since V(p7) = pVy+7Vp, it follows from Egs. (2.4) to (2.6) that

Dp . J . J .
— = _va = —p —D,+ -—q, |. 2.7)
Dt (Z p;" Ze:aqe E)

{

The classical mechanical equations of motion, cf. Eq. (1.8), permit us to replace p, and ¢,
such that

Dp (_ o o ) a%)' 2.8)

— 9p 9q, 99, 9p,

Dt
According to Schwarz's theorem, applied to the Hamiltonian s2(p1, ..., Pnz Qixs -« > ANz
the applied partial differentiation operations are commutative®

0% B 0%
op, 9q, 9q, ape’

roscopically, so that different systems which belong to the same ensemble continue to behave differently
for an arbitrarily long time. Then the choice of initial conditions for the microstate of a system becomes
significant. These counterexamples typically either represent undesired artefacts, which can be removed,
or they are designed for the specific purpose of discussing non-ergodic behaviour. We will not consider such
special cases, and (quasi-)ergodicity will be assumed throughout.

3Here, V is the divergence operator, which can be thought of as the vector of partial differentiation operators
\Y% 2(3/3P1x, ERR) a/anz)

4Assuming, as we do here, that the mentioned derivatives do exist. This is not strictly the case for systems
containing hard bodies, where the potential energy is discontinuous in q, corresponding to infinite repulsive
forces. However, this case can be treated in the same way, by treating the hard potential as the limit of a
series of soft potentials which become increasingly steep.

(2.9)

10



2.3 Dirac Delta Function

and Eq. (2.8) simplifies to

D

Dp _,

Dt
Liouville's theorem: On a trajectory y(t) which obeys the classical mechanical equations of
motion, the phase space density p(y(t)) is constant.

(2.10)

2.3 Dirac Delta Function

The phase space density was shown to be a conserved quantity of the equations of motion.
However, for mechanical systems in general, the only conserved quantities are

e the total energy E of the system,

e the total momentum p of the system,

e the total angular momentum L of the system,
e and functions of these quantities f(E,p,L).

Hence, it must be possible to express p(y) as a function of these quantities. Assuming that
the system as a whole is at rest and does not rotate, it follows that the phase space density
is a function of the energy only, which is expressed microscopically by the observable s#(y).
We can therefore write

p(r)=p(#(y)). (2.11)

In the microcanonical ensemble, E is specified as a macroscopic boundary condition which
is constant and equal for all systems. Microstates with s#(y) # E cannot occur, hence their
probability is zero. Microstates with s#(y) = E may occur, and following Eq. (2.11), the
phase space density needs to be the same for all of these values of y. The probability

[ndyp(y)

)=
) [ dyp()

(2.12)

of finding a system within a region I'" C I' of the phase space is therefore given by the
fraction of the microstates with s#(y) = E which are inside this region. This is expressed
mathematically by

Pnve(y) =0(#(y)—E), (2.13)

where 6 is the Dirac delta function. This generalized function is defined by its integral

de 6(f(x)) = |Hx|f(x)= 0}, (2.14)

which evaluates to the magnitude of the set of zeros of the function f (x); wherever f(x) # 0,
the Dirac delta function is zero. Hence, fl_, dy 6(s£(y)—E) is a measure for the size of that
part of the region I'" where the system has the specified value of E.

11



2 Microcanonical Ensemble

2.4 Partition Function

In the microcanonical ensemble, the magnitude of the set of microstates that satisfy the
condition ##(y) = E is proportional to frdyp(}/), the phase space integral over the phase
space density. By normalization, this can be converted into a dimensionless effective number
of states, called the partition function 2.

Discretization: Following the Heisenberg uncertainty principle, Ap,Aq, = h holds for
the product of the uncertainties of associated momentum and position coordinates; therein,
h =6.63-107* Js is the Planck constant. A single quantum mechanical state corresponds to
a subvolume of k3N of the phase space for a system of N point masses with 3N microscopic
DOF. Hence, the phase space integral over p(y) needs to be divided by h®*N. Thereby, the
dimension of dy = dpdq, which is (Js)*", cancels out, yielding a dimensionless quantity.

Permutation correction: In the representation

Y:(plapZ’""pN)qliqZ""’qN)) (215)

all N molecules are distinguished by their order; exchanging molecules 1 and 2 yields a
different microstate, whether these molecules are physically different or not. For a pure
component system, where all molecules are identical, every microstate thereby appears in
N'! permutations which are indistinguishable physically. Hence, the phase space integral over
p(r) needs to be divided by N! (or by N;!N;!--- in case of a mixture of the components i,
j, etc.).

The partition function is therefore given by

1 1

RN
r

dy p(y), (2.16)

for the case of a single component.

12



3 Entropy and Temperature

3.1 Definition of Entropy

The entropy is defined by the logarithm of the partition function in the microcanonical

ensemble!
1

J dy 5 (A#(y)—E). (3.1)

r

The logarithm of the partition function is an extensive quantity:

(1) Ny, Vi, E; (2) N, Vs, E, (M) N4 VyEy

If 4 (sub-)systems are combined to a greater system, as above, the microstate of the
combined system is given by y = (y1,Y2---,7.4), the phase space by the product set
r=r;xI,x---xT,, and hence,? the partition function by

Q2 = QIQZH'Q‘%
In2 In2,+In2,+---+In2 ,. (3.2)

Accordingly, the entropy is an extensive quantity, since its value for the combined system is
given by the sum over the entropy of the subsystems.

3.2 ldeal Gas Entropy

The ideal gas is defined by the absence of intermolecular interactions. Hence, EP* =0 and
#(y) = EP(p) = p?/2m. For this special case, the partition function can be determined
analytically

1 )
v = h3NN!J qu dP5(Ekm(P)_E), (3.3)

R3N VN

I This equation is often written as S = k In 2. Here, following a widespread convention in statistical mecha-
nics, we define the Boltzmann constant ki = 1.38065-10723 J/K to be unity, i.e. 1 K= 1.38065-10"23 J. The
Boltzmann constant thereby becomes a conversion factor between units of temperature and energy, which
are commensurable quantities (with the same dimension), similar to the relation between heat and work as
commensurable quantities which convert by the ratio 1 kcal =4 184 J.

2To see this, either separate the partition function as defined by Eq. (2.16) into .# independent factors, or
consider its intuitive interpretation as the effective number of available states.

13



3 Entropy and Temperature

by separation of variables. The configurational integral, given in square brackets, evaluates
to VN. Hence,

vy AN 1 2 2 2
Eyvg = 3NN ) (E) Jdp5(ﬁ[p1x+p1y+”.+pNz]_E): (3.4

R3N

which decomposes into a factor from the configurational integral and a factor from the
integral over the momentum coordinates

Lyve = Q;/O\I/lg " Eyve
S = Ihe + Inarm. (3.5)

Therein, the length A is used to normalize both factors of the partition function.®> With the
Stirling approximation, InN! ~ N(InN — 1), the configurational contribution simplifies to

1%
N2 = NInVA®—N(InN—1) = N(l +lnA3N). (3.6)

The integral

1 2 2 2
Jdp 5(ﬁ[p1x+p1y+---+pNZ]—E)

R3N

corresponds to the hypersurface area of the hypersphere* in the 3N-dimensional momentum
space R®*N with the radius R = v/2mE. Therefore, the second contribution to the entropy is

AN [2nmE]N/? 3N A% 4mmE
h2™® = In(>=] +h|——=--]+0(nN) ~ —(1+In— 3.
N <nve n(h) n( (3N/2)! (InN) 2( "2 3N ) (3.7)

Combined, in the thermodynamic limit, this yields the Sackur-Tetrode equation

S 5 1% 3 A’ E
S o2y Y dpdmmATE (3.8)
N 2 AN 2 3h2 N

3.3 Canonical Ensemble

In the NVT ensemble, the systems are closed, but thermally coupled. Hence, they can
exchange energy by heat transfer:

() N,V || (2) NV | e oo 5| (M) N,V MN, MV, M (E)

The M systems together are described by the state

T :(Yli,)/Z:"':YM): (39)

30verall, A cancels out, so that its magnitude is irrelevant.
“The surface area of a k-dimensional sphere with the radius R is s = 2n*/2RK"1 /(k/2)!; for odd values of k,
the factorial is replaced with the corresponding value of the gamma function.

14



3.4 Boltzmann Distribution

and since the ensemble as a whole is isolated, together behave like a microcanonical system.®
In the thermodynamic limit (infinite heat bath), the microstates of all systems are statisti-
cally independent

e(r) = pnvr(r) - Pavr(r2) -+ pavr(rm)- (3.10)
The following questions remain to be clarified:
e How exactly are the boundary conditions related to the temperature?

e What is the canonical partition function py,7(y,) for a single system k?

3.4 Boltzmann Distribution

The microcanonical phase space density, which characterizes the probability distribution for
the M systems of a canonical ensemble together, is given by the Dirac delta function

p(r)= 5(2%(n)—M(E>), (3.11)
k=1

where y € ' and the energy M (E) describe the systems 1,2, ..., M together. Analogously,
for the ensemble without the first system, I' = '~ denotes the combined phase space,
v’ € I'" the vector of microstates, and

M
E'(f)=) #(r) (3.12)
k=2

the energy of the systems 2 to M together. By separating the first system from the others,
Eq. (3.11) transforms to®

p(ry) = &(#(r)+E()—M(E))

oo

= J dE, 5 (#(y,)—E,) 6 (E'(Y)—[M (E) —E,]). (3.13)

—0Q

The relative statistical weight” of any given microstate y, € I';, where I = I' is the phase
space for the first system, is given by the integral over the phase space density in combination

>As the systems are closed and each molecule is therefore confined to a single system, this is not exactly the
case. However, thermal coupling will be discussed here in terms of the exchange of energy, so that the
deviations from microcanonical behaviour, which concern the configurational integral only, cancel out.

5The delta function §(#(y;)—E,) is used here to separate the variables. It is zero except for #(y;) = E;, at
which point the integral over 6(5#(y;) — E;) yields a contribution of 1. Therefore, in the right hand factor,
#(y;) can be replaced with E;, eliminating the variable y; from that factor.

’Introducing the canonical phase space density as a relative statistical weight permits us to discard constant
prefactors which do not depend on v, which we will do repeatedly.

15



3 Entropy and Temperature

with all microstates ¢" € I’ for the other systems

-
pnvr(yy) ~ dT/P(YpY/)
4,
(‘ o0
~ dy’ J dE, 5 (#(y,)—Ey) | 6 (E'(Y)—[M (E)—E,])
F/(' —00
~ dy' 5 (E'(y)—[M (E)—E,]), (3.14)

where the integral over dE; in square brackets evaluates to 1, since for any given y,, there
is exactly one energy value E; such that 5(y;)—E; = 0. By comparison with Eq. (3.1) for
the partition function 2’ of the combined system® consisting of the systems 2 to M

2y, (M (E) —E;) der’ 5 (E'(Y)—[M (E)—E,]), (3.15)

I"/

NERY

the canonical phase space density can be given as

pnvr(r) ~ Q]/\[/,V/(M (E) — #(y1))
~ exp S]/\]/,V/ (M <E> - %(Yl));

as’

~ (s, 00 - 5] roletr)). @1o

where the higher-order contribution in #(y,) can be neglected in the thermodynamic limit.°

With the identity
as 1
st == 3.1
(3E)N,v T (317)

from phenomenological thermodynamics, this simplifies to

/ H(y1)
pnvr(y1) ~ exp SN/,V/(M (E)) - exp(— T - ) (3.18)
Since M (E) does not depend on y, the first factor is also constant and can be discarded.
The phase space density in the NV T ensemble can therefore be specified as

)

T (3.19)

pnvr(y) = exp (—

which is the Boltzmann distribution. Hence, the probability of a microstate under ther-
malized boundary conditions is immediately related to the temperature of the system.

8Since the total number of molecules N’ = (M — 1)N and volume V' = (M — 1)V for the systems 2 to M
does not depend on the microstate y; of the first system, these quantities can here be treated as constant.
Similarly, the prefactor 1/(h®"'N”1) of the partition function & is independent of y;.

°For M — 00, the overall energy M (E) becomes infinitely greater than the the energy of the first system
#(y,), and non-linear perturbations of the entropy are strictly absent.
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4 Kinetic Gas Theory

4.1 Maxwell Distribution

The Boltzmann distribution can be split into a configurational contribution and a contribu-
tion of each individual momentum coordinate

2 2 2
p
H(y) = EPOt(q)+Iﬁ+ﬂ+---+pNZ, (4.1)
2m  2m 2m
F(y)
envr(y) = eXp(——T )

= ex (—Epm(q))ex —p—i‘ ex _pfy e ex —pIZVZ (4.2)
P T P\ 2mr ) P\ " 2mr P\72mr ) "

Accordingly, different momentum coordinates p, and p, are statistically independent, and
the probability distribution function

-1
envr(Pd) ~ pavr(y) - |:pNVT(q) l_[PNVT(Pk)] (4.3)
k#L

depends on the temperature only. In this way, an immediate relation between the tempera-
ture and the motion of individual molecules can be deduced. By normalization

oo

J dp, pyvr(pe) =1, (4.4)
with -
5 i
J dx exp(—cx?) = \/;, (4.5)

this yields the Maxwell distribution

exp(—p;/2mT) 1 ( p; )

= expl| — (4.6)
fdpe exp(—p;/2mT)  +2nmT P 2mr

envr(Pe) =

which is a Gaussian bell-shaped function. As a consequence, the fraction of momentum
coordinates with |p,| > p™ is given by a Gaussian error function

r ref
p
ZJdpgpNVT(pg)zl—erf( ) (4.7)
v2mT
pref m
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4 Kinetic Gas Theory

4.2 Equipartition Theorem

At a given temperature, all momentum coordinates obey the Maxwell distribution.!

On this basis, the equipartition theorem addresses the question: How much does each
microscopic degree of freedom contribute to the ensemble average of the kinetic energy of
the system?

By integrating over all permitted values —oco < p, < oo for a momentum coordinate p,,
with £ € {1x,1y,...,Nz} and

1
dx x*exp(—cx?) = ~ 4/ =, (4.8)
2V ¢3
one obtains
2 Py 2
kin _ { _ J4
(Eé >NVT_<ﬂ>NVT = JdpﬂpNVT(pZ)ﬁa

dpy——— exp EL | 2L
Pe v2mmT P 2mT ) 2m

—0Q0

T

For a system with N point masses, it follows that the ensemble average of the total kinetic
energy is 3N /2, from the 3N external translational DOF of the point masses. However, the
shape of typical molecules is not well represented by point masses, and all microscopic DOF
contribute equally to the kinetic energy on average, which is therefore

(EMn) = NDOFg (4.10)

for a system with NP°F degrees of freedom.

4.3 ldeal Gas Heat Capacity

The equipartition theorem for the average contribution of a momentum coordinate p; to
#(y) was deduced on the following bases:

e The Boltzmann distribution applies, and as a consequence, the value of p, is statisti-
cally independent of all other position and momentum coordinates;

e The contribution of p, to 5#(y) is proportional to p?.

The contribution of a harmonic oscillator to the potential energy can be discussed in the
same way, assuming that it is only negligibly coupled to other microscopic DOF. Since the
contribution of such a position coordinate g, to the Hamiltonian is also quadratic, this yields

2
cq T
pot — ¢ —
(Bl Dyyr = <7> =3 (4.11)
NVT

'n particular, the momenta are entirely independent of the configuration of the molecules.
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4.4 Low-Temperature Effects

on average, by the same proof as given above.? To a reasonable accuracy, the fully excited
internal degrees of freedom of a molecule can usually be modelled by harmonic potentials.
Therefore, the isochoric ideal gas heat capacity®

JE . Q EMin O EP°t
hm Cy = hm = lim + ,
oT p—0 oT NV T Jnyv
1
= SNDO + ND. (4.12)

ext
oscillators corresponding to the excited internal DOF of the molecules. Since each fully

excited internal DOF contributes T /2 to the kinetic and T/2 to the potential energy on
average, its overall contribution to the isochoric heat capacity is 1.

Each molecule has three external translational DOF and zero to three external rota-
tional DOF, depending on the number of axes which carry a significant moment of inertia.*
The remaining DOF are internal;® however, the internal DOF are not always fully excited.
Whether an internal DOF is fully excited, partially excited, or effectively rigid (in which case
it can be neglected), depends on effects which are due to the discretization of the accessible
energy levels following quantum mechanics.

Therein, N2%F is the number of external DOF, and N2°F is the effective number of harmonic

4.4 Low-Temperature Effects

At low temperatures, quantum effects may become significant for thermodynamic proper-
ties.® In quantum mechanics, the wave function ;(q) takes the place of the microstate y.
Solving the Schrédinger equation, which in the stationary case is

H(P) = Ev, (4.13)

yields an enumerable set of wave functions ¢ ,(q), Y, (@), ¢,(q),... which are the eigen-
functions of the Hamiltonian (i.e., energy) operator 5, associated with a series of discrete
energy levels Ey < E; <E, <... Whlch are the eigenvalues of the s operator.

At a given temperature T, the Boltzmann distribution applies

pk) = exp( =), (4.14)

where the following regimes can be distinguished:

2Since in the result, T /2 per DOE, the coefficient 1/2m cancels out, the same result is obtained for any quantity
with a quadratic contribution to the Hamiltonian, independent of the coefficient of the quadratic term.

3Defined by the limit p — 0, where intermolecular interactions can be neglected, so that the potential energy
only consists of the contributions of the internal degrees of freedom of the molecules.

“For an ideal gas atom, the number of external rotational DOF is zero, whereas it is two for molecular oxygen
or CO, (with a symmetry axis), and three for all molecules which do not have a symmetry axis.

>For a system or a molecule with N, atoms, the overall number of DOF is 3N,. The number of internal DOF
can be obtained by subtracting the number of external DOF from this value.

5The QM results can be included in the present classical mechanical approach by correlations for the ideal
contribution, e.g. in the form of correction terms which are added to the molecular simulation results. In
many cases, however, no such correction expressions are needed.
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4 Kinetic Gas Theory

e As absolute zero temperature is approached, T — 0, the only permitted state is ¢ ,(q),
the ground state, which is associated with the lowest energy level E;

e At low temperatures, the only two relevant energy levels are E, and E;, since the
probability of the higher energy levels is comparably small;

e At intermediate temperatures, which are of the same order as the separation between
adjacent energy levels E; and E,.;, many different states need to be considered, but
quantum effects remain significant;

e At higher temperatures, so many energy levels become accessible that they can be
approximated by a continuum; the system behaves like in classical mechanics.

Due to quantum effects, the isochoric heat capacity converges to C, — 0 for T — 0. At
low temperatures (T < 0.1 Tp), following Debye,” the contribution of a DOF which is not

fully excited scales with the factor

4 (T
fD(T)NT(T_D) , (4.15)

where Ty is the Debye temperature associated with the respective degree of freedom. At
intermediate temperatures, f,(T) becomes more complex (see below), and at high tempera-
tures, the QM correction to the heat capacity converges to unity.

S o o
TP T 7

contribution of an internal DOF
o
e

o

| T T |
0 0.2 0.4 0.6 0.8 1
temperature / Debye temperature

For internal vibrational DOF of molecular fluids, the Debye temperature can be of the
order of ambient temperature, e.g. T, =310 K for |,, or greater, e.g. T, =2200 K for O,.

"R Debye, Zur Theorie der spezifischen Wirmen, Ann. Phys. 344(14), 789-839, 1912.
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5 Equation of State

5.1 Mechanical and Chemical Coupling

The grand canonical (uV T) ensemble consists of open systems, which are in chemical and
thermal equilibrium with each other:

(D) Veoyg 2)Veoyr B)Veoyg -+ e—oyp (M)V
The grand canonical phase space density is
pN — 7 (p,q)
pMVT(N,p,q)=eXP(# : (5.1

Therein, vy = (N, p, q) is the microstate, and N is a variable quantitiy. The ensemble average
of a microscopic observable y is then obtained by

"OZMVT N=0

M(N)
1 1
(X uvr = Z TN N J dpJdquT(N,p,q)x(N,p,q)- (5.2)
3 VN

R3N
In the isothermal-isobaric (NPT) ensemble, the systems can exchange volume and are in
mechanical equilibrium with each other. They can also exchange heat and are therefore in
thermal equilibrium:

W~ =0 @N [Z BN |Z - [T (M)W

«—V «—V «—V «—V

This yields the phase space density!

—PV —#(p, CI)) (5.3)

T
where y = (V,p,q) is the microstate. The NPT ensemble average of an observable is

pnpr(V,p,q) = exp (

1 1
2,pr W3V NI

M(V)
(X)npr = Jdp J dVquprT(V:P,CI)X(V,PJQ)- (5.4)
R3N 0 VN

Therein, the configurational integral is carried out over system dimensions which depend on
the variable value? of V.

1To prove this, consider the effect that a volume change of the system (at constant energy) has on the entropy
of the environment (systems 2 to M) if the ensemble consisting of M systems is isolated. To compensate for
the volume work done by the system, the same amount of heat is transferred from the environment, which
reversibly yields T AS®™ = —P AV®. The same reasoning then applies by which the Boltzmann distribution
was also deduced. Similarly, in the grand canonical ensemble, changing the number of molecules in the
system (at constant system energy) yields a heat transfer of uAN®* from the system to the environment.

2Usually, the limit M — oo is considered, so that the upper summation limit M (N) in Eq. (5.2) and the upper
integration limit M (V) in Eq. (5.4) are both replaced with co.
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5 Equation of State

5.2 Fundamental Equation of State

The logarithm of the partition function for each of the ensembles is immediately related to
the corresponding thermodynamic potential

1 —7(y)
NV — Ty, = —TlnhsNN!deexp( T ),
T
= Helmbholtz free energy A, (5.5

1 —PV — 5%
NPT| —Tln&ypr = —Tln J ddeVqu exp(—m),
R3N 0 VN

h3N N T
= Gibbs free energy G, (5.6)

1 Nu—
uVl —Thh&,,; = —Tln E Jd}/ exp(‘u—m),
N=0

h3N N
r(N)
= grand potential f2, (5.7)

i.e. the quantity that is spontaneously minimized under the respective boundary conditions.?

These potentials are related by
E =A+TS = G+TS—PV = Q+TS+G. (5.8)

The dependence of the thermodynamic potential on its associated boundary conditions, e.g.
a function A(N,V, T), is a fundamental equation of state (EOS). The other thermodynamic
properties can be obtained from it by differentiation®

dA = > pdN,—PdV —SdT, (5.9)

dG = > wdN,+VdP—SdT, (5.10)

dQ = - Ndu,—PdV—5sdT, (5.11)
M p 1

—ds = > ZLdN,——dV — =dE. 5.12

ZT i T (5-12)

These and other similar relationships can be memorized using the Guggenheim square.®

S « E —> V

T T

H A

l l

P « G —-» T

3In the microcanonical ensemble, the negative entropy —S = —In 2y plays a comparable role.

4The summation here refers to multiple components i in a mixture; in the preceding discussion, it was impli-
citly assumed that the system contains a pure fluid. Note that the negative entropy is related to the partition
function by —S = —In &, whereas A, G, and {2 are obtained as —T In £. This explains why a factor 1/T is
present in the coefficients of the total differential for —S, but not in the other total differentials.

>See also J. M. Phillips, Mnemonic diagrams for thermodynamic systems, J. Chem. Educat. 64(8), 674-675,
1987.
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5.3 Ideal Gas Law

5.3 ldeal Gas Law

If intermolecular interactions are assumed to be absent, the ideal gas law is obtained as an
equation of state. With s#(y) = p?/2m and®

A alngm)
P = —| — :T - V-
()., = (55,

B 0 1 H(y)
= Tﬁln TN J dy exp (—T)

) 1 AN —p?
= Tﬁln ASNN!qu . (E) Jdpexp(zmT) , (5.13)

VN R3N

and the Stirling approximation (InN!~ N InN —N), the pressure is given by

0
P=T— |Nln
ov A3N

ATV _pz
+ N +1 — d 5.1
n [h] JpeXPZmT ’ (5.14)
R3N

wherein only the first term depends on V. Accordingly, differentiation eliminates the other
terms, and it follows that

P—T—a(Nlnl)— T (5.15)
oV ) TP '

Any deviation of real fluid properties from the ideal behaviour is therefore due to the con-
tribution of intermolecular interactions to the partition function.

5.4 Virial Equation of State

The virial equation is the expansion

P o0
T = Zkak = p+B,p%+Byp>+Bp* +..., (5.16)

k=1

wherein the parameter B, is called the k-th virial coefficient. The leading contribution to
non-ideal behaviour is therefore given by the second” virial coefficient®

1/ P 1 10

p—0 p pT p—0 p p
1 Vo EP°
= lim — -1+ In | dq exp(— (q)) . (5.17)
p—0 P NV T

A contribution of internal degrees of freedom to the Hamiltonian, if present, cancels out, since it does not
depend on the volume.

"The first virial coefficient would be B; = 1, since the contribution ~ p is always exactly p; hence no such
coefficient is used.

8The contribution of the momenta (and, similarly, of the 1/N! prefactor) does not depend on the volume and
therefore cancels out by differentiation, so that only the configurational contribution remains.
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5 Equation of State

The partial derivative is taken at constant N and T. If the potential energy is given by a
pair potential

EP(q) = Zuij(rij): (5.18)
{i.j}
where r;; is the distance between two molecules i and j, the Mayer f function
u;;(ry;)
fij(rij):exp(_ %)—1 (5.19)

can be used for a cluster expansion®

EPO'[ ui A
exp (_ T(q)) _ gexp (_ ?J)

= l—[ (1+7;)

{i.j}
= 1 +Zfij + Zfijfi’j/ + Zfijfi/j’fi”j” cees (5.20)

where the higher-order terms become negligible in the p — 0 limit. This justifies the
approximation exp(—EP*'/T) ~ 1+, f;;. It follows that'®

0 1 0
In— | d 1 -
dInVN nVN+81nVN nJ q( +Zf”)

o {i.j}

B,(T) = },il%

V|~

1 1 1 N2

p—0 P VN VN 2
VN VN
.10 1 N? 5
= })lil’(l) ?ﬁln v | yva J dq,dq --- dqy ?Jdr 4nref(r)
YN-1 0
= lim iiln 1+ N—Z dr 2nr?f(r)
=0 p2dV %
0
oo oo -1
N? N?
= ‘}Lngo%v aa—vvjdr%rrzf(r) 1+7Jdr2nr2f(r)
0 0
_ 1 N2\
- _vlggo oo 2 + 7
fo dr2nr2f(r)
= —Jdr 2nr? £(r). (5.21)

0

Hence, the second virial coefficient is given by a volume integral over the Mayer f function.

°J. E. Mayer, The statistical mechanics of condensing systems, J. Chem. Phys. 5(1), 67-73, 1937.
ONote that the expressions given in square brackets evaluate to 1.
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6 Short Range Interactions

6.1 Repulsive Interaction

In molecular force-field mechanics, the quantum mechanical and multi-body phenomena
underlying the inter- and intramolecular interactions are reduced to classical mechanical
pair' potentials u;;(r;;, @i, ¢;) which are expressed as functions of the distance between two
interaction sites r;; and, in some cases, the orientation ¢; and ¢; of the two sites. A
molecular model can consist of a single interaction site or of multiple sites. By pairwise
additivity, cf. Eq. (5.18), the potential energy of the system is obtained as a sum over all
pairwise interactions.

Molecular models need to reflect the physical reality qualitatively, and they need to fa-
cilitate accounting for real fluid properties quantitatively by including adjustable model
parameters. In all cases, with the single exception of the ideal gas model, it is necessary
to reproduce the short-range repulsive interaction between the molecules. At very close
distances, the orbitals of adjacent molecules interact

e by overlapping, which causes repulsive forces and an increase in the potential energy
of the electrons due to Coulomb's law,

e and by influencing each other, shifting the molecule oribtals to less favourable energy
levels, which also induces a repulsive force between the interacting molecules.

Effectively, this yields a soft repulsion of the order of
u; (i) ~ exp(—cry). (6.1)

For some purposes, it is sufficient to approximate this by a hard repulsion, as in the hard
sphere model, where the pair potential is given by

oo, for r; <o,

(r..) =
ut]( l]) { O, for rl] 2 O_O’

(6.2)

Therein, o, is the diameter of the hard spheres. In this model, the total potential energy of
the system is either EP*'(q) = 0, if there is no overlap between particles, or EP*'(q) = oo, if
at least two particles overlap; due to their infinite energy, such configurations never occur,?
so that EP* is always zero (and E = EKM).

!While this is generally a practical approach for modelling fluids, this simplification is not particularly suitable
for most typical solid materials. There, instead, multi-body potentials are commonly used which have the
form of a pair potential, but include a parameter which depends on the local order of the surrounding atoms.
The most widespread approach in this case is the embedded atom method (EAM) for metals, cf. M. S. Daw
et al., Mater. Sci. Rep. 9(7-8), 251-310, 1993; models for carbon, silicon, and ceramics are based on the
Tersoff potential, cf. J. Tersoff, Phys. Rev. B 39(8), 5566-5568, 1989.

2As a consequence, T has no influence on the configurations of the hard sphere model. Its state is only
controlled by the density p = N/V, which is by convention expressed as a packing fraction Y = po37/6.
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6 Short Range Interactions

6.2 Dispersive Interaction

By fluctuations of the charge distribution (i.e. dispersion), non-polar molecules obtain a
dipole moment, which varies at a short time scale. However, assuming that all orientations
of these temporary dipoles are equally probable, and that the magnitudes and orientations of
the charge fluctuations of multiple molecules are statistically independent, any contributions
from this effect would strictly cancel out due to the symmetry of Coulomb'’s law:

SASIOICNOXO

In reality, this symmetry is broken by the influence of the surrounding molecules on the
charge fluctuations, since configurations with a lower potential energy are favoured by the
Boltzmann term exp(—EP°'/T) in the phase space density.® In this way, a temporary dipole
moment is induced by the charge distribution in the immediate environment of a molecule.

temporary dipole

SEINEAC

induced
( dipole

©

By dispersion, the potential energy of the system is reduced, and molecules are attracted to
each other by London forces, which are also called van der Waals forces. Following London,*
for two interacting sites with the polarizabilities a; and a; coupled to harmonic potentials
with the eigenfrequencies w; and w;, the average interaction potential is

3a;a;

disp _ —6 -7
W(r) = o re) +o(r7). (6.3)

ij

Hence, the leading contribution of dispersion to the potential energy is negative and ~ r;.°,
J

and the leading contribution to the force F;; = —du;;/dr;; is attractive and ~ rl.;7.

3Even in the NVE ensemble, where the phase space density does not contain a Boltzmann factor explicitly,
the same relation holds, at least for changes AEP°(q) which are small compared to E. The reason is that a
lower value of EP°'(q) increases EX"(p), by which a greater region of of the phase space becomes available.

4E London, Uber einige Eigenschaften und Anwendungen der Molekularkrifte, Z. Phys. Chem. 11, 222-251,
1930.
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6.3 Lennard-Jones Potential

6.3 Lennard-Jones Potential

The Lennard-Jones (LJ) potential®

12 6
W(ry) =4g([3} = [3] ) (6.4)
rij rij

with the energy parameter ¢ and the size parameter o, is a model for short-range repulsive
and dispersive interactions. The force® corresponding to this pair potential

v 13 7
Firy) = = —> = 3(2[3} —[3} ) (6:5)
dr; o rij rij

is repulsive at close distances r;; < 2/°c and attractive for greater distances r;; > 20

2_

1 repulsion attraction

pair potential / energy parameter

|
distance / size parameter

A modification of the LJ potential consists in truncating and shifting it

ud(r)—u(r), forr;<r
AT.. — 1] 1 ij c/> ij c
ug(ri;) { 0, for 1y > 1. (6.6)

ij =

at a cutoff radius r.. This modification eliminates all long-range interactions over distances
beyond r. from the model, which decreases the computational effort. The shift by u™(r.)
avoids a discontinuity in the pair potential. With a cutoff at the potential minimum,

>Conventionally credited to J. E. Jones, Proc. Roy. Soc. A, 106(738), 463-477, 1924. While this work indeed
considers intermolecular forces of the general form F(r) = ¢, r " —c,,r™", it proposes to specify 14 < n < 25
and w = 5, so that the attractive contribution to the pair potential is ~ r~*. Such generalized forms of the
LJ potential are today, also incorrectly, attributed to Mie, see below.

%Here, by convention, negative forces F;; < 0 indicate an attraction, and positive forces F;; > 0 indicate a
repulsion between two sites i and j. The distance vector between i and j is defined by r;; = q; —q;, so that
the unit vector pointing from i to j is r;;/r;;. The force (vector) exerted by i on j is F;;r;;/r;;, and the force

(vector) exerted by j on i is Fj;r;/r;;, where F;; = F;; according to Newton’s third law.
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6 Short Range Interactions

r. = 2Y60, where the potential shift has the magnitude +1g, this yields the Weeks-
Chandler-Andersen (WCA) potential,” a model for soft repulsion. Following Binder,® a
cutoff at r, = 2760 is used. The most common implementation of this approach? is the
Lennard-Jones truncated-shifted (LJTS) potential with r, = 2.50.

Generalizations of the LJ potential include the Mie potential'®

n n 1/(nw™!—1) o n o v
wt) = 5 (3) ([—] ‘[7] ) ©7)

1 1

which has four parameters (energy ¢, size o, repulsive exponent n, attractive exponent w),
and the Buckingham potential®!

C C3
=,
ij

(r) = ———— — 6.8
ul](rl]) eXp(Cgrl'j - ( )

which has three parameters. The Buckingham potential correctly reproduces the exponential
soft repulsion, cf. Eq. (6.1), as well as the r~° scaling of the dispersive interaction. As a
downside, it contains an exponential function, which is computationally unfavourable.

All of these potentials aim at accounting for all short-range intermolecular interactions,!
repulsive and dispersive, by a single expression.

2

6.4 Unlike Interaction

The force field for a mixture is defined by the like interaction — i.e. the interaction site i is
like the interaction site j — and the unlike interaction which applies to interactions between
different species.!®> A combining rule may be required for this purpose, depending on the
type of the pair potential.1* For hard spheres, the unlike interaction is given by the Lorentz

7J. C. Weeks, D. Chandler, H. C. Andersen, Role of repulsive forces in determining the equilibrium structure
of simple liquids, J. Chem. Phys. 54(12), 5237-5247, 1971.

80riginally introduced by Virnau et al., J. Chem. Phys. 121(5), 2169-2179, 2004.

?See also Allen and Tildesley [1], Section 5.2.4 (Shifted and shifted-force potentials).

OIncorrectly attributed to Mie [Ann. Phys. 316(8), 657-697, 1903] who, instead, employed a Taylor expansion
of the pair potential around r = o. It would be more just to refer to Griineisen [Ann. Phys. 344(12), 257~
306, 1912] as a source; however, the term Mie potential, whether correct or not, is now established.

HR. A. Buckingham, The classical equation of state of gaseous helium, neon and argon, Proc. Roy. Soc. A
168(933), 264-283, 1938.

12The intramolecular interactions, corresponding to internal degrees of freedom, are also short-range interac-
tions. They can be modelled by harmonic potentials, cf. Section 4.3, but for many purposes, in particular for
relatively small molecules, they can be neglected and rigid models can be used. In both cases, whether rigid
or internally flexible molecular models are employed, it may be necessary to include correction expressions
for quantum mechanical effects, cf. Section 4.4, to reach a good accuracy for the heat capacity and related
properties. In the temperature range 0.1 T, < T < Tp,, where Tp, is the Debye temperature, it is impossible
to account for a partially excited IDF correctly by classical mechanics.

13For molecular models with multiple LJ interaction sites, the interaction between sites with different LJ para-
meters is also a unlike interaction, even if the interacting molecules are identical.

14Cf. Allen and Tildesley [1], Section 1.4.2 (Building the model potential). It should be noted that the long
range electrostatic interactions, which will be discussed below, do not require any combining rule; there,
Coulomb’s law can be applied without any further considerations.
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6.4 Unlike Interaction

combining rule!®

1
o= E(O'i-i-O'j). (6.9)

The Lorentz combining rule is often also applied to the LJ potential, together with the

Berthelot combining rule®
ey = JEE (6.10)

In case of the LJ potential, the unlike interaction is often adjusted to experimental data for
the mixture. For this purpose, two binary interaction parameters 1) and & are introduced
for each pair of components (both are usually close to 1) and used in the modified Lorentz-
Berthelot combining rule
= My 6.11
o = ?(O-i+o-j)a (6.11)
e = £y EE (6.12)

15H. A. Lorentz, Uber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase, Ann. Phys.
12(1), 127-136, 1881; Addendum: Ann. Phys. 12(4), 660-661, 1881.
16D, Berthelot, Sur le mélange des gaz, Compt. Rend. Hebd. Acad. Sci. 126, 1703-1706, 1857-1858, 1898.
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7 Long Range Interactions

7.1 Electrostatic Interactions

The electrostatic interaction between two charged bodies, approximated by point charges,
is given by Coulomb’s law!

ui]' == QlQ] . (7-1)
rij

1

This is a long range interaction, as the pair potential decays with u ~ r~', and the force

with g
Foo i U r2, (7.2)

ij ~ 2 ij
dr;; T

A series of higher order polarities, which interact over a long range? electrostatically, is given
by the multipole expansion of the charge distribution.?

— =0 — =1 =2 =3 =
Q== D =5 = = |... =

i =i
charge dipole quadrupole octopole | ... 2/-pole

Qi =2, Qi | Di =23 9uQux see Eq. (7.3)

scalar vector matrix 3-tensor | ... j-tensor

The quadrupole tensor is given by

(E'l.z)jj ZQik (3 [qfi)]z - Cll-zk) P
K

(2), = D.3Qualay) (orj#0. (7.3)
k

!By convention, the Coulomb constant ko = 1/4me, = 8.988-10° VmC™! = 1.4400-107° eVme 2 is
specified to be k. = 1, where e = 1.602 - 10~'° C is the elementary charge, and &, = 0.005526 e(VA)™" is
the vacuum permittivity.

2Defined here by u ~ r~ with k < 5. For electrostatic interactions with k > 6, the effective pair potential
can either be fused with dispersion (case k = 6, 7, or 8, probably), e.g. by adjusting the LJ parameter &
accordingly, or it is dominated by the dispersive interactions and can be neglected (case k > 6). The orien-
tational contribution also plays a role. The deviation of the pair potential from radial symmetry becomes less
pronounced for higher-order multipole moments. Up to the quadrupole-quadrupole interaction, however,
a significant preference is found for intermolecular orientations which are energetically more favourable;
this is neglected whenever the quadrupole is fused with dispersion, even though the r~> scaling of the
quadrupolar interaction is similar to the 7~ scaling of the dispersive interaction.

3The following expressions assume that the charge distribution of molecule i is given by a set of point charges
Q- If the charge distribution is given as a continuum, e.g. by a wave function, all summation terms need
to be replaced by integrals.
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7.2 Force Field Design

The unit of the dipole moment is the Debye (D), with 1 D = 0.208 19 eA; e.g., water has
a dipole moment of 1.85 D, and for carbon monoxide it is 0.1 D. The unit of the quadrupole
moment is the Buckingham (B) or Debye Angstrom (DA); e.g., the quadrupole moment of
COis 2 DA, for CO, it is 4.4 DA. While D and DA are not Sl units, they are most frequently
used for this purpose.

The series of multipoles is usually expanded around the centre of the lowest-order multi-
pole with a non-zero moment.* In many cases, however, it is sufficient to consider only the
lowest-order multipole moment, i.e. the charge of an ion, neglecting its dipole moment, or
the dipole moment of an uncharged, but polar molecule (neglecting its quadrupole moment).

The interaction potentials and forces between a k-th order multipole at the site i as well
as a £-th order multipole at the site j scale as

=k =l —k—0—1
u(.:,i ,:,].) ~ Ty , (7.4)

F(ElkEf) ~ T, (7.5)

These interactions can become repulsive or attractive, and the contribution to the potential
energy can be positive or negative, depending on the orientation, e.g.
| D; || D |
D,D (e . i ;
i (rijs i, 05, 045) = (sm ; sinp; cost;; — 2cos p; cos cpj) — s (7.6)

ij

u

for the pair potential acting between two dipoles. Therein, the orientational angle ¢; is the
angle between D; and r;;, and ¢; is defined in the same way. The azimuthal angle 9;; is the
angle between a plane which is parallel to ¢; and r;; and another plane which is parallel to
¢; and r;;. The trigonometric functions in Eq. (7.6) simplify to scalar product expressions
and can therefore be computed with comparably little numerical effort.

7.2 Force Field Design

The following pair potentials are most frequently used to model the different types of
interactions:

interaction pair potential
. point charges,
long range electrostatics oint dipoles
(intermolecular) (charge distribution) | P! potes:
point quadrupoles
short range dispersion and Lennard-Jones potential,
(intermolecular) repulsion Mie potential, etc.

short range

electrostatics hydrogen bonding point charges
(intermolecular)

intramolecular internal degrees harmonic potential or
interactions of freedom rigid models (neglecting IDF)

“*For an ion, e.g., the centre of charge Qi_1 > 9k Qi should be used as the origin of the multipole expansion.

31



7 Long Range Interactions

Multiple interaction sites can be used as building blocks and combined to construct a force
field which accounts for all, or the most important, interactions between the molecules.
Three basic approaches corresponding to different degrees of abstraction can be distin-
guished.

e All-atom models: There is at least one interaction site for each atom.®

e United-atom models: Interaction sites can correspond to multiple atoms. A functional
group or two small adjacent functional groups are represented by a single site.®

e Coarse grained models: Force fields at a higher level of abstraction may simplify the
detailed chemical structure of the molecule — e.g. polymers represented by connected
beads — or the intermolecular interactions, e.g. with a Mie potential for water.”

The decision for a particular force field design controls the number of adjustable parameters,
i.e. the dimension of the parameter space.

A greater number of parameters increases the adjustability of the model to experimental
data; however, this carries the risk of overfitting, by which a model actually becomes
worse even though its agreement with specified numerical values is improved. This oc-
curs whenever the avaialble data set does not provide a sufficient amount of information,
e.g. because of redundant or contradictory data, or simply due to a lack of data. The prin-
ciple of Ockham'’s razor applies:® For two models which reach the same accuracy for a given
data set and both capture the essential aspects of the modelled phenomenon qualitatively,
the model with fewer parameters usually has the greater predictive power.

Furthermore, it is harder to characterize a parameter space with a greater dimension.
Rapid fine-tuning of a model or a systematic exploration of the entire parameter space
(e.g., by multicriteria optimization) may be easy for a coarse grained model, but very hard
or impossible to achieve for an all-atom model of the same compound.

7.3 Separation of Scales

Even if pairwise additivity is assumed, EP** = Zuij, it is usually too expensive computa-
tionally to evaluate the pairwise interactions between all N(N — 1)/2 pairs of molecules
explicitly. Therefore, a cutoff radius r, is introduced® to separate the near field from the
far field. For low-molecular fluids, r. is often of the order of 15 to 20 A. In the near field

>The molecular models with the greatest level of detail are reactive force fields. There, even the formation of
covalent bonds is modelled by classical mechanical multi-body potentials. The reactive force field approach
is at the boundary to quantum mechanics /molecular mechanics or Car-Parrinello molecular dynamics where
the classical mechanics are coupled to a QM solver from which effective forces are obtained at run time.

®Most typically, this means that the hydrogen atoms are fused with the atom to which they are bonded.

7 All molecular force fields, even with coarse graining, represent each molecule as a discrete entity. At a higher
level of abstraction, dissipative particle dynamics and the discrete element method, which also employ classical
mechanical pair potentials, neglect the role of individual fluid molecules.

8«Frustra fit per plura quod potest fieri per pauciora» — i.e., it is useless to do by more what can be done by
fewer; from W. Ockham, Summa Totius Logicz, 1323/26.

The separation between the near field and the far field by a cutoff radius is a numerical technique for evaluating
a pair potential which includes long-range effects. This needs to be distinguished from truncated pair
potentials such as WCA and LJTS, where the cutoff is part of the molecular model and long range interactions
are strictly absent.
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7.3 Separation of Scales

(ri]- < r.), the discrete nature of the molecules needs to be taken into account; the pair
potentials are evaluated explicitly, at an effort which scales with O (Np rf)

In the far field, the fluid matter is treated as a continuum, and the interactions beyond
the cutoff radius (r;; > r.) are taken into account by a long range correction (LRC). For a
homogeneous LJ system, the LRC contribution to the potential energy is given by

. 1ZN [ , o\° 8m o°
ELRC_E - dr - 4mr= - P 48(?) :—? r—gpN (77)
The division into short range and and long range terms
8 N r <r
no
EY(q) ~ — p + E W) (7.8)

{i,j}

significantly reduces the number of pair potentials which have to be evaluated individually.
For electrostatic interactions, multiple LRC approaches exist.

e Reaction field method: Assumption of a dielectric continuum in the far field which
balances the local polarity of the near field; this approach is very straightforward, but
applies to homogeneous systems only.1°

e Ewald summation techniques: The electrostatic interactions are split into a truncated
and shifted short range term and a term which contains long range effects; the long
range interactions are computed in inverse space, i.e. by Fourier transformation.!!

e Fast multipole method: Recursive subdivision of the volume into subvolumes for which
the multipole expansion is developed up to a high order; the summation is conducted
in Cartesian space.*?.

107, Onsager, Electric moments of molecules in liquids, J. Am. Chem. Soc. 58(8), 1486-1493, 1936.

1p P Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Ann. Phys. 369(3), 253-287,
1921.

12/ Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comp. Phys. 60(2), 187-207,
1985
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8 Molecular Simulation Algorithms

8.1 Molecular Dynamics

Molecular dynamics (MD) simulation follows the trajectory of a system by numerical in-
tegration of the classical mechanical equations of motion on the basis of a given molecular
force field model. This approach was introduced by Alder and Wainwright in 1957.1

Starting with a given initial configuration, the evolution of the system is simulated over
time. For numerical purposes, time is discretized into time steps corresponding to intervals
At which are usually? of the order of 1 fs < At <5 fs. The force® acting on molecule i is
obtained by summation over all interaction partners*

du:: t::

J

Therein, for multi-site models, the intermolecular pair potential u;; is given by the sum of
all pairwise interactions of the sites of molecule i with the sites of molecule j. Following
Verlet,®

new velocity = old velocity + change by acceleration,
(t+ At)—q;(t (t)—q;(t — At F; At
qi( )—a(t) _ q(t)—qd ), Eat 8.2)
At At m;
so that , p
At Uji Ty
q;(t + At) = 2q,(t) —qi(t — At) —— Z X (8.3)
m; < drj; rj;

and the integration can be carried out without the explicit computation (and storage) of
velocities; however, the previous position of all particles needs to be stored. Implicitly, the
velocities at half time steps are used here.

B. J. Alder, T. E. Wainwright, Phase transition for a hard sphere system, J. Chem. Phys. 27, 1208-1209, 1957.

2For solids and dense liquids, At ~ 1 fs; if molecular models with internal degrees of freedom are used, and
the vibration of covalent bonds is simulated explicitly, much smaller time steps At < 1 fs may be required.
The magnitude of the time step also depends on the numerical integration scheme which is used.

3 Analogously, for multi-site models with external rotational degrees of freedom, the position coordinates in-
clude the orientation of the molecule, which can be efficiently implemented by using quaternion notation, cf.
Rapaport [J. Comp. Phys. 60, 306-314, 1985], and the tangential components of the intermolecular forces
are added up to determine the torques.

“Index order ji is used here to signify that j acts on i. By Newton’s third law, u;; = uj; and Fj; = Fj;, each pair
of molecules needs to be considered only once in each time step, rather than twice. Interactions beyond the
cutoff radius r, are neglected at this stage and evaluated separately by a long range correction scheme.

>L. Verlet, Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones mo-
lecules, Phys. Rev. 159, 98-103, 1967.
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8 Molecular Simulation Algorithms

If the velocities need to be computed, e.g. to obtain microscopic observables and to reg-
ulate the temperature, the Verlet leapfrog algorithm can be used.® This integration scheme
explicitly determines position coordinates and forces at full time steps and momentum co-
ordinates at half time steps, iteratively proceeding as follows:

1. Computation of position coordinates q,(t) = q,(t — At) + p,(t — At/2) At/m;,,
2. computation of forces F,(t) 22]. F;;(q;(t),q,(t)) as given by Eq. (8.1),
3. computation of momentum coordinates p;(t + At/2) = p;(t—At/2) + F;(t) At.

Many integration algorithms exist; ideally, these algorithms are all equivalent realizations of
the classical equations of motion, exactly following the system trajectory which is uniquely
defined by the initial conditions y(t,) and the intermolecular interactions.

In fact, all numerical schemes have a certain error, and the nonlinear character of
multibody dynamics causes the simulated trajectory y*™(t) to diverge exponentially, in
t — to, from the exact solution y(t). This deviation is of little importance, however, since
the simulated and exact trajectories are similar enough to be equivalent for practical pur-
poses.’

8.2 Thermostat and Barostat

The integration of the equations of motion conserves the energy of the system (as well
as N and V), corresponding to the microcanonical ensemble. For an MD simulation at a
specified temperature, a thermostat is introduced.

e Isokinetic thermostat: It is ensured that the instantaneous microscopic temperature
F(y) = p?>/mNP°F is constant,® with Z(y) = T, by rescaling all momentum coordi-

nates by the factor +/T/Z(y) in every time step.®

®R. W. Hockney, The potential calculation and some applications, pp. 135-211 in B. Alder, S. Fernbach, M.
Rotenberg (eds.), Methods in Computational Physics, vol. 9 (Plasma Physics), London: Academic Press,
1970.

’The same phenomenon is found for weather forecasts which also follow nonlinear dynamics. For 24 hours,
a good precision is expected, and beyond, the quality of the prediction will decay. Nonetheless, even over
months, the predicted weather will follow the general tendencies of the local climate and therefore give a
correct description of the average weather.

8This method is both simple and efficient and therefore used very often; however, it fails to capture the
fluctuations of the total kinetic energy of the system. In this way, e.g., the NV T ensemble is approximated
by a NVEX™ ensemble.

Rescaling all momentum coordinates by the same factor becomes a problem whenever a collision of two
molecules i and j is not resolved at sufficient accuracy by the integrator, which can lead to an extremely
high value of u;;. The scaling factor is then extremely small, so that only i and j continue to move, and the
rest of the system is frozen. Similarly, in case of simulations where the average integration error is significant,
but not of the same magnitude everywhere in the simulation volume (e.g. phase coexistence, with a greater
deviation from energy conservation in the phase with greater density), the isokinetic thermostat artificially
produces a temperature gradient.
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8.3 Monte Carlo Method

e Andersen thermostat: Random degrees of freedom £ are assigned new, Maxwell dis-
tributed, random momenta p,.1°

e Nosé-Hoover thermostat: An additional microscopic degree of freedom with the mo-
mentum p (units of kg m* s71), the position § (dimensionless), and the mass i (units
of kg m™2) is introduced. The Hamiltonian is extended such that

%(p)pa q:EI) = - (?) +-=+ EPOt(q) +NDOFT1nEI3 (84)
2m \ g 2m

by which the Maxwell distribution is correctly reproduced.!!

The pressure can be regulated by a barostat, e.g. following Andersen'?

2

1
AW pys @, V) = — (VP + L 4 EPr(VY3¢) 4 PV, 8.5)
2m 2my,

where P is specified, the volume V becomes an additional microscopic DOF, my is an
effective piston mass associated with the volume, and reduced coordinates are employed

(P/, q/) — (P, q)

VR (8.6)

In this way, at each small change of the volume AV, all momenta and positions are scaled
proportionally, Alnp= Alnq=(AInV)/3.

8.3 Monte Carlo Method

The ensemble average of any observable y is formally given by

_Jrdrx®e®
[ dyp()

which is a high-dimensional integral, since the dimension of I' is greater than 1000 for all
reasonable values of N. A numerical evaluation of this integral cannot be based on a grid
of points in T, since the grid would have to consist of over 2!%%° microstates.

To address this challenge, former Manhattan Project scientists at Los Alamos developed
the Monte Carlo (MC) method as a randomized integration approach. The general basic
ideal® is to compute a high-dimensional integral by an averaging over the value of the

(x) (8.7)

10gee H. C. Andersen, J. Chem. Phys. 72(4), 2384-2393, 1980; This thermostat should not be used for sim-
ulations of nonequilibrium scenarios, e.g. in nanofluidics, where deviations from the Maxwell distribution
occur. In equilibrium scenarios, the ensemble average of microscopic observables is obtained correctly (as-
suming ergodicity). However, time-dependent quantities such as transport coefficients are perturbed if new
momenta are assigned too frequently.

15 Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(2), 255-
268, 1984; W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31(3),
1695-1697, 1985.

121bid.

13N. Metropolis, S. Ulam, The Monte Carlo method, J. Am. Stat. Assoc. 44(247), 335-341, 1949.
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8 Molecular Simulation Algorithms

integrand at a series of random points. The accuracy increases as the number of points
increases; if the integration space is sufficiently homogeneous with respect to the integrand,
i.e. quasiergodicity holds, the required effort becomes computationally tractable.

In case of phase space integrals for molecular systems where the momenta are known to
follow the Maxwell distribution, we define*

2

_ 1 _ D
x(@) = (27rmT)3N/2Jdp exp( ZmT)x(p,q), (8.8)

R3N

and only random configurations @V, @, ... need to be generated. If these configurations
are chosen at random from V¥ following a uniform distribution, the ensemble average is

obtained as
2 x@)p(@®)

) ~ ka(q(k))
where the definition of p(q) is also given by Eq. (8.8).

(8.9)

8.4 Metropolis Algorithm

A uniform distribution for q©¥* € V¥ is unsuitable in practice, since most configurations
generated in this way contain overlapping particles; hence, EP°'(q) is large, p(q) is very
small, and the relevant contributions to the quantity y(q)p(q) are sampled very poorly.

Solution following Metropolis et al.:'®> If a configuration q© has already been accepted
as a representative state of the system, it can be used to obtain a new configuration q’ by
altering the position of a random molecule i such that

k) for i # j,
q =

/ q;
8.10
{qﬁ")+f§, for i = j, (8.10)

where € is a vector containing (uniformly distributed) random values between —1 and +1,
and the displacement length scale 7 is a simulation parameter. Following the Metropolis
acceptance criterion, the new configuration is accepted as representative with the probability

r(q) )
p(q®))’
which compares the phase space densities of the old and the new state;!® in particular,

configurations with p(q) > p(q"®), corresponding to a decrease in potential energy, are
always accepted. lteratively, the Metropolis algorithm proceeds as follows:

n(q®,q) = min(l, (8.11)

1. Select a random molecule i and generate a random test configuration q’ on the basis
of the present configuration q© according to Eq. (8.10).

14The integral over momentum space is also high dimensional. However, since all individual momentum co-
ordinates p, are statistically independent, this can usually be simplified further, yielding the ideal gas result
for the considered observable.

I5N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. N. Teller, E. Teller, Equation of state calculations by
fast computing machines, J. Chem. Phys., 21(6), 1087-1092, 1953.

5For a good sampling performance, the displacement length scale 7 should be tuned such that about 50% of
the generated configurations are accepted and 50% are rejected.
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8.4 Metropolis Algorithm

2. Compute the potential energy change

E*(q) — E*(q®) = > (uy(q — ) —u;(q® —q)) (8.12)
i#j

and the acceptance probability!” from Eq. (8.11)

n(q®,q) = min(1, exp((E*(q*) — E®(¢)]/T)). (813)

3. Accept q’ with the probability (q,q’). If accepted, q**V = q'; if rejected, g%+ = q®.

The Metropolis acceptance criterion ensures that the distribution of the accepted con-
figurations agrees with the phase space density. Hence, the series of configurations
qV,q?,...,q"® is representative for the ensemble, and an unweighted arithmetic mean

¢
1
(x) ~ ZZx(q”‘)) (8.14)
k=1
yields the ensemble average of the observable y.

Remark: Periodic Boundary Conditions

Both for MC and MD simulation, periodic boundary conditions are usually employed to
approximate the macroscopic surroundings by periodically displaced identical replicas of the
system:

o o o
e e :

O | O O,
. 5 oo
/ . 1

,® ['O !

'O @ O
_____ | U I
o ! o O
|O IO 1

Accordingly, e.g., whenever a molecule leaves the simulation volume on the left side, it
reappears on the right side.

7In general, all degrees of freedom need to be considered; this includes the external rotational DOF and the
internal DOF of the molecules (if present in the molecular model) and additional quantities which may
be varied within the ensemble, e.g. V in the isothermal-isobaric ensemble, or N in the grand canonical
ensemble. All microscopic DOF need to be varied stochastically, and the Metropolis acceptance criterion
needs to be applied accordingly; thereby, Eq. (8.11) holds in general, whereas Eq. (8.13) only applies to the
variation of the position of a selected molecule i.
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O Microscopic Observables

9.1 Computation of Macroscopic Quantities

By MD simulation, a series of microstates

@ .2

Yy &0

is obtained, which are representative! for the thermodynamic boundary conditions corres-
ponding to the simulated ensemble. Accordingly, for a microscopic observable y which is
known to correspond to the macroscopic thermodynamic quantity &, the value of & is
determined from

= lim Z)( () (9.1)

{— 00

In a MC simulation, a series of configurations

¢
q(l)’ q(2)’ e q( )

is obtained, and & is given by

= lim Z;{ () (9.2)

Z—)OO

where y(y) and y(q) are related by Eq. (8.8). Examples for the canonical ensemble:

DOF

EIN,V,T) = (#))wvr = 9 T+ (E™(@))wvr (9.3)
()2 = ((v))? DOF

¢, = VNV N (i) o). 0

An observable y matching a quantity & can in many cases be found by expressing & as
a derivative of the thermodynamic potential and evaluating this derivative in terms of the
partition function. This is shown below for the pressure

0A
(aV)N,T’ ©-3)
cf. Section 9.2, and the chemical potential
0A
=|=— .6
w=( aN)V,T’ 9.6

cf. Section 9.3, in the canonical ensemble.

! Assuming quasiergodic behaviour, and excluding the initial equilibration stage, during which the sampled
microstates cannot be assumed to be representative of the ensemble.
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9.2 Virial and Pressure

9.2 Virial and Pressure

For a cuboid system with V = £, % ¥,, a variation of the volume, cf. Eq. (9.5), can be
carried out in different ways. In general, the pressure is a tensorial quantity.? A surface
oriented perpendicular to the x axis experiences the pressure

oA 1 oA 2. ([ 0A
Pxx — | == [ = —— 5 (97)
ov 2Ly, LN, T ‘gy‘gz a_,% £,,%,,N,T v a-g £,,%,N,T

corresponding to a variation of the volume where all x coordinates are proportionally scaled
by a differential amount

dA =dInV =dIn¥, = dIng,;, (Vi) = dInr;(Vi, ), (9.8)

while the y and z coordinates are unaffected. The reduced coordinates

qu qix/-gx
q; = qiy = qiy/-gy ) (99)
ql{Z qiz/gz
for all molecules i, are invariant during this transformation. Accordingly, dq; = dq,/V and
dq' = dq\dq, ---dq,, = V"dq. (9.10)
For radially symmetrical pair potentials u;:(r;;), separating 2yyr = 214 _2%°" sych that3
ij\lij 14 NVTSNVT
(1,1,...,1)
EP* 1

Qﬁ,"\‘}fT = V_NJ dq exp (— T(q)) = J dq’ exp -7 Zuij(rij) , (9.11)

VN (0,0,...,0) i}
with dA =V7'dV and dIn 2% = (2L ) 1d2:m  Eq. (9.7) in terms of 25 becomes

(1,..., )
T 0 , 1
{i,j}
(0,...,0)
a,..,1)
T 1 1 1 ij
= pT + V Qconf J dq/ exp —?Zuij(rij) _? l] 5 (912)
NVT(O ..,0) ti.} L]

where the partial derivative is taken at constant £, %,,N,T. Therein, exp(—E*(q')/T)

is the statistical weight of the reduced configuration q’, while 2% is the integral of

exp(—EP*'(q')/T) over the reduced configuration space,* cf. Eq. (9.11).

2In case of a homogeneous fluid system in equilibrium, without a phase boundary and in absence of an external
potential, the diagonal elements of the pressure tensor are all equal, P** = PYY = P** = P, and the off-
diagonal elements, which are not discussed here, are all zero.

3Using this normalization, Q]ffo‘;lfT = 1holds for the ideal gas. Hence, in case of the ideal gas, the configurational
contribution to the pressure vanishes; accordingly, the contribution from Qli\‘,iVT yields p T, cf. Section 5.3.

“Hence, for an observable y(q’), the canonical ensemble average is (‘Qlf,"‘}‘fT )t f dq’ x(q")exp(—EP°*(q)/T).
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9 Microscopic Observables

Eq. (9.12) can be simplified to

T 1 du;; Ory; (1)
P = pT + —(——>» 2 = pT + , (9.13)
1% T & dr;; A - 1%
where IT¥*, given by®
dui' 31‘1»-
(g = -y L
o dr;; A
9 2 2 2 Y2 1 9 2 2 2
= D F g (Fatriy i) = DF, 2(r2)172 3A (batrl, +rhs)
{i.j} {i.j} U

Fij

2
ij,x
- Z P ZFij,xrij,x, (9.14)

{ijy U {i,j}

is the x component of the virial,® i.e. the microscopic observable corresponding to the
configurational contribution to the pressure acting in x direction. The thermodynamic
pressure, as a directional average’

PX¥ 4 pYY 4 p= m
p = =pT+ u, (9.15)

3 3V

is obtained from the virial
F..
— JTXX Yy 22 _ Y2 2 2 ) = T
1(q) = ™ + IP? + I = {Z; - (P2 472 412 ) = {Z;F”r”' 9.16)
i,j L,]

9.3 Widom’'s Test Particle Method

The chemical potential can be expressed in terms of the partition function as
A dln29 8 In 20t |
= | =—=— = |- 71— 4+ 7. |- — 2 = 4d4Tp, 9.17
# (aN)V,T [ N oN Hom i 9-17)

where uid is the ideal contribution to u, and fi is referred to as the reduced residual chemical
potential. If 29 is defined by Eq. (9.11), the ideal partition function is

NVT
i Qnvr %4 _P2
Q;\?VT =— = dp exp
QNva h3NN!R3N 2mT
o 3N
3N
— AN dp exp —p — VY (v2rmT (9.18)
N! | h 2mT NI h ' '

>For the present variation, dr?/r? = dInr? = 2dInr, = 2d2, whereas dr§ =dr? =0, for all distances r.

%In the same way as the pressure, the virial can be expressed as a tensor; IT** is on the diagonal of this tensor.
However, 1T is also often used as a scalar quantity, defined by summation over the diagonal elements of the
virial tensor, cf. Eq. (9.16).

"This expression for the pressure corresponds to P = —(3A/3V)y  for a variation of the volume where all
coordinate axes are scaled equally, i.e. dA = dIn¥, = dln¥, = dIn¥, = (dInV)/3.
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9.3 Widom’s Test Particle Method

With A=h/+/2nmT, and approximating In(1/N!) ~ —NInN—N = —f dN InN, this yields

: dln2¢ 3
= —T—pm= & —Ton (NInVA™ —NInN —N) = TlnpA*. (919
For the reduced residual chemical potential
Jdln Qconf Qconf
0, = —_WT — f Fo_ N+LV,T
o= _( ON ) = —In@yhyr + &y = — IHW, (9.20)
v.r NVT

where the configuration of the molecules 1 to N will be denoted by q = (q,...,qy) and
the position of the additional molecule by qy,;. Defining AEP*'(q,qy.;) by

Eyirvr(@ayse1) = Exyr(@) + AE(q, Qy1), (9.21)
for the system containing N + 1 molecules, Eq. (9.11) becomes
Epnvr(9 Qvn)
Qﬁlofi,v,T = v J dq dqy,, exp (_ — T
YN+1
AEP Eyy
= V_Nqu V_ljdqm1 exp(— - ) exp (— %@) (9.22)
VN v

In this way, inserting Eq. (9.11) for 250,

v [dq[V~! [ dqy,, exp(—AEP/T)|exp(—Exy,/T)

i = —In
# V—Nqu exp(—Eny./T)

1 —AEP*" —AEP*"
= —In —quN 1 exp(—) =—ln< <exp(—)> > (9.23)
4 * T T dv+1/ NVT

v

a microscopic observable for i is found.® It can be computed by test particle insertion:*°

e Conduct a regular MC or MD simulation with N molecules, as usual.

e Between simulation steps, insert a virtual test particle at a uniformly distributed ran-
dom position qy,; € V and, if applicable, with a random orientation. The test particle
does not remain in the system, and it does not influence the other molecules.

e For each test particle insertion, compute AEP" = > . u; y., from the pairwise inter-
actions of the test particle with all other molecules i. The simulation result for i is
determined from Eq. (9.23) using the average value of exp(—AEP*'/T).

8Since N is a discrete quantity which can only be varied in steps of +1, the partial derivative is replaced by a
difference quotient. This is not an approximation, but rather the more accurate expression.

°For the implementation as a simulation method, it is crucial that in Eq. (9.23), q is distributed according to
the phase space density for the N-molecule system, whereas qy; is distributed uniformly.

10B. Widom, Potential-distribution theory and the statistical mechanics of fluids, J. Chem. Phys. 86(6), 869—
872, 1982. The method is not restricted to the canonical ensemble or to pure fluids. Analogous expressions
are obtained for the NVE and NPT ensembles and for mixtures, where fi; is obtained in the same way,
i.e. from the potential energy of virtual test particles which belong to the component i.
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10 Local Order

10.1 Radial Distribution Function

Beside computing thermodynamic properties from ensemble averages of microscopic observ-
ables, cf. Section 9, MC and MD simulation can be employed to investigate the structure
of fluid matter at the molecular level.

Cs— p*= 0.98 LJTS
S AN T*=1
B n
3 y
52_ |'
S i
5 |
__(_) [}
= |
N 1
B 1 .
[
©
®

0

0

2
intermolecular distance / size parameter

The radial distribution function (RDF), which is also known as the pair correlation function
and denoted by g(r), expresses the local density at a given distance r from a molecule; this
density is normalized by the overall density p =N/V, i.e.

local density at distance r from a molecule
overall density p
fraction of N

g(r) =

fraction of V

Vv
= = (6(ri;—1)), (10.1)

such that g(r) — 1 holds at r — oo, for a Dirac function with!

Jdr o6(rij—r)=1, VO0O<r;<oo, (10.2)
0

considering any given, but arbitrary, pair of molecules i and j. Hence, it is impossible for
g(r) to be smaller than 1 everywhere, or greater than 1 everywhere; any local density surplus

! Accordingly, the value of 5(r; ;—r) is not dimensionless here; it needs to have units of mL.
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10.2 Local Order and Thermodynamics

needs to cancel out with a local density deficit

oo oo

Jdr g(r) Amr® J 5(r > = 1. (10.3)

0

The RDF is determined by a combination of
e effects of the pairwise interaction — where u(r) is smaller, g(r) tends to be greater,
e and multibody order effects, which become relevant at high densities.

In the case of an ideal gas, and similarly, for a real fluid in the T — oo limit,? all configur-
ations are equally probable, so that g(r) =1 holds for all r.

10.2 Local Order and Thermodynamics

In systems with pairwise additive interactions, some thermodynamic properties are immedi-
ately related to the RDF. In particular, assuming that g(r) is known, the potential energy?

EPt = <Z uij(rij)>
{i.j}

oo

N (# neighbours j of i with r;; = r)
= dr u(r)
2
0
N? 2nN?
= 7Jdr u(r) (5(rij—r)> = 7:/ Jdr r?g(Hu(r), (10.4)
0 0

and the ensemble average of the virial*

oo

2
= <ZFijrij> = 27:/N Jdr r?g(r)I(r) (10.5)

(@) J

can be determined, and accordingly, the energy E = EX" 4+ EP® and the pressure

oo

Jdr r?g(r) I(r). (10.6)

0

P =pT+-L =pT+
pT+ o7 =p

(IT) 2mp?
3

2The strongly repulsive region needs to be excluded, however, since it is unrealistic that sufficiently high
temperatures can be reached.

3The identity <5(rij - r)> =4nr2g(r)/V is used here.

*Notation: I1(r) = II;;(r;;) = r;;F;;(r;;), cf. Eq. (9.16), and IT = II(q) = >, IT;;(r;;).
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11 Fluid Phase Equilibria

11.1 Thermodynamic Equilibrium

For a thermodynamic equilibrium between .# phases in a mixture of k components, the
chemical, mechanical, and mechanical equilibrium conditions apply as follows:

M
woo=u o= =
: : : =  chemical equilibrium
w. o= u’ = = u
/ _ 7 _ _ () . apey s
P = p" = = P =  mechanical equilibrium
T = T = = 1O = thermal equilibrium

In this way, the phase equilibrium is characterized by x + 2 scalar variables which need to
have identical values in all coexisting phases. However, these quantities are not independent.
By the equation of state, a relation of the type

FOW,..,u®, PO TO) =0 (11.1)

is given for each phase 1 <i < .#, yielding .# additional conditions in terms of w, P, and
T. The number of remaining intensive thermodynamic properties which can be varied inde-
pendently, i.e. the number of intensive thermodynamic degrees of freedom A is therefore
related to the number of phases .# and the number of components k by

M+ N =K+2, (11.2)

which is known as the Gibbs phase rule.! For equilibria between two phases,? e.g. vapour-
liquid equilibria (VLE) and liquid-liquid equilibria (LLE), this reduces to A4 = k.

11.2 Grand Equilibrium Method

For a VLE, w, P, and T are the same in the vapour phase and the liquid phase. In case of
a pure fluid, this is represented by the intersection of an isotherm in a u— P diagram with
itself; since (8u/dP); =1/p, the steep branch of the isotherm corresponds to the vapour
(greater value of 1/p), and the flat branch corresponds to the liquid.

!Additionally, the size of each phase can be varied freely, so that .# extensive thermodynamic DOF exist
at given w, P, T. Counting both intensive and extensive thermodynamic quantities, there are (x + 2 —
M)+ M = k + 2 macroscopic DOE, irrespective of .#. This corresponds to the number of properties that
determine the ensemble, e.g. N;,...,N,,V, T for canonical boundary conditions.

2For the VLE of a pure fluid (x = 1), the thermodynamic state of the coexisting phases is determined by a
single intensive property, such as the boiling temperature or the saturated vapour pressure. For the VLE or
LLE of a mixture, x independent intensive thermodynamic properties need to be given.
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11.2 Grand Equilibrium Method

-5 vapour

chemical potential

-6 I I I I
-06 -04 -02 O 02 04 0.6
pressure

Two isotherms (T =0.75 und 0.9 ¢) of the LJTS fluid in a u—P diagram;3 all values are given in
LJ units, i.e., in units of ¢ for the chemical potential and in units of £/02 for the pressure.

For the liquid phase, the dependence of u on P can usually be captured as follows:* In the
NPT ensemble at a given reference pressure P = P,;, the density p’(P,.) is given by N/ (V)
and its first derivative by the isothermal compressibility

o :
b = (52). = 7 (vi)-wn). (113)

If u'(P.) is also available, e.g., by Widom's test particle method, the liquid branch of the
isotherm in the u— P diagram can be expanded to second order as

1 Br(Pres) 2 3
'(P) = W(Pe) + ———=[P—Py] — ——[P—Pyl’ + O([P—PI’). (11.4
.U‘( ) nu‘( ref) P/(Pref) [ ref] ZP’(Pref)[ ref] ([ ref] ) ( )
For the vapour phase, p depends strongly on P, and such an expansion would be unsuitable.
Instead, by Grand Equilibrium simulation,® consecutive simulation runs are conducted for
the liquid phase and the vapour phase, and for the vapour, an adaptive chemical potential
is imposed to ensure a convergence to thermodynamic equilibrium conditions:

e Given properties:® Temperature T and liquid composition x.

e First simulation: Liquid phase, isothermal-isobaric ensemble, at the temperature T
(in case of a mixture, with the specified composition x) and a reference’ pressure P,;.
Widom's test particle method or a different method for u is employed. Computed
quantities: U (Pus), P'(Pees), Pr(Pres); for a mixture: u,;(P.¢) and v;(P.y), for all i.

3arXiv:1703.08719 [cond-mat.soft], J. Chem. Phys. (submitted), 2017.

4This is discussed for a pure fluid here; for mixtures, an analogous treatment can be developed. There, the
first derivative of u;, for component i, is given by the partial molar volume v; (instead of 1/p). Widom’s
test particle method can be extended to compute v;; cf. D. M. Heyes, Mol. Sim. 8(3-5), 227-238, 1992.

>J. Vrabec, H. Hasse, Grand Equilibrium: Vapour-liquid equilibria by a new molecular simulation method,
Mol. Phys. 100(21), 3375-3383, 2002.

6As above, properties of the x components are denoted by vectors, i.e., X = (X1, X, ..., %), b = (U1, .-, thy),
and so on. The compositions x and y are given as mole fractions, i.e., in units of mol mol™!. Since the sum
over all mole fractions is ), x; = 1, only x — 1 independent quantities are given by specifying x; counting
T also, k intensive quantites are specified, in agreement with the Gibbs phase law.

"The reference pressure is not the actual saturated vapour pressure, which is not known in advance, but an
estimate. The method is quite robust; even P, = 0 works in many cases.
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11 Fluid Phase Equilibria

From these results, the vapour pressure P** and the chemical potential u®" at saturation,
for both phases, are known to be related by Eq. (11.4) or its generalization to mixtures;
therein, the higher-order terms are neglected.

e Second simulation: Vapour phase, pseudo-grand-canonical simulation, at the temper-
ature T, specifying a chemical potential u” which is calcluated, and varied, at runtime
by u” = u’'(P(q)) following Eq. (11.4), where P(q) = pT +1I(q)/3V is obtained® from
the instantaneous virial I1(q).

e Determined properties: Pressure P and vapour composition y.

The Grand Equilibrium method can be implemented both by MC and MD simulation. In
this way, a phase equilibrium can be simulated with relatively small homogeneous systems
(e.g., N =1000), considering the coexisting phases separately and avoiding the presence of
an interface in the simulation volume.

11.3 Interfacial Properties

e Phenomenological point of view: The phase boundary is a strictly two-dimensional
surface; thermal, chemical, and mechanical equilibrium conditions apply.

e Molecular point of view: Between adjacent fluid phases, a three-dimensional boundary
region exists; equilibrium conditions apply for average quantities, but instantaneous
deviations occur due to fluctuations.

Approach developed by Gibbs:® Quantities and relations from phenomenological thermody-
namics are applied to configurations and observables at the molecular level by introducing
a virtual, strictly two-dimensional microscopic dividing surface which partitions the volume
of the system into coexisting phases

V=V'+Vv" (11.5)

At a point far away from the interface (and, in particular, macroscopically), the coexisting
phases are characterized by their intensive properties w, P, and T which are related to
each other — and to all other intensive properties — by the equation of state. In the Gibbs
approach, thermodynamic properties of the two phases are formally identified with the
thermodynamic properties of homogeneous reference systems which have the respective
intensive properties and the respective volumes, i.e. V/ and V”.1°

By comparing extensive properties of the two-phase system with the homogeneous refer-
ence systems, interfacial excess quantities are obtained from!!

EE — E_E/_E//
St = §—-858-5"

8For a mixture, analogously, chemical potentials u; = ui(P(q)) are calculated on the fly from IT(q).
°J. W. Gibbs, On the equilibrium of heterogeneous substances, Transact. Connectic. Acad. Arts Sci. 3, 343, 1878.
Recommended literature: Chapter 2, J. S. Rowlinson, B. Widom, Molecular Theory of Capillarity, 1982 [3].
10The properties of the reference systems need not agree with the actual, microscopically observed behaviour
of the two-phase system; e.g., from the thermodynamic conditions, p’ is known, from which with V' we
obtain N’ = p’V’. The average number of molecules present in the liquid region of the two-phase system,
however, may deviate from this value. This deviation contributes to the adsorption.
"From Eq. (11.5), the excess volume is VE = 0.
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11.3 Interfacial Properties

NE = N—-N —-N’

AE = A—A - A, (11.6)
and so on. In this way, the established relations from phenomenological thermodynamics
can be applied to interfacial properties as well, since the right-hand side of these expressions
contains only properties of homogeneous systems. The microscopic dividing surface may

be positioned arbitrarily as long as it is parallel to the macroscopic dividing surface.'> The
specific excess number of molecules is known as the adsorption

NE NE NE NFE
= — — (—1,—2,...,—’< , (11.7)
S S S S

where s is the surface area. The surface tension is defined by [3]

8AE) (aA)
— | 2 — (2= , (11.8)
! ( os NE,T ds N,V/,.V/.T

where depending on the position of the dividing surface, A® varies, whereas y does not [3].

For a differential distortion of the volume V = £, 2 ¥, by din¥, = dIng;, = dA,,
din¥,=dlInq,, =dA,, and dIn¥, =dlIng;, = dA,, cf. Section 9.2 and therein Egs. (9.7)
to (9.10), the invariant volume boundary condition of the partial derivative corresponds to

dinV = din%, +dIn%,+dIn%, = dA, +dA, +dA, =0, (11.9)
while in case of two interfaces'® perpendicular to the z axis, the area s = 2%, %, varies by
dins = dIn¥%, +dIng, = dA,+dA, = —dA, = —dInZ,. (11.10)

With the tangential pressure P, = P** = PYY and the normal pressure P, = P** from

i1 ( 2A )
Vv\dng, _%,k#,N,T’

(11.11)

cf. Eq. (9.7), the variation of the free energy during this transformation is obtained as
dA = —P*VdA, —P?VdA, —P*VdA, = —V (P,—P)dA,. (11.12)
Inserting Eq. (9.15) and dA, = —d Ins, the surface tension can be computed as

dA _ V(P,—P)dlns _ %<Hn(q) B Ht(q)> _ {II,(q)—I1(q))
ds sdlns 2 \% \% NVT N S

y = , (11.13)

where IT, and II, is the virial in normal and in tangential direction.

12The exact values of V' and V" depend on the choice of dividing surface; accordingly, all extensive prop-
erties associated with the homogeneous reference systems and, hence, almost all excess properties of the
interface depend on this choice. This has the disadvantage that most quantitative statements, at least at
the microscopic level, need to be supplemented with a statement on how the dividing surface was defined.
However, it also has the advantage that the dividing surface can be positioned such that a particular excess
term becomes zero; e.g., the equimolar dividing surface, defined by Nt = 0, is frequently used.

13periodic boundary conditions are used in most cases; this results in an arrangement of the type vapour —
liquid — vapour in the simulation volume which then contains two parallel vapour-liquid interfaces.
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