
Test Case Generation for Rule-based TranslatorsMartin Horsh <martin.horsh�bawue.de>Universit�at StuttgartFakult�at Informatik, Elektrotehnik und InformationstehnikInstitut f�ur Formale Methoden der Informatikstudent researh projet (Studienarbeit) with internal doument nr. 1984
Contents

1 Introduction 2

2 Graph Transformation Systems and Unfoldings 32.1 Labelled Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2 Graph Transformation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.3 Context-dependent Plae/Transition Nets . . . . . . . . . . . . . . . . . . . . . . . 6
3 Infinite Unfoldings and Finite Prefixes 93.1 Net and Graph Grammar Unfoldings . . . . . . . . . . . . . . . . . . . . . . . . . . 93.2 Unfolding Only as Far as Neessary . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.3 Modular Approah to Unfolding and Coverability Cheking . . . . . . . . . . . . . 11
4 Implementing a Test Case Generator 134.1 The atg Exeutable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134.2 Combining Internal and External Modules . . . . . . . . . . . . . . . . . . . . . . . 144.3 Doument Proessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.4 Unfolding the Grammar with aunfold . . . . . . . . . . . . . . . . . . . . . . . . . 154.5 Proessing the Unfolded Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.6 Model Cheking Kit for Safe Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . 164.7 Building the Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.8 Drawing Graphs with NEATO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Exchange Formats for Nets, Graphs and Grammars 185.1 GXL as Doument Type for Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . 185.2 Appliation of the GXL Format to Petri graphs . . . . . . . . . . . . . . . . . . . . 195.3 Graph Transformation Exhange Language . . . . . . . . . . . . . . . . . . . . . . 205.4 PEP Format for Low Level Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Modification and Extension of AUGUR 22

7 Conclusion 23

1



AbstractGraph transformation systems are a model used for the spei�ation of programs as wellas onurrent or non-deterministi systems in general. This doument disusses translatorsthat modify elements of an input language in aordane with graph rewriting rules. Suhsystems have in ommon that their state spae is in�nite or very large. Instead of provingtheir orretness, programmers and designers usually have to observe their behaviour in a�nite set of test ases that an be seleted automatially or by hand. An implementation ofan automati test ase generator is presented, inluding a desription of data formats used forthe exhange of information on hypergraphs, graph grammars, Petri graphs and nets. Theode for the generator is based on AUGUR, a set of tools for proessing graph grammars. Asurvey on used omponents and modi�ations to the ode of AUGUR is given.
1 IntroductionThe development of omplex devies and programs for use in sensitive areas would be unoneivablewithout tools for testing large systems automatially that do not require exessive alulations tobe undertaken by hand. On an abstrat level, we will speify suh systems as non-deterministitranslators starting with an element of a ertain input language and modifying it step by step. Itis often useful to onsider graphs, instead of words, as elements of these languages, and the systemitself as a set of rules desribing allowed modi�ations of labelled graphs. This set is also alled agraph transformation system.There are several reasons to use labelled graphs as a model. In some ases, a program we wantto test does atually use labelled graphs as its input. This is typial for automati ode generatorsthat translate a model in a graphial notation suh as Simulink or Stateow to exeutable ode.Another appliation ours when the input language of a program is ambiguous. Most of the time,the ambiguity is resolved by the parser, whih guesses an arbitrary or the most probable resolutionand passes a representation of it to a omponent of the software that does the atual work. If thatomponent is to be tested, the natural approah is to exeute it on suh internal representationsinstead of possibly ambiguous words of the input language. Often enough, these representationsas generated by a parser are labelled graphs.With the abstrat notion of the system as a translator, one an follow an approah to seletingtest ases that is in a way analogous to ondition overage: if a system is represented by a set ofrules, we are interested in obtaining, for eah subset of this set, maybe up to a ertain size, anelement of the input language from the spei�ation of the system to whih all rules of the subsetan be applied. In [2℄, the foundations are laid out for an algorithm that takes the input languageof a translator and its transformation rules as an argument and attempts to onstrut a test asefor some of its rules. Suh a test ase generator was implemented as a part of this student researhprojet (Studienarbeit). It is based on the urrent version of AUGUR, a set of programs for theanalysis of graph transformation systems, and is alled atcg, the AUGUR test ase generator.The doument is organized as follows. Setion 2 introdues graph grammars, nets and unfold-ings. Setion 3 desribes on-the-y and sequential �rability heking as two general approahesthat an be followed, as well as some modi�ations and restritions that are useful to get rid ofin�nite state spaes. Setion 4 gives a survey on atcg and the interation between its internalomponents and external modules alled by them. Setion 5 explains what doument formats
atcg uses and desribes them briey, Setion 6 refers to the parts of the ode for AUGUR whererelevant modi�ations were made, and Setion 7 onludes the doument with some remarks onsoftware in general.
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Figure 1: Hypergraph representing a line of C ode
2 Graph Transformation Systems and Unfoldings

2.1 Labelled HypergraphsIn the hosen approah to test ase generation, we regard a translator as a proess that, step bystep, hanges and replaes omponents of an input graph in order to produe an element of itstarget language. Sine both input and output as well as intermediate states are represented bygraphs, the topi of this doument belongs to the domain of graph rewriting theory, used as a toolfor analyzing dynami systems. In [6℄ an elaboration of this theory is given that, together with [2℄,serves as the base for all of the following. More information is also provided by the Handbook ofGraph Grammars [14℄.
Definition (Label Structure)Let Σ be a set of labels. Then, Λ ⊆ Σ×N is a label struture for Σ. For an element (λ, arλ) ∈ Λ,we all arλ an arity value of λ.
Definition (Hypergraph)Let Λ be a label struture for Σ. A direted Λ-hypergraph is a tuple G = (V, E, c, λ), where V is aset of verties and E is a set of edges with V ∩ E = ∅, c : E → V∗ is a total onnetion funtionand λ : E → Σ a total labelling funtion that satis�es the arity ondition:

∀e ∈ E, n ∈ N : | c(e) | = n ⇒ (λ(e), n) ∈ ΛIntersetion and union of hypergraphs are de�ned omponentwise. For a vertex or edge d we write
d ∈ G ⇔ d ∈ (V ∪ E).When drawing a hypergraph, retangles are used to represent edges. Numbers an be anno-tated to the onnetions between edges and nodes to speify their order in the word c(e) ∈ V∗.Undireted hypergraphs have c : E → NV , thus mapping an edge to a multi-set instead of a tupleof verties. They are visualized just like direted hypergraphs, but without annotations of the typedesribed above.The arity values of a label λ indiate how many nodes are onneted to an edge labelled with λ.For instane, ode in a programming language an be rendered as a graph where labels are namesof operators and funtions. Then, arity values an orrespond to the number of arguments takenby an operator. Consider Figure 1, a model of a ode fragment in C. Here, we have (%, 3) ∈ Λ,thus edges labelled with the modulo operator onnet to three nodes: one for the return value andanother two for the arguments of the operator.For a label struture where all arity values are 2, aΛ-hypergraph orresponds to an edge-labelled(di)graph. In the following we will refer to direted Λ-hypergraphs as hypergraphs, whenever it isunderstood - or irrelevant - whih label struture we use.
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2.2 Graph Transformation SystemsWe will use graph transformation systems (GTS) to desribe the way a translator alters its input.Graph transformation systems are analogous to the sets of prodution rules that our in phrase-struture grammars, di�ering from them mainly in the aspet that they operate on graphs insteadof words.
Definition (Subgraph)Let Λ be a label struture and G = (V, E, c, λ), H = (VH, EH, cH, λH) be Λ−hypergraphs. H isalled a subgraph of G (H ⊆ G) i� VH ⊆ V , EH ⊆ E and

∀e ∈ EH : cH(e) = c(e) ∧ λH(e) = λ(e).If, in addition to this, every vertex v ∈ VH is onneted to at least one edge e ∈ EH, we all H thesubgraph of G generated by EH.
Definition (Hypergraph Morphism)Let Λ be a label struture and G = (V, E, c, λ), G ′ = (V ′, E ′, c ′, λ ′) be Λ-hypergraphs. A hyper-graph morphism ϕ : G → G ′ is a pair of funtions (ϕV : V → V ′, ϕE : E → E ′), suh that thefollowing property holds, where ϕ∗

V : V∗ → (V ′)
∗ is the homomorphism generated by ϕV .

∀e ∈ E : λ(e) = λ ′(ϕE(e)) ∧ ϕ∗

V (c(e)) = c ′(ϕE(e))A hypergraph morphism ϕ = (ϕV , ϕE) with injetive or surjetive omponents ϕV and ϕE isalso alled injetive or surjetive, respetively. For a surjetive morphism ϕ : H → G (ompareFigure 2) we write ϕ(H) = G. An injetive morphism ϕ : H → G is alled a math of H in G, abijetive morphism is alled an isomorphism. Two hypergraphsG andH for whih an isomorphismexists are isomorphi, denoted as G ∼= H. A math ϕ = (ϕV , ϕE) of H in G indiates that thereis a subgraph ϕ(H) ⊆ G isomorphi to H.
Definition (Graph Rewriting Rule)A graph rewriting rule is a tuple r = (I, L, R,ϕL, ϕR,∇). I, L and R are hypergraphs, where Istands for the ontext, L and R for the left and the right hand side of the rule; ϕL and ϕR aremathes of the ontext in L and R, respetively, and ∇ is a set of negative appliation onditions(NAC). The hypergraph L is generated by its edges, i.e. it does not ontain any isolated verties,and eah ondition ν ∈ ∇ is a math of L in a hypergraph ν(L) + eν that exeeds ν(L) by exatlyone edge eν, the inhibitor edge of ν. 4



A set of rewriting rules - all for the same label struture Λ - is also alled a Λ-graph transfor-mation system (GTS).
Definition (Enabled Match)Let r = (I, L, R,ϕL, ϕR,∇) be a rewriting rule and G a hypergraph in whih there is a math

ψ = (ψV , ψE) of L that an not be extended to inlude an inhibitor edge of r. That is, for no
ν ∈ ∇, there is a math ψ ′ = (ψ ′

V , ψ
′

E) of ν(L) + eν in G suh that, for all edges e in ν(L),
ψE(ν−1(e)) = ψ ′

E(e) holds. Then, ψ is an enabled math of r in G and the rule r is enabled in Gby the means of ψ.Where and whenever r is enabled in G, a rewriting step an our that replaes its left handside in G by its right hand side, just like applying a prodution rule in a phrase-struture grammardoes.
Definition (Rewriting Step)Let L = (VL, EL, cL, λL) and G = (VG, EG, cG, λG) be hypergraphs, ϕL = (ϕVL

, ϕEL
) and ϕR =

(ϕVR
, ϕER

) morphisms, r = (I, L, R,ϕL, ϕR,∇) a rule and ψ = (ψV , ψE) an enabled math of rin G. The rewriting step of r applied to G aording to ψ is a pair of hypergraphs (G,H) with
H = (VH, EH, cH, λH), also denoted as G ⇒r H, for whih there is a math ψ ′ = (ψ ′

V , ψ
′

E) of R in
H and the following assertions hold:1. R aounts for all additions to G.

H ⊆ G ∪ψ ′(R)2. Context is preserved, edges of L not mirrored in I are destroyed.
∀e ∈ EL : ψE(e) ∈ H ⇔ e ∈ ϕL(I)3. ψ and ψ ′ are in agreement, they desribe the same setion of the graph.
∀e ∈ I : ψE ◦ϕEL

(e) = ψ ′

E ◦ϕER
(e)4. Preserved edges are onneted to the same verties in G and in H.

∀e ∈ EG ∩ EH : cG(e) = cH(e)A rewriting sequene s = r1r2 · · · rn of rules ri is enabled byG i� there is a sequene of hypergraphs
(H1, H2, . . . Hn) suh that G ⇒r1

H and ∀1 < i ≤ n : Hi−1 ⇒ri
Hi. This is symbolized by

G⇒∗

s Hn.We say that G and H are isomorphi up to isolated verties - in symbols: G ≃ H - i� thegraphs generated by their edges are isomorphi. If G ≃ H, we an substitute G by H withoutenabling or disabling any rewriting sequenes, sine the left hand side of a rule must not ontainany isolated nodes.
Definition (Graph Grammar)Let Λ be a label struture. A Λ-graph grammar is a pair G = (P, S), where P is a Λ-graphtransformation system and S is a Λ-hypergraph alled the start graph. The union of G and a GTS

P ′ is a graph grammar again: G ∪ P ′ = (P ∪ P ′, S).In a graphial representation, the left and right hand sides of a rewriting rule are displayed ashypergraphs with barred inhibitor edges eν attahed to the left hand side. The mathes ϕL and
ϕR are reeted by asribing idential numbers to orresponding items.Consider Figure 3, taken from [2℄. It shows a grammar that generates arithmeti expressions.In this example, numbers are annotated to the edges labelled with +. Suh attributes an beinterpreted 1) as a higher level notation supported by higher level graph grammars only, 2) as anabbreviation for additional edges that ontain these attributes as labels - as is done in Setion 4.7- or 3) as a part of the label (whih multiplies the number of rules in the grammar).The language produed by a graph grammar ould, for example, be de�ned in analogy withphrase-struture grammars by delaring some of the labels as non-terminal and the others as5
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65Figure 3: A graph grammar that generates arithmeti expressionsterminal. In most ases, however, graph grammars are not used with the intention of reasoningabout the languages they generate. Instead, we are more interested in knowing what rules an beapplied in whih order, how they depend on eah other and what intermediate states an our.In a ertain sense, we will onsider all labels as terminal.
Definition (Test Case)Let G0 = (S, P0) be a graph grammar alled the generator, P1 be a GTS alled the translator and

G = G0 ∪ P1 have the set P = P0 ∪ P1 of prodution rules. Let PT ⊆ P1 be a target subset of thetranslator. For S ⇒∗

s C with s ∈ P∗0, we all C a test ase of PT i� it enables a rewriting sequene
s ′ ∈ P∗1 in whih every element of PT ours at least one.An example for a translator is given in Figure 4; it ontains simpli�ation rules for arithmetiexpressions from the generating grammar in �gure 3. In this example, the translator is thereforean epxression optimizer. Figure 13 in Setion 4 shows a test ase for the rule KillUselessFuntion.
2.3 Context-dependent Place/Transition NetsPetri nets are often used to represent networks and onurrent proesses. They were introduedby Carl Adam Petri in his dissertation [11℄, whih was the starting point of what is today a largesegment of theoretial omputer siene. This doument an only mirror parts of this theory thatare immediately relevant for the task of �nding test ases for a GTS. An introdution to Petri nettheory an be found in [12℄ or [13℄.We will follow [2℄ in onsidering a generalized form of Petri Nets that allows read and inhibitorars, whih reet the behaviour of graph grammars in a natural way. For suh nets, we use thenotion of "ontext-dependent nets" with positive and negative "ontext relations" that Montanariand Rossi introdued in order to mirror the e�ets ontexts and negative appliation onditionshave in graph rewriting theory [9℄.A plae/transition net is essentially an automaton with a set of plaes, eah of whih anontain a number of tokens, with transitions operating on them. When a transition is �red, i.e.exeuted, the number of tokens in its neighbouring plaes hanges depending on the ars thatonnet them.

Definition (Context-dependent Place/Transition Net)Let S be a set of plaes and T a set of transitions with S ∩ T = ∅ and let b, f, ρ : T × S → N6
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Definition (Firing of Transitions)Let N = (S, T, b, f, ρ, χ) be a CPN and M a marking of N. A transition t ∈ T is enabled by Mwhenever

∀s ∈ S : b(t, s) + ρ(t, s) ≤M(s) < χ(t, s).I� t is enabled by M, it an be �red, an event upon whih t replaes M by the marking
M ′ : S → N, s 7→ M(s) + f(t, s) − b(t, s),in symboli notation: M →t M

′.Intuitively, �ring a transition t involves the following steps: 1) for eah inhibitor ar withweight χs from a plae s to t, assert that s ontains less than χs tokens. 2) for eah write7
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bs tokens from s. 3) for eah read ar with weight ρs between t and a plae s, assert that sontains at least ρs tokens. 4) for eah write ar with weight fs from t to a plae s, add fstokens to s. 5) ommit the e�ets of the transition if all assertions have been on�rmed.In a graphial representation, transitions are visualized as �lled retangles, plaes as large irlesand tokens as small �lled irles. We draw write ars as arrows, read ars as undireted dashedlines and inhibitor ars as dashed lines with a rossed irle at the end (an example is given inFigure 5). As long as nothing di�erent is said, we suppose that all ars in a CPN have weight 1,i.e. that b, f, ρ and χ are funtions from T × S to {0, 1}.Typially, suh a diagram does not only show a P/T net, but also a distribution of tokensover the net. In most ases, the marking indiated that way is regarded as the initial marking ofthe net, and the attention is direted to the transitions that are enabled at this marking and topossible future markings of the net.

Definition (Reachable Marking)Firing sequenes and the transitive losure →∗ of → are de�ned for CPN the same way as rewritingsequenes and the relation ⇒∗ were de�ned for graph grammars in Setion 2.2. Let N be a CPNandM0 its initial marking. A funtionM is alled a reahable marking of N if and only if it is amarking of N and there is a �ring sequene σ ∈ T∗ enabled in M0 suh that M0 →∗

σ M.
Definition (Safe Nets, Occurrence Nets and Petri Nets)For k ∈ N, a marking M with ∀s ∈ S : M(s) ≤ k is k-safe and, if k = 1, simply safe. A CPNwith initial marking is alled (k-)safe, i� all of its reahable markings are (k-)safe. A CPN withoutyles of write ars is ayli, and a safe ayli CPN with with ∀s ∈ S : •s ≤ 1 is also alled anourrene net. A CPN without read and inhibitor ars is a Petri Net.Without loss of generality, the initial marking of an ayli (1-)safe CPN has the property thatexatly the plaes with an empty preset ontain a token, while the others are unmarked. In a

k-safe CPN, we an assume without loss of generality that
s ⊸ t =⇒ χ(t, s) − 1 ≤ k + b(t, s) − f(t, s)for all plaes s and transitions t (otherwise the inhibitor ar is redundant) and that all write, read,and inhibitor ars have a weight lower or equal to k. Safe CPN are a speial ase of ontext-dependent ondition/event nets as developed in [9℄. A safe CPN an be transformed info a safePetri net eÆiently without a�eting its reahable markings and enabled �ring sequenes (ompareSetion 3.3). 8



Definition (Dependency between Transitions)Let N be an ourrene net and S its set of plaes. Let T be the transition set of N. The ausalityrelation (· < ·) ⊆ T × T is the least transitive relation suh that
∀t, τ ∈ T : t• ∩ ( •τ ∪ τ) 6= ∅ ⇒ t < τIf t ∈ τ, this means that τ is ausally dependent on t in the sense that in every enabled �ringsequene of N the transition τ an only our after t if at all, beause t is the only transition thatan mark the preset or the ontext of τ. The set of transitions on whih τ depends is also alled theause ⌊τ⌋ of τ. When dependeny between transitions is visualized, we draw a minimal generatingsubset of < instead of the whole relation, beause additional ars make the representation harderto understand and are just redundant (the ausality relation for the example CPN is ontained asa part of Figures 9 and 12).

Definition (Conflict between Transitions)Let t and τ be two transitions of the CPN N. We say that t and τ are in (symmetri) onit t#τi� •t ∩ •τ 6= ∅. For t#τ ∨ t ∪ •τ 6= ∅ the asymmetri onit t ր τ is de�ned.Two transitions with ommon elements in their preset are in onit, beause in a safe markingthat enables both, �ring one of the transitions disables the other one. If t and τ are in asymmetrionit, no safe marking enables the sequene τt, i.e. they must be �red in the order indiatedby the relation ր or with additional transitions inserted in between to restore the tokens. Inan ourrene CPN without inhibitor ars, a set T ′ of transitions an be �red if and only if theasymmetri onit relation has no yles of elements of its ause ⌊T ′⌋ = ∪t∈T ′⌊t⌋.Finding a possible �ring order of transitions in an ourrene CPN with inhibitor ars or-responds to the task of �nding a on�guration, whih is de�ned formally in [5℄ and appliedto this question in [1℄ and [2℄. For our purposes, a on�guration (· <C ·) ⊆ T × T of a CPN
N = (S, T, b, f, ρ, χ) is a relation suh that (· < ·)∪ (· <C ·) is ayli and for all s ⊸ τ, where ′s is(the only) element of •s:

τ<C
′s ∨ ∃t ∈ s• : t<C τIf s has an empty preset, it is initially marked and only the seond option is allowed, whihorresponds to the intuition that τ an only be �red after the token has been removed from s.The diÆulty of that problem is due to the fat that even in an ourrene net we an not tell inadvane if for s ⊸ τ, τ should be �red before s is �lled or after s is emptied.

3 Infinite Unfoldings and Finite Prefixes

3.1 Net and Graph Grammar UnfoldingsCausality and onit an be applied muh easier to ourrene nets than to CPN in general, soin order to use these properties for analyzing a CPN, we are interested in obtaining an ourrenenet that is in some sense equivalent to it. This is alled an unfolding, a onept introdued byMMillan in [8℄.An unfoldingN ′ of a CPNN is an ourrene net that enables a set of �ring sequenes ongruentwith the set of �ring sequenes allowed by N. This is ahieved by opying transitions of N, possiblyin�nitely often, and the ongruene of �ring sequenes is de�ned by the means of the surjetivefuntion from the transitions ofN ′ to the transitions ofN that maps eah opy to the orrespondingoriginal. An algorithm for unfolding nets is presented in [5℄.The notion of unfoldings an be extended to graph grammars. Unfolding a graph grammar Gyields a Petri graph P = (G,N) where G is a hypergraph and N is a ontext-dependent ourrenenet. The edges of G are idential with the plaes of N, and the initial marking of N orresponds9
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E E E EEFigure 7: Unfolding of the graph grammar from Figure 6to the start graph of G. The transition set of N is mapped to the ruleset of G suh that the �ringsequenes enabled by the initial marking of N are ongruent with the rewriting sequenes enabledby the start graph of G. The marking of P is the subgraph of G generated by the marked edges,i.e. the plaes marked in N. The N omponent of the Petri graph an also be transformed to a safePetri net as desribed below. Compare [6℄ for further information on unfolding graph grammars.In a visualization, we display the CPN and the hypergraph together, in a way suh that edgesare also used as plaes and an ontain tokens. Consider the graph grammar of Figure 6. Figure 7shows a part of its unfolding. It is generated indutively by beginning with the start graph of Gand attahing an instane of a rule, i.e. a transition that orresponds to it, to every math (enabledor not) of its left hand side that is found in the graph. Bakward write ars orrespond to theedges deleted by an instane of the of the rule, forward write ars to the edges it reates, readars to its ontext and inhibitor ars to the mathes of left hand sides extended by inhibitor edges

ν(L) + eν in the graph.In almost all ases, the unfolding of a graph grammar is in�nite, whih makes it impossible tooperate on the Petri graph as a whole. This is, �rst of all, due to the fat that translators areusually built for in�nite languages and the unfolding of the generator-translator-system inludesthe entire input language of the translator. One rule similar to that shown in Figure 6 is enoughto generate a Petri graph of in�nite size.In the few ases of translators for �nite languages, orretness an be veri�ed by having themtranslate a omplete ditionary or, if that is impossible, whih means that their input language isstill very large, the unfoldings are even larger and an not be proessed either. Therefore, somerestritions are neessary to allow for an algorithmi analysis of their behaviour.
3.2 Unfolding Only as Far as NecessaryFor �nding a test ase, a �nite pre�x of the unfolding, i.e. a onneted subgraph that inludesthe start graph, is suÆient, supposed that the start graph atually enables a rewriting sequenethat inludes eah of the target rules. However, we do not know now in advane how large theunfolding must be for our purpose, and in general, there is no way to deide whether a test asean be found or not (a graph grammar an emulate a Turing mahine). A test ase generator musttherefore onstrain the size of the unfolding and eventually give up if it an not �nd a result.10
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t7Figure 9: Causality relation with a possible on�guration for �ring t5 and t7Restritions on the size of the Petri graph alone are insuÆient, beause a �nite net an stillhave an in�nite state spae. Consider the Petri graph of Figure 8 that orresponds to the mitosisrule applied to the start graph, where arbitrarily many tokens an be �red into the right edge.This problem an be overome by adding a dummy plae, intially marked with one token, to thepreset of every transition that does not redue the marking of any other plae [2℄. In the resultingPetri graph, there is no transition that an be �red more than one. Sine in an unfolding, everyplae s has | •s |≤ 1, we obtain a safe Petri graph.A test ase generator an unfold a grammar step by step aording to breadth �rst searh orsome kind of heuristis and every time an instane of a target rule is inserted to the Petri graph,searh for a on�guration that allows this transition and at least one instane of all other target rulesto be �red. This way of attaking the problem an be referred to as on-the-y �rability heking,beause there are interleaving steps of grammar unfolding and attempts to �nd on�gurations for�ring transitions.When there are few interations between the restritions imposed by inhibitor ars, �nding aon�guration or proving it impossible is easy, as in the ase of the net from Figure 5, where <C anbe onstruted independently for the inhibitor ars leading to t7 and t5. One of the two possiblesolutions is displayed in Figure 9.In an appendix to [2℄, some ideas are presented onerning the searh for on�gurations inmore ompliated ases. For the implementation, a di�erent approah was hosen, whih will bedesribed in the following setion.
3.3 Modular Approach to Unfolding and Coverability CheckingInstead of sanning for test ases on the y while the unfolding of the grammar is onstruted, itis also possible to unfold the grammar �rst and the CPN obtained as a part of the resulting Petrigraph afterwards. Although suh a modular approah is, in priniple, by no means more eÆientthan a monolithi one (rather the other way round), it allows the exploitation of existing softwarefor the two major parts of the problem: 1) to onstrut a �nite pre�x of the unfolding, and 2) todetet a �ring sequene that ontains instanes of all target rules. This approah an be referredto as sequential �rability heking beause it onsists of two distint steps.The �rst step of the task an be delegated to an external GTS unfolder. For this purpose, theunfolding must be limited a priori. In [2℄, two kinds of restritions are proposed. They have to be11



ombined in order to get a �nite ourrene graph:� depth restriction k:a rule r is unfolded and a transition t added to the graph, if in the extended graph, notransitions t1, . . . , tk would exist suh that t1 < · · · < tk < t, where < is the ausalityrelation over the CPN omponent of the Petri graph.� width restriction w: every instane of the rule is unfolded exatly w times.In our ase aunfold, a part of AUGUR, is used to reate an unfolding pre�x of width 1 and variabledepth. NAC are not proessed and must be evaluated separately (ompare Setion 4).For the seond step, the Model Cheking Kit an be invoked to hek overability properties ofsafe Petri nets [15℄. Before this is possible, the CPN must be transformed into a Petri net, whihis aomplished by introduing a omplement plae for every plae of the original net. This ispossible beause in the original net all plaes ontain, for all reahable markings, either exatlyone token or none. In general, omplementation as desribed below works for all k-safe nets. Atthis stage of the problem, we an be sure the CPN is even (1-)safe, supposed that dummy plaeswith an initial marking of 1 have been added to all transitions with empty presets.
Construction of a Petri net equivalent to a safe CPNLet N = (S, T, b, f, ρ, χ) be a k-safe CPN with funtions b, f, ρ, χ : T × S→ {0, . . . , k} and the initialmarking M0. Let S ′ onsist of all s ∈ S and a new plae �s for every s. We de�ne ∀s ∈ S, t ∈ T :

M ′

0(�s) = k −M0(s) and:� b ′(t, s) = b(t, s) + ρ(t, s) ∧ f ′(t, s) = f(t, s) + ρ(t, s)� s ⊸ t ⇒ b ′(t, �s) = k − χ(t, s) + 1 ∧ f ′(t, �s) = b(t, s) − f(t, s) + k− χ(t, s) + 1� s 6⊸ t ⇒ b ′(t, �s) = f(t, s) ∧ f ′(t, �s) = b(t, s)We all N ′ = (S ′, T, b ′, f ′, 0, 0) the Petri net equivalent to N, where 0 is the onstant zero funtion,and M ′

0 its initial marking. The invariant M(s) +M(�s) = k holds by indution for all reahablemarkingsM of N ′ and all s ∈ S, sine for all transitions t ∈ T :
(f ′(t, s) − b ′(t, s)) + (f ′(t, �s) − b ′(t, �s)) = 0In the modi�ed net, for a transition t and s ⊸ tthe �ring ondition is b ′(t, s) ≤M(s) ∧ b ′(t, �s) ≤M(�s) or

b(t, s) + ρ(t, s) ≤M(s) ∧ k − χ(t, s) < k−M(s),whih orresponds to the �ring ondition for N. Firing a transition a�ets the marking of s equallyin both nets, whih means that N and N ′ enable the same �ring sequenes.Atually, it is suÆient to omplement those plaes that have outgoing inhibitor ars. Look atFigure 10, whih shows the Petri net equivalent to the CPN in Figure 5, to see how omplementationworks for (1-)safe nets: read ars replaed by write-bak ars and omplementary plaes addedfor p1 and p6. Finally, inhibitor ars are substituted with write-bak ars to the omplementaryplaes. In addition to this, dummy plaes were inserted to the presets of t1 and t3 (the originalnet from Figure 5 is not safe).The Petri net obtained that way is equivalent to the original net in the sense that both of themenable the same �ring sequenes, and that a �ring sequene applied to both graphs leads to equalmarkings of all plaes that are de�ned in both nets. In [9℄, a di�erene is pointed out: transitionsthat are not in onit in the ontext-dependent net an be in onit in the modi�ed net. Thisdi�erene need not be onsidered for our appliation, but an be relevant in other ases.12
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Figure 10: Safe Petri net orresponding to the P/T net from Figure 5Now, a test ase an be omposed. For this purpose, we introdue an additional target plaefor eah target rule and add it to the postset of every instane of the rule. For the resulting net, aoverability heker is asked for a �ring sequene σ that overs the target plaes, that isM0 →∗

σ Msuh that for all target plaes sr : M(sr) ≥ 1. If suh a σ is found, a solution to our problem anoften be obtained by �ring the �rst, generating part of the sequene. The subgraph generated bythe marking at this point enables a sequene of transitions that inludes instanes of all targetrules, whih makes it a valid test ase.However, it may happen that for σ = t1t2 · · · tn there are 0 < i < j ≤ n suh that ti orrespondsto a translating and tj to a generating rule. In suh a ase one an try to serialize the sequeneby rearranging some of the transitions, whih does not always work and may be impossible evenif a valid �ring sequene really exists (ompare Setion 4.7).
4 Implementing a Test Case Generator

4.1 The atcg ExecutableTogether with this doument, the implementation of a test ase generator for translators repre-sented by GTS is released. It is based on ode for the GTS analyzer AUGUR and therefore alled
atcg, the AUGUR test ase generator. The exeutable �le takes three arguments:� gts: union of generating grammar and translating GTS� depth: depth of the generated pre�x of the unfolding� target: a set of target rewriting rulesIn addition to this, some options an be passed to the program:

-a diretory ontaining AUGUR binaries
-c diretory ontaining hek exeutable (Model Cheking Kit)
-d do not unfold the graph transformation system
-e diretory ontaining neato exeutable
-f �re up to level (normally 0)
-g output �le for the unfolding (petri graph in GXL format)
-h display help
-n output �le for the unfolding (PEP low level net format)
-o output �le for the test ase (GXL format)13
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Figure 11: Program ow of the implemented test ase generator
-p output �le for a visualization as postsript
-v promulgate version number
-w working diretory (must have writing permission)Note that atcg alls AUGUR binaries instead of invoking them by funtion alls. This allowsa user to swith between di�erent versions of AUGUR or to replae it by an equivalent set ofexeutable �les. The aunfold binary is however required to support the -cc option, whih inreasesits performane eminently, but is missing in older versions.If option -d is seleted, the program will assume that the unfolding is already up to date.By default, if gts.xml is the �le ontaining the GTS, the unfolding is loaded from gts.unf.xml. Adi�erent loation an be indiated with option -g.The rules in gts have attributes alled their levels (ompare Setions 4.5 and 5.3). We areinterested only in exeutions where rules are applied in inreasing order of levels. The value ̥passed together with option -f indiates the level where the translator begins. Rules with levelslower than ̥ are onsidered part of the generating grammar, whereas rules with levels greater orequal to ̥ are part of the translating GTS.

4.2 Combining Internal and External ModulesA modular struture ombining both the exeution of ode that belongs to atcg and alls toexternal binaries was hosen. A survey on their interation is given in Figure 11.Given its three mandatory arguments gts, depth and target, atcg tries to �nd an element - ahypergraph - in the soure language of the translator that allows, among others, the target rules tobe applied during the proess of translation. To ahieve this, it performs essentially the followingsteps:1. produe an unfolding of the gts, ignoring NAC, with a depth given by the user2. assign levels to transitions of the Petri graph, i.e. the unfolding of gts3. add dummy plaes and target plaes to the Petri graph4. san for mathes of NAC and reate omplement plaes with write-bak ars14



5. hek whether the target plaes are overable� no? abort� yes? load a �ring sequene (witness set) that overs the plaes6. serialize the �ring sequene (abort if that is impossible)7. build the test ase by �ring the generating part of the sequeneThe internal and external modules implementing these steps will be desribed in the followingpassages. Compare [7℄ for a manual to AUGUR and its omponents and Setion 6 of this doumentfor a survey on the modi�ations and additions made to the ode of AUGUR in order to obtaininternal omponents of the test ase generator.
4.3 Document ProcessingSeveral data formats must be proessed:� Graph Exhange Language GXL 1.0.1 (read and write)� the variant of GXL used for Petri graphs (read and write)� Graph Transformation Exhange Language GTXL (read)� the PEP ll net format for low level Petri nets (write)For a desription of these doument types read Setion 5 or, respetively, the literature indiatedthere. The library libxml2 is used for parsing and writing the XML formats (all exept for thePEP ll net format).
4.4 Unfolding the Grammar with aunfoldThe tool aunfold is a part of AUGUR that an onstrut the k-depth approximated unfolding of agraph grammar [7℄. Its input is a GTXL �le and its output a Petri graph in GXL format (ompareSetion 5). The all made to aunfold is:
aunfold -cc gts.xml gts.unf.xmlThe width restrition from Setion 3.3 is not supported diretly. If all rules are to be unfolded
w times for the same math, this an be ahieved by plaing an additional hyperedge with a speiallabel in their ontext and reating w edges with that label in the start graph. NAC are ignoredby aunfold and proessed later on by a method of atgc.
4.5 Processing the Unfolded GrammarSome modi�ations are neessary before the net produed by aunfold as a part of the grammarunfolding an be passed on to the model heker for safe Petri nets. We begin by adding levelvalues to transitions.In general, the level of a transition is a level of the orresponding rule. An additional require-ment is raised by the fat that we want to be able to serialize �ring sequenes of the net, i.e. itshould be possible to �re the transitions of level 0 �rst, then the transitions of level 1, and so on.Speaking in terms of [2℄, we want to ensure that the model heker returns a sequene "ompatiblewith the grammar ordering", whih is a neessary ondition for obtaining a test ase.15
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Figure 12: Levels and ausality relation for the CPN from Figure 5For that purpose we demand that the level of a transition t is larger than all levels of transitionsin ⌊t⌋. Instanes of rules that operate on various levels are always given the least value ompatiblewith this requirement. If that is impossible, the transition is removed together with the wholesubgraph of the Petri graph that depends on it.Suppose that in Figure 12, the transitions t1, t2, t4, and t5 have level 0, t3 and t8 have level
1 and the others have level 2. Then, in the net passed on to the model heker, transition t8 willno longer appear. For the implementation, a simple DFS an be used. However, even after theremoval of suh transitions, the net may enable non-serializable �ring sequenes due to restritionsimposed by inhibitor ars.The next step reates additional plaes. As desribed in setion 3, every transition with anempty preset is onneted to a dummy plae in order to guarantee that the net is safe. With thismodi�ation we know that the P/T net omponent of the unfolding is an ourrene net. For eahtarget rule, an additional target plae is inserted to the net, and every time we �nd an instaneof that rule in the net, we add that plae to its postset. (Although the target plaes an have anin-degree greater than one and be marked with more than one token, this does not turn out to bea problem.)As aunfold ignores negative appliation onditions, atcg proesses them in an additional step.For every rule r = (I, L, R,ϕL, ϕR,∇) and for all ν ∈ ∇, all mathes of ν(L) + eν in the Petrigraph are extended by an inhibitor ar leading from eν to the instane of r. The CPN is taitlystored as the equivalent Petri net (read ars are represented by write-bak ars and inhibitor arsby write-bak ars to a omplementary plae).
4.6 Model Checking Kit for Safe Petri NetsThe Model Cheking Kit is a olletion of programs for modelling �nite state systems that areinternally represented as safe Petri nets [15℄. Among many other formats, it an read a Petri netin PEP format (Setion 5.4) and hek whether some of its plaes an be overed. The all madeto its binary �le check is the following:
check pep:mcs-reach gts.unf.ll_net formula | tail -n 2 > witness_setThe formula is a onjuntion over the target plaes in plain text format. The last two lines ofthe output are stored in a speial �le. If the plaes an be overed, they ontain what is alled thewitness set , i.e. a �ring sequene that overs them.
4.7 Building the Test CaseIn Figure 13, you an see a rendering of the test ase generated for the target rule KillUseless-Funtion. The rules of the generating grammar, i.e. those that onstrut the operator Op, have16



Figure 13: Test ase enabling the target rule KillUselessFunction
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Figure 14: Net with non-serializable �ring sequene {t2, g3, t1}been applied, while the target rule that belongs to the translator has not. In this ase, it is noproblem to serialize the witness set, beause it is learly possible to onstrut a useless funtionwithout applying any rules from the arithmeti expression optimizer.Note that here, the test ase does not orrespond exatly to the version of the rules given inSetion 2.2 and in [2℄. Attributes, suh as type and order of operators, the latter of them neessaryto avoid yles, had to be represented by edges with speial labels. The tehnial reason for this isthat AUGUR does not evaluate any higher level notation, but requires plain, basi GTS as de�nedabove. For Figure 13 this means that Op represents an operator, Sigma its type (addition) andOrd1 desribes it as �rst order, i.e. not requiring the evaluation of any other operator.If the witness set returned by the model heker does not onsist of transitions with mono-tonously inreasing levels, atcg trys to rearrange them aordingly. However, suh an attemptneed not be suessful.Consider the safe Petri net of Figure 14 and imagine that transitions labeled with g belong tothe generator and have level 0, whereas those labeled with t are instanes of translating rules andhave level 1. Suh a net an atually our at this stage, beause in the orresponding CPN (if weimagine that plaes with an in-degree greater than one are omplementary plaes) no transition oflevel 0 depends on a transition of level 1.Suppose we want to �nd a �ring sequene for t1 and t2. A valid solution would be g1g2t1t2.However, a model heker will probably return the shorter �ring sequene t2g3t1. This sequene isenabled by the initial marking of the net and overs the target plaes, but an not be serialized. Theorret solution to the problem is missed (solutions that the program fails to detet for this reasonour, however, far less frequently than solutions missed due to depth and width restritions).
17
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4.8 Drawing Graphs with NEATONEATO is a program that layouts graphs "by onstruting a virtual physial model and runningan iterative solver to �nd a low-energy on�guration" [10℄. A graph intended to be drawn byNEATO must be given in the dot format like the following example:
graph "out"

{

_2 [shape=circle, width=.15, label="1"]

_3 [shape=circle, width=.15, label="2"]

_4 [shape=circle, width=.15, label="3"]

_5 [shape=circle, width=.15, label="4"]

_6 [shape=circle, width=.15, label="5"]

_8 [label="Op", shape=box]

_8 -- _2[taillabel="0", labelangle=-35, labeldistance=1]

_8 -- _3[taillabel="1", labelangle=-35, labeldistance=1]

_8 -- _4[taillabel="2", labelangle=-35, labeldistance=1]

_8 -- _5[taillabel="3", labelangle=-35, labeldistance=1]

_8 -- _6[taillabel="4", labelangle=-35, labeldistance=1]

_9 [label="Res", shape=box]

_9 -- _6[taillabel="0", labelangle=-35, labeldistance=1]

} The result an be seen in Figure 15. Writing a hypergraph in dot format is urrently handledby exporting it in GXL as if it were a Petri graph and then alling the pg2neato binary inludedin AUGUR.
5 Exchange Formats for Nets, Graphs and Grammars

5.1 GXL as Document Type for HypergraphsTheGraph Exhange Language GXL is an XML doument type used for graphs and hypergraphs.Throughout AUGUR and also in atcg, the GXL DTD verion 1.0.1 is used [7℄, whih was developedby Andy Shuerr and others in 2002. An earlier version of GXL is also desribed in [16℄. Thefollowing example orresponds to the graph from Figure 15.
<?xml version="1.0"?>

<gxl><graph hypergraph="true" edgemode="undirected">18



<node id="1"/><node id="2"/><node id="3"/><node id="4"/><node id="5"/>

<rel><attr name="label"><string>Op</string></attr>

<relend target="1" startorder="0"/>

<relend target="2" startorder="1"/>

<relend target="3" startorder="2"/>

<relend target="4" startorder="3"/>

<relend target="5" startorder="4"/>

</rel>

<rel><attr name="label"><string>Res</string></attr>

<relend target="5" startorder="0"/>

</rel>

</graph></gxl>Most of this is straightforward: verties are represented by node tags, hyperedges by rel andonnetions between them by relend tags. Labels are given by embedding a string ontent intoan attr tag.However, it may be onfusing that the example says edgemode="undireted", although thehypergraph it represents is learly direted, as an be seen from the startorder values. These indi-ate the real order of onnetions between a hyperedge and the nodes attahed to it. Hypergraphsmust be desribed as undireted in any ase, possibly beause some programs would otherwisetry to orient the onnetions. An undireted hypergraph is distinguished from a direted one byleaving the startorder value away.For normal graphs, write hypergraph="false" and use
<edge id="..." from="..." to="..."> ... </edge>instead of rel tags.
5.2 Application of the GXL Format to Petri graphsPetri graphs ombine hyperedges and verties from hypergraphs with plaes and transitions fromPetri nets. AUGUR applies the GXL format to Petri graphs as well, treating plaes as hyperedgesand transitions as verties. While plaes and edges oinide by de�nition, a speial notation isintrodued in [7℄ to distinguish transitions and plaes.In this variant of GXL, verties and hyperedges get additional attributes. In partiular, all edgesare assigned an initial marking, whih is 1 if they are part of the start graph and 0 otherwise. Arsof the Petri net are also annotated to the hyperedges by the means of additional onnetions thatlead to transitions. The resulting elements look as in the following example:
<!-- vertex -->

<node id="_126"><attr name="vertex"/></node>

<!-- hyperedge -->

<rel id="_141"><attr name="label"><string>Sigma</string></attr>

<attr name="initial_marking"><int>0</int></attr>

<relend target="_123" role="vertex" startorder="0"/>

<relend target="_144" role="postset">

<attr name="weight"><int>1</int></attr>

</relend>

<relend target="_164" role="preset">

<attr name="weight"><int>1</int></attr>19
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</relend>

</rel>

<!-- transition -->

<node id="_197"><attr name="transition"/>

<attr name="rule"><string>KillUselessFunction</string></attr>

</node>

5.3 Graph Transformation Exchange LanguageAn XML doument type for graph grammars - rather than GTS, beause start graphs are inluded- is the Graph Transformation Exhange Language GTXL, whih is also the format aunfoldand other exeutables require as input.As the version of GTXL supported by AUGUR does not support negative appliation ondi-tions, a modi�ed doument type de�nition had to be used for atcg. Essentially, the proposal from[16℄ for speifying NAC was followed and inserted into the version supported by AUGUR, in a waysuh that AUGUR binaries ignore the onditions and proess the rest orretly.A rewriting Rule onsists of a LHS, a RHS and a Mapping between from verties of the leftto those of the right side. Both sides of the rule are given by a RuleGraph element, the left oneof whih an inlude one or more GraphCondition elements representing the negative appliationonditions. A GraphCondition inludes another RuleGraph with exatly one hyperedge, theinhibitor edge, and a Mapping from nodes in the left hand side to the nodes onneted to theinhibitor edge. The rule with inhibitor from Figure 16 looks as follows in GTXL:
<Rule id="IncrementE">

<LHS><RuleGraph>

<Graph hypergraph="true" edgemode="undirected">

<node id="1"/><node id="2"/><node id="3"/>

<rel><attr name="label"><string>E</string></attr>

<relend target="1"/><relend target="2"/><relend target="3"/>

</rel>

</Graph>

<GraphCondition>

<RuleGraph>

<Graph hypergraph="true" edgemode="undirected">

<node id="2"/> <node id="4"/>

<rel><attr name="label"><string>F</string></attr>

<relend target="2"/><relend target="4"/>

</rel> 20
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</Graph>

</RuleGraph>

<Mapping><MapElem from="2" to="2"/></Mapping>

</GraphCondition>

</RuleGraph></LHS>

<RHS><RuleGraph>

<Graph hypergraph="true" edgemode="undirected">

<node id="2"/><node id="5"/>

<rel><attr name="label"><string>F</string></attr>

<relend target="2"/><relend target="4"/>

</rel>

</Graph>

</RuleGraph></RHS>

<Mapping><MapElem from="2" to="2"/></Mapping>

</Rule>Exept for the GraphCondition element, this is also understood by aunfold. For the taskof test ase seletion, we need an additional element to speify whether a rule belongs to thegenerating grammar or to the translating GTS, or more generally, for a generator with level 0 and
n sequentially exeuted translators with levels from 1 to n, in what levels a rule an be applied.For this purpose one or more attr tags with embedded int values must be provided:
<Rule id="RULEID">

<attr name="level"><int>0</int></attr>

<attr name="level"><int>2</int></attr> ...

</Rule>This attribute is ignored by other programs as well.The AUGUR exeutable rules2LaTeX reates LATEX input (.tex) out of a graph grammargiven in GTXL - ignoring negative appliation onditions.
5.4 PEP Format for Low Level Petri NetsPEP low level nets are a simple format for Petri nets introdued by the authors of the PEP tool[4℄. It is human readable and easy to proess. Look at the net from example 17 in PEP format:
PEP

PTNet

FORMAT_N

%

PL % list of places

1"p1"M2 % place p1 initially marked with 2 tokens

2"p2" % place p2 initially unmarked

%

TR % list of transitions

1"t1" 21



2"t2"

%

TP % list of arcs leading from transitions to places

1<2w2 % arc with weight 2 leading from t1 to p2

PT % list of arcs leading from places to transitions

1>1 % arc from p1 to t1

2>2 % arc from p2 to t2Instead of the PEP format one an also use the XML doument type for Petri nets, the PetriNet Modelling Language (PNML), that was reently integrated into the Model Cheking Kit [3℄.
6 Modification and Extension of AUGURThis setion indiates parts of the AUGUR ode that were modi�ed in a relevant way and desribesnew ode that was added for atcg, just in ase anyone wants to speed it up or redue its memoryrequirements (whih is atually neessary if you want to apply it to non-trivial input).

atgc.cppThis �le ontains the main funtion that evaluates the options (ompare Setion 4.1) and ontrolsthe program ow (ompare Figure 11 in Setion 4).
class GraphGrammarThe element string target formula was added. It stores the formula that is written to the property�le and passed to the Model Cheking Kit. Four methods were added, all of them doing what youwould expet: bool hasRule(IDTYPE id), int �ndRule(string ruleName, bool * found), voidsetTarget(har* target) and string getTargetFormula().
TransformationRule* GTXLReader::readRule(xmlNodePtr node)The reader for GTXL �les was adapted to the new doument requirements (ompare Setion 5.3).In partiular, NAC and levels are proessed.
class HypergraphThe lass was modi�ed in a way that allows it to add an edge to a Hypergraph before all of theverties onneted to it have been added, whih may make sense if, in a large input �le, edgesare de�ned �rst and verties later. Two elements, bool aknowledged and set<IDTYPE> miss-ing verties were introdued to mirror the urrent state of the objet. When the graph is atuallyused, it heks itself internally, whih an also be done from the outside by alling the method boolHypergraph::aknowledge(). The new method IDTYPE extendByFirstEdgeOf(Hypergraph&h) is used to add the inhibitor edge of a NAC to the left hand side of a rewriting rule.
class PetrigraphThree elements were added: map<IDTYPE, IDTYPE> gamma mapping stores for eah hyper-edge in the Petrigraph the id of its generating transition, map<IDTYPE, unsigned> lambda-mapping stores transition levels and set<IDTYPE> removed transitions is used to mark tran-sitions that are no longer onsidered part of the Petri graph. Various publi methods were added,among them:� void applyLevels() assigns levels (ompare Setion 4.5),� void applyNAC() evaluates NAC (ompare Setion 4.5),� Hypergraph getSubgraph(PTMarking m) returns the subgraph generated by the edgesmarked in m ,� void removeSubgraph(IDTYPE transition) removes a transition and the parts of the Petri-graph that depend on it, whih is needed by applyLevels(),22



� and void writeFormula(har* �lename) writes a �le with a property orresponding to thetarget rules (ompare Setion 4.6).
class PTNetTwo elements were introdued: map<IDTYPE, IDTYPE> omplement, mapping eah plaewith outgoing inhibitor ars to its omplementary plae, and map<IDTYPE, unsigned> apa-ity, where the apaity of these plaes is stored, i.e. the onstant sum of the marking of a plaeand that of its omplementary plae. The methods void addReadAr(IDTYPE t, IDTYPE p,int w), addInhibitorAr(IDTYPE t, IDTYPE p, int w) and several methods for dealing withapaities were inserted. Method void write llnet(har* �lename) exports the net in PEP format(Setion 5.4), PTFiringSequene readSequene(har* �lename, . . . ) proesses a �le that on-tains a witness set, and PTMarking �reInAnyOrder(PTFiringSequene& ptfs, bool* isFirable)attempts to serialize a �ring sequene.
class TransformationRuleThe lass was hanged to support negative appliation onditions and levels, orresponding el-ements were introdued. An additional ag is target marks whether a rule belongs to the tar-get set or not. Ten publi methods were added, among them IDTYPE addNAC(HypergraphsingleEdgeGraph), bool isAppliable(unsigned urrent) and unsigned getNextLevel(unsignedurrent), where the parameter urrent stands for the urrent operating level during the depth�rst searh mentioned in Setion 4.5.

7 ConclusionThe problem of �nding test ases for subsets of a graph transformation system has been presentedand an implementation of a test ase generator in aordane with proposals made in [2℄ has beendesribed. The followed approah was to all an external program for unfolding a graph grammarwithout negative appliation onditions, to san the Petri graph and to add inhibitor ars wherevermathes of rules extended by inhibitor edges are found. It was shown how the net omponent ofthe unfolding is onverted to a safe Petri net, whih an be heked by external software as well.Whoever tries to apply atcg to non-trivial examples will realize that it takes a lot of timeand, what is more of a problem, is very memory-onsuming. For large examples, this is learlydue to ombinatorial explosion, whih an not be overome in general when graph grammarsare unfolded. The problem of telling whether a rule of a graph grammar an ever be appliedis undeidable, and this apparent disadvantage is at the same time the reason why systems asomplex as ode optimizers an even be desribed by this model.Another diÆulty is inherent to the hosen approah: if an appliation as the one presentedhere involves alls to external binaries, and �les on the hard disk are used for ommuniationbetween some of the modules, it is hard to avoid that the memory requirements multiply. Inaddition to this, several modules that belong to di�erent piees of software have to proess thesame information, whih is slow and memory-onsuming if the unfoldings are large.In many ases, heuristis may also be a better hoie than unfolding a graph grammar upto width and depth values that are onstant throughout the Petri graph. On the other hand,the systemati and modular approah does also arry important bene�ts. Single modules an bereplaed by di�erent versions in aordane with the needs of the user, and the whole developmentproess is easier and requires less ommuniation. Future e�orts ould be direted towards aompromise between these paradigms.
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