
Test Case Generation for Rule-based TranslatorsMartin Hors
h <martin.hors
h�bawue.de>Universit�at StuttgartFakult�at Informatik, Elektrote
hnik und Informationste
hnikInstitut f�ur Formale Methoden der Informatikstudent resear
h proje
t (Studienarbeit) with internal do
ument nr. 1984
Contents

1 Introduction 2

2 Graph Transformation Systems and Unfoldings 32.1 Labelled Hypergraphs . 32.2 Graph Transformation Systems . 42.3 Context-dependent Pla
e/Transition Nets . 6
3 Infinite Unfoldings and Finite Prefixes 93.1 Net and Graph Grammar Unfoldings . 93.2 Unfolding Only as Far as Ne
essary . 103.3 Modular Approa
h to Unfolding and Coverability Che
king 11
4 Implementing a Test Case Generator 134.1 The at
g Exe
utable . 134.2 Combining Internal and External Modules . 144.3 Do
ument Pro
essing . 154.4 Unfolding the Grammar with aunfold . 154.5 Pro
essing the Unfolded Grammar . 154.6 Model Che
king Kit for Safe Petri Nets . 164.7 Building the Test Case . 164.8 Drawing Graphs with NEATO . 18
5 Exchange Formats for Nets, Graphs and Grammars 185.1 GXL as Do
ument Type for Hypergraphs . 185.2 Appli
ation of the GXL Format to Petri graphs . 195.3 Graph Transformation Ex
hange Language . 205.4 PEP Format for Low Level Petri Nets . 21
6 Modification and Extension of AUGUR 22

7 Conclusion 23

1

AbstractGraph transformation systems are a model used for the spe
i�
ation of programs as wellas
on
urrent or non-deterministi
 systems in general. This do
ument dis
usses translatorsthat modify elements of an input language in a

ordan
e with graph rewriting rules. Su
hsystems have in
ommon that their state spa
e is in�nite or very large. Instead of provingtheir
orre
tness, programmers and designers usually have to observe their behaviour in a�nite set of test
ases that
an be sele
ted automati
ally or by hand. An implementation ofan automati
 test
ase generator is presented, in
luding a des
ription of data formats used forthe ex
hange of information on hypergraphs, graph grammars, Petri graphs and nets. The
ode for the generator is based on AUGUR, a set of tools for pro
essing graph grammars. Asurvey on used
omponents and modi�
ations to the
ode of AUGUR is given.
1 IntroductionThe development of
omplex devi
es and programs for use in sensitive areas would be un
on
eivablewithout tools for testing large systems automati
ally that do not require ex
essive
al
ulations tobe undertaken by hand. On an abstra
t level, we will spe
ify su
h systems as non-deterministi
translators starting with an element of a
ertain input language and modifying it step by step. Itis often useful to
onsider graphs, instead of words, as elements of these languages, and the systemitself as a set of rules des
ribing allowed modi�
ations of labelled graphs. This set is also
alled agraph transformation system.There are several reasons to use labelled graphs as a model. In some
ases, a program we wantto test does a
tually use labelled graphs as its input. This is typi
al for automati

ode generatorsthat translate a model in a graphi
al notation su
h as Simulink or State
ow to exe
utable
ode.Another appli
ation o

urs when the input language of a program is ambiguous. Most of the time,the ambiguity is resolved by the parser, whi
h guesses an arbitrary or the most probable resolutionand passes a representation of it to a
omponent of the software that does the a
tual work. If that
omponent is to be tested, the natural approa
h is to exe
ute it on su
h internal representationsinstead of possibly ambiguous words of the input language. Often enough, these representationsas generated by a parser are labelled graphs.With the abstra
t notion of the system as a translator, one
an follow an approa
h to sele
tingtest
ases that is in a way analogous to
ondition
overage: if a system is represented by a set ofrules, we are interested in obtaining, for ea
h subset of this set, maybe up to a
ertain size, anelement of the input language from the spe
i�
ation of the system to whi
h all rules of the subset
an be applied. In [2℄, the foundations are laid out for an algorithm that takes the input languageof a translator and its transformation rules as an argument and attempts to
onstru
t a test
asefor some of its rules. Su
h a test
ase generator was implemented as a part of this student resear
hproje
t (Studienarbeit). It is based on the
urrent version of AUGUR, a set of programs for theanalysis of graph transformation systems, and is
alled atcg, the AUGUR test
ase generator.The do
ument is organized as follows. Se
tion 2 introdu
es graph grammars, nets and unfold-ings. Se
tion 3 des
ribes on-the-
y and sequential �rability
he
king as two general approa
hesthat
an be followed, as well as some modi�
ations and restri
tions that are useful to get rid ofin�nite state spa
es. Se
tion 4 gives a survey on atcg and the intera
tion between its internal
omponents and external modules
alled by them. Se
tion 5 explains what do
ument formats
atcg uses and des
ribes them brie
y, Se
tion 6 refers to the parts of the
ode for AUGUR whererelevant modi�
ations were made, and Se
tion 7
on
ludes the do
ument with some remarks onsoftware in general.

2

*p = x % 3;

= %*

var

p

var

int

x

3
1

1

1

1

2

1

1

0

0

0 0 0

0 0

00

Figure 1: Hypergraph representing a line of C
ode
2 Graph Transformation Systems and Unfoldings

2.1 Labelled HypergraphsIn the
hosen approa
h to test
ase generation, we regard a translator as a pro
ess that, step bystep,
hanges and repla
es
omponents of an input graph in order to produ
e an element of itstarget language. Sin
e both input and output as well as intermediate states are represented bygraphs, the topi
 of this do
ument belongs to the domain of graph rewriting theory, used as a toolfor analyzing dynami
 systems. In [6℄ an elaboration of this theory is given that, together with [2℄,serves as the base for all of the following. More information is also provided by the Handbook ofGraph Grammars [14℄.
Definition (Label Structure)Let Σ be a set of labels. Then, Λ ⊆ Σ×N is a label stru
ture for Σ. For an element (λ, arλ) ∈ Λ,we
all arλ an arity value of λ.
Definition (Hypergraph)Let Λ be a label stru
ture for Σ. A dire
ted Λ-hypergraph is a tuple G = (V, E, c, λ), where V is aset of verti
es and E is a set of edges with V ∩ E = ∅, c : E → V∗ is a total
onne
tion fun
tionand λ : E → Σ a total labelling fun
tion that satis�es the arity
ondition:

∀e ∈ E, n ∈ N : | c(e) | = n ⇒ (λ(e), n) ∈ ΛInterse
tion and union of hypergraphs are de�ned
omponentwise. For a vertex or edge d we write
d ∈ G ⇔ d ∈ (V ∪ E).When drawing a hypergraph, re
tangles are used to represent edges. Numbers
an be anno-tated to the
onne
tions between edges and nodes to spe
ify their order in the word c(e) ∈ V∗.Undire
ted hypergraphs have c : E → NV , thus mapping an edge to a multi-set instead of a tupleof verti
es. They are visualized just like dire
ted hypergraphs, but without annotations of the typedes
ribed above.The arity values of a label λ indi
ate how many nodes are
onne
ted to an edge labelled with λ.For instan
e,
ode in a programming language
an be rendered as a graph where labels are namesof operators and fun
tions. Then, arity values
an
orrespond to the number of arguments takenby an operator. Consider Figure 1, a model of a
ode fragment in C. Here, we have (%, 3) ∈ Λ,thus edges labelled with the modulo operator
onne
t to three nodes: one for the return value andanother two for the arguments of the operator.For a label stru
ture where all arity values are 2, aΛ-hypergraph
orresponds to an edge-labelled(di)graph. In the following we will refer to dire
ted Λ-hypergraphs as hypergraphs, whenever it isunderstood - or irrelevant - whi
h label stru
ture we use.

3

A

B

0

0

1

1

2

hypergraph H hypergraph G

A

A

B
0

1

2

1

0

1

0Figure 2: A surje
tive, non-inje
tive hypergraph morphism ϕ with ϕ(H) = G

2.2 Graph Transformation SystemsWe will use graph transformation systems (GTS) to des
ribe the way a translator alters its input.Graph transformation systems are analogous to the sets of produ
tion rules that o

ur in phrase-stru
ture grammars, di�ering from them mainly in the aspe
t that they operate on graphs insteadof words.
Definition (Subgraph)Let Λ be a label stru
ture and G = (V, E, c, λ), H = (VH, EH, cH, λH) be Λ−hypergraphs. H is
alled a subgraph of G (H ⊆ G) i� VH ⊆ V , EH ⊆ E and

∀e ∈ EH : cH(e) = c(e) ∧ λH(e) = λ(e).If, in addition to this, every vertex v ∈ VH is
onne
ted to at least one edge e ∈ EH, we
all H thesubgraph of G generated by EH.
Definition (Hypergraph Morphism)Let Λ be a label stru
ture and G = (V, E, c, λ), G ′ = (V ′, E ′, c ′, λ ′) be Λ-hypergraphs. A hyper-graph morphism ϕ : G → G ′ is a pair of fun
tions (ϕV : V → V ′, ϕE : E → E ′), su
h that thefollowing property holds, where ϕ∗

V : V∗ → (V ′)
∗ is the homomorphism generated by ϕV .

∀e ∈ E : λ(e) = λ ′(ϕE(e)) ∧ ϕ∗

V (c(e)) = c ′(ϕE(e))A hypergraph morphism ϕ = (ϕV , ϕE) with inje
tive or surje
tive
omponents ϕV and ϕE isalso
alled inje
tive or surje
tive, respe
tively. For a surje
tive morphism ϕ : H → G (
ompareFigure 2) we write ϕ(H) = G. An inje
tive morphism ϕ : H → G is
alled a mat
h of H in G, abije
tive morphism is
alled an isomorphism. Two hypergraphsG andH for whi
h an isomorphismexists are isomorphi
, denoted as G ∼= H. A mat
h ϕ = (ϕV , ϕE) of H in G indi
ates that thereis a subgraph ϕ(H) ⊆ G isomorphi
 to H.
Definition (Graph Rewriting Rule)A graph rewriting rule is a tuple r = (I, L, R,ϕL, ϕR,∇). I, L and R are hypergraphs, where Istands for the
ontext, L and R for the left and the right hand side of the rule; ϕL and ϕR aremat
hes of the
ontext in L and R, respe
tively, and ∇ is a set of negative appli
ation
onditions(NAC). The hypergraph L is generated by its edges, i.e. it does not
ontain any isolated verti
es,and ea
h
ondition ν ∈ ∇ is a mat
h of L in a hypergraph ν(L) + eν that ex
eeds ν(L) by exa
tlyone edge eν, the inhibitor edge of ν. 4

A set of rewriting rules - all for the same label stru
ture Λ - is also
alled a Λ-graph transfor-mation system (GTS).
Definition (Enabled Match)Let r = (I, L, R,ϕL, ϕR,∇) be a rewriting rule and G a hypergraph in whi
h there is a mat
h

ψ = (ψV , ψE) of L that
an not be extended to in
lude an inhibitor edge of r. That is, for no
ν ∈ ∇, there is a mat
h ψ ′ = (ψ ′

V , ψ
′

E) of ν(L) + eν in G su
h that, for all edges e in ν(L),
ψE(ν−1(e)) = ψ ′

E(e) holds. Then, ψ is an enabled mat
h of r in G and the rule r is enabled in Gby the means of ψ.Where and whenever r is enabled in G, a rewriting step
an o

ur that repla
es its left handside in G by its right hand side, just like applying a produ
tion rule in a phrase-stru
ture grammardoes.
Definition (Rewriting Step)Let L = (VL, EL, cL, λL) and G = (VG, EG, cG, λG) be hypergraphs, ϕL = (ϕVL

, ϕEL
) and ϕR =

(ϕVR
, ϕER

) morphisms, r = (I, L, R,ϕL, ϕR,∇) a rule and ψ = (ψV , ψE) an enabled mat
h of rin G. The rewriting step of r applied to G a

ording to ψ is a pair of hypergraphs (G,H) with
H = (VH, EH, cH, λH), also denoted as G ⇒r H, for whi
h there is a mat
h ψ ′ = (ψ ′

V , ψ
′

E) of R in
H and the following assertions hold:1. R a

ounts for all additions to G.

H ⊆ G ∪ψ ′(R)2. Context is preserved, edges of L not mirrored in I are destroyed.
∀e ∈ EL : ψE(e) ∈ H ⇔ e ∈ ϕL(I)3. ψ and ψ ′ are in agreement, they des
ribe the same se
tion of the graph.
∀e ∈ I : ψE ◦ϕEL

(e) = ψ ′

E ◦ϕER
(e)4. Preserved edges are
onne
ted to the same verti
es in G and in H.

∀e ∈ EG ∩ EH : cG(e) = cH(e)A rewriting sequen
e s = r1r2 · · · rn of rules ri is enabled byG i� there is a sequen
e of hypergraphs
(H1, H2, . . . Hn) su
h that G ⇒r1

H and ∀1 < i ≤ n : Hi−1 ⇒ri
Hi. This is symbolized by

G⇒∗

s Hn.We say that G and H are isomorphi
 up to isolated verti
es - in symbols: G ≃ H - i� thegraphs generated by their edges are isomorphi
. If G ≃ H, we
an substitute G by H withoutenabling or disabling any rewriting sequen
es, sin
e the left hand side of a rule must not
ontainany isolated nodes.
Definition (Graph Grammar)Let Λ be a label stru
ture. A Λ-graph grammar is a pair G = (P, S), where P is a Λ-graphtransformation system and S is a Λ-hypergraph
alled the start graph. The union of G and a GTS

P ′ is a graph grammar again: G ∪ P ′ = (P ∪ P ′, S).In a graphi
al representation, the left and right hand sides of a rewriting rule are displayed ashypergraphs with barred inhibitor edges eν atta
hed to the left hand side. The mat
hes ϕL and
ϕR are re
e
ted by as
ribing identi
al numbers to
orresponding items.Consider Figure 3, taken from [2℄. It shows a grammar that generates arithmeti
 expressions.In this example, numbers are annotated to the edges labelled with +. Su
h attributes
an beinterpreted 1) as a higher level notation supported by higher level graph grammars only, 2) as anabbreviation for additional edges that
ontain these attributes as labels - as is done in Se
tion 4.7- or 3) as a part of the label (whi
h multiplies the number of rules in the grammar).The language produ
ed by a graph grammar
ould, for example, be de�ned in analogy withphrase-stru
ture grammars by de
laring some of the labels as non-terminal and the others as5

Requirement:
i < j

2

(CreateSumRes)

1

4

2 3

I

+ i

1

2 3

1

4

3

+

I

E

i

1

4

2 3

+ i

i

(CreateSum) (CreateInt) (CreateVar)

(CreateConn1) (CreateConn2)

+ I V

Res

+ i

?

E E

?

5

+ j

6

+

E

i

4

j+

65Figure 3: A graph grammar that generates arithmeti
 expressionsterminal. In most
ases, however, graph grammars are not used with the intention of reasoningabout the languages they generate. Instead, we are more interested in knowing what rules
an beapplied in whi
h order, how they depend on ea
h other and what intermediate states
an o

ur.In a
ertain sense, we will
onsider all labels as terminal.
Definition (Test Case)Let G0 = (S, P0) be a graph grammar
alled the generator, P1 be a GTS
alled the translator and

G = G0 ∪ P1 have the set P = P0 ∪ P1 of produ
tion rules. Let PT ⊆ P1 be a target subset of thetranslator. For S ⇒∗

s C with s ∈ P∗0, we
all C a test
ase of PT i� it enables a rewriting sequen
e
s ′ ∈ P∗1 in whi
h every element of PT o

urs at least on
e.An example for a translator is given in Figure 4; it
ontains simpli�
ation rules for arithmeti
expressions from the generating grammar in �gure 3. In this example, the translator is thereforean epxression optimizer. Figure 13 in Se
tion 4 shows a test
ase for the rule KillUselessFun
tion.
2.3 Context-dependent Place/Transition NetsPetri nets are often used to represent networks and
on
urrent pro
esses. They were introdu
edby Carl Adam Petri in his dissertation [11℄, whi
h was the starting point of what is today a largesegment of theoreti
al
omputer s
ien
e. This do
ument
an only mirror parts of this theory thatare immediately relevant for the task of �nding test
ases for a GTS. An introdu
tion to Petri nettheory
an be found in [12℄ or [13℄.We will follow [2℄ in
onsidering a generalized form of Petri Nets that allows read and inhibitorar
s, whi
h re
e
t the behaviour of graph grammars in a natural way. For su
h nets, we use thenotion of "
ontext-dependent nets" with positive and negative "
ontext relations" that Montanariand Rossi introdu
ed in order to mirror the e�e
ts
ontexts and negative appli
ation
onditionshave in graph rewriting theory [9℄.A pla
e/transition net is essentially an automaton with a set of pla
es, ea
h of whi
h
an
ontain a number of tokens, with transitions operating on them. When a transition is �red, i.e.exe
uted, the number of tokens in its neighbouring pla
es
hanges depending on the ar
s that
onne
t them.

Definition (Context-dependent Place/Transition Net)Let S be a set of pla
es and T a set of transitions with S ∩ T = ∅ and let b, f, ρ : T × S → N6

2

(ConstantFoldingSum)
1

I

(ConstantSplitting)

(KillUselessFunction)

(KillLonelyEdge)

1 2

E E

3

I

1 2

3

EE

I

?

1

E

+ i

3

Res

?

?

op1 i op2 j

?

?1

2 op is either + or *

E

+

2

E E

i

3

1

4 5

E

I

E

IIFigure 4: Simpli�
ation rules for arithmeti
 expressions (
ompare [2℄)and χ : T × S → N+ ∪ {∞} be total fun
tions. Then, the tuple N = (S, T, b, f, ρ, χ) is a
ontext-dependent pla
e/transition net (CPN) and we
all b, f, ρ and χ the ba
kward, forward, read andinhibitor fun
tions of N. For s ∈ S, t ∈ T the following sets and ar
s are de�ned:1. •t = {s ∈ S | b(t, s) > 0} is the preset of t. (by analogy: •s = {t ∈ T | f(t, s) > 0})For s ∈ •t, a (ba
kward) write ar
 of weight b(t, s) is leading from s to t.2. t• = {s ∈ S | f(t, s) > 0} is the postset of t. (by analogy: s• = {t ∈ T | b(t, s) > 0})For s ∈ t•, a (forward) write ar
 of weight f(t, s) is leading from t to s.3. t = {s ∈ S | ρ(t, s) > 0} is the
ontext set of t.For s ∈ t, s and t are
onne
ted by an undire
ted read ar
 of weight ρ(t, s).4. ⊸ t = {s ∈ S | χ(t, s) 6= ∞}
ontains the inhibitor pla
es of t.For s ∈ (⊸ t) - also: s ⊸ t - an inhibitor ar
 of weight χ(t, s) is leading from s to t.For b(t, s) = f(t, s) the resulting pair of ar
s is also
alled a write-ba
k ar
. A fun
tionM : S → Nis a marking of N. We say that, for a given markingM, a pla
e s ∈ S
ontainsM(s) tokens, andthat s is marked i� M(s) > 0.
Definition (Firing of Transitions)Let N = (S, T, b, f, ρ, χ) be a CPN and M a marking of N. A transition t ∈ T is enabled by Mwhenever

∀s ∈ S : b(t, s) + ρ(t, s) ≤M(s) < χ(t, s).I� t is enabled by M, it
an be �red, an event upon whi
h t repla
es M by the marking
M ′ : S → N, s 7→ M(s) + f(t, s) − b(t, s),in symboli
 notation: M →t M

′.Intuitively, �ring a transition t involves the following steps: 1) for ea
h inhibitor ar
 withweight χs from a pla
e s to t, assert that s
ontains less than χs tokens. 2) for ea
h write7

t5

t4t1

t3

t6

t8
t7

t2

p1

p3

p4

p20 p21 p6 p5

p0

Figure 5: A
ontext-dependent pla
e/transition netar
 with weight bs from a pla
e s to a pla
e t, assert that s
ontains at least bs tokens; remove
bs tokens from s. 3) for ea
h read ar
 with weight ρs between t and a pla
e s, assert that s
ontains at least ρs tokens. 4) for ea
h write ar
 with weight fs from t to a pla
e s, add fstokens to s. 5)
ommit the e�e
ts of the transition if all assertions have been
on�rmed.In a graphi
al representation, transitions are visualized as �lled re
tangles, pla
es as large
ir
lesand tokens as small �lled
ir
les. We draw write ar
s as arrows, read ar
s as undire
ted dashedlines and inhibitor ar
s as dashed lines with a
rossed
ir
le at the end (an example is given inFigure 5). As long as nothing di�erent is said, we suppose that all ar
s in a CPN have weight 1,i.e. that b, f, ρ and χ are fun
tions from T × S to {0, 1}.Typi
ally, su
h a diagram does not only show a P/T net, but also a distribution of tokensover the net. In most
ases, the marking indi
ated that way is regarded as the initial marking ofthe net, and the attention is dire
ted to the transitions that are enabled at this marking and topossible future markings of the net.

Definition (Reachable Marking)Firing sequen
es and the transitive
losure →∗ of → are de�ned for CPN the same way as rewritingsequen
es and the relation ⇒∗ were de�ned for graph grammars in Se
tion 2.2. Let N be a CPNandM0 its initial marking. A fun
tionM is
alled a rea
hable marking of N if and only if it is amarking of N and there is a �ring sequen
e σ ∈ T∗ enabled in M0 su
h that M0 →∗

σ M.
Definition (Safe Nets, Occurrence Nets and Petri Nets)For k ∈ N, a marking M with ∀s ∈ S : M(s) ≤ k is k-safe and, if k = 1, simply safe. A CPNwith initial marking is
alled (k-)safe, i� all of its rea
hable markings are (k-)safe. A CPN without
y
les of write ar
s is a
y
li
, and a safe a
y
li
 CPN with with ∀s ∈ S : •s ≤ 1 is also
alled ano

urren
e net. A CPN without read and inhibitor ar
s is a Petri Net.Without loss of generality, the initial marking of an a
y
li
 (1-)safe CPN has the property thatexa
tly the pla
es with an empty preset
ontain a token, while the others are unmarked. In a

k-safe CPN, we
an assume without loss of generality that
s ⊸ t =⇒ χ(t, s) − 1 ≤ k + b(t, s) − f(t, s)for all pla
es s and transitions t (otherwise the inhibitor ar
 is redundant) and that all write, read,and inhibitor ar
s have a weight lower or equal to k. Safe CPN are a spe
ial
ase of
ontext-dependent
ondition/event nets as developed in [9℄. A safe CPN
an be transformed info a safePetri net eÆ
iently without a�e
ting its rea
hable markings and enabled �ring sequen
es (
ompareSe
tion 3.3). 8

Definition (Dependency between Transitions)Let N be an o

urren
e net and S its set of pla
es. Let T be the transition set of N. The
ausalityrelation (· < ·) ⊆ T × T is the least transitive relation su
h that
∀t, τ ∈ T : t• ∩ (•τ ∪ τ) 6= ∅ ⇒ t < τIf t ∈ τ, this means that τ is
ausally dependent on t in the sense that in every enabled �ringsequen
e of N the transition τ
an only o

ur after t if at all, be
ause t is the only transition that
an mark the preset or the
ontext of τ. The set of transitions on whi
h τ depends is also
alled the
ause ⌊τ⌋ of τ. When dependen
y between transitions is visualized, we draw a minimal generatingsubset of < instead of the whole relation, be
ause additional ar
s make the representation harderto understand and are just redundant (the
ausality relation for the example CPN is
ontained asa part of Figures 9 and 12).

Definition (Conflict between Transitions)Let t and τ be two transitions of the CPN N. We say that t and τ are in (symmetri
)
on
i
t t#τi� •t ∩ •τ 6= ∅. For t#τ ∨ t ∪ •τ 6= ∅ the asymmetri

on
i
t t ր τ is de�ned.Two transitions with
ommon elements in their preset are in
on
i
t, be
ause in a safe markingthat enables both, �ring one of the transitions disables the other one. If t and τ are in asymmetri

on
i
t, no safe marking enables the sequen
e τt, i.e. they must be �red in the order indi
atedby the relation ր or with additional transitions inserted in between to restore the tokens. Inan o

urren
e CPN without inhibitor ar
s, a set T ′ of transitions
an be �red if and only if theasymmetri

on
i
t relation has no
y
les of elements of its
ause ⌊T ′⌋ = ∪t∈T ′⌊t⌋.Finding a possible �ring order of transitions in an o

urren
e CPN with inhibitor ar
s
or-responds to the task of �nding a
on�guration, whi
h is de�ned formally in [5℄ and appliedto this question in [1℄ and [2℄. For our purposes, a
on�guration (· <C ·) ⊆ T × T of a CPN
N = (S, T, b, f, ρ, χ) is a relation su
h that (· < ·)∪ (· <C ·) is a
y
li
 and for all s ⊸ τ, where ′s is(the only) element of •s:

τ<C
′s ∨ ∃t ∈ s• : t<C τIf s has an empty preset, it is initially marked and only the se
ond option is allowed, whi
h
orresponds to the intuition that τ
an only be �red after the token has been removed from s.The diÆ
ulty of that problem is due to the fa
t that even in an o

urren
e net we
an not tell inadvan
e if for s ⊸ τ, τ should be �red before s is �lled or after s is emptied.

3 Infinite Unfoldings and Finite Prefixes

3.1 Net and Graph Grammar UnfoldingsCausality and
on
i
t
an be applied mu
h easier to o

urren
e nets than to CPN in general, soin order to use these properties for analyzing a CPN, we are interested in obtaining an o

urren
enet that is in some sense equivalent to it. This is
alled an unfolding, a
on
ept introdu
ed byM
Millan in [8℄.An unfoldingN ′ of a CPNN is an o

urren
e net that enables a set of �ring sequen
es
ongruentwith the set of �ring sequen
es allowed by N. This is a
hieved by
opying transitions of N, possiblyin�nitely often, and the
ongruen
e of �ring sequen
es is de�ned by the means of the surje
tivefun
tion from the transitions ofN ′ to the transitions ofN that maps ea
h
opy to the
orrespondingoriginal. An algorithm for unfolding nets is presented in [5℄.The notion of unfoldings
an be extended to graph grammars. Unfolding a graph grammar Gyields a Petri graph P = (G,N) where G is a hypergraph and N is a
ontext-dependent o

urren
enet. The edges of G are identi
al with the pla
es of N, and the initial marking of N
orresponds9

start graph

E E EE
(mitosis)

1

2

1

2 ?Figure 6: A simple graph grammar
E E E EEFigure 7: Unfolding of the graph grammar from Figure 6to the start graph of G. The transition set of N is mapped to the ruleset of G su
h that the �ringsequen
es enabled by the initial marking of N are
ongruent with the rewriting sequen
es enabledby the start graph of G. The marking of P is the subgraph of G generated by the marked edges,i.e. the pla
es marked in N. The N
omponent of the Petri graph
an also be transformed to a safePetri net as des
ribed below. Compare [6℄ for further information on unfolding graph grammars.In a visualization, we display the CPN and the hypergraph together, in a way su
h that edgesare also used as pla
es and
an
ontain tokens. Consider the graph grammar of Figure 6. Figure 7shows a part of its unfolding. It is generated indu
tively by beginning with the start graph of Gand atta
hing an instan
e of a rule, i.e. a transition that
orresponds to it, to every mat
h (enabledor not) of its left hand side that is found in the graph. Ba
kward write ar
s
orrespond to theedges deleted by an instan
e of the of the rule, forward write ar
s to the edges it
reates, readar
s to its
ontext and inhibitor ar
s to the mat
hes of left hand sides extended by inhibitor edges

ν(L) + eν in the graph.In almost all
ases, the unfolding of a graph grammar is in�nite, whi
h makes it impossible tooperate on the Petri graph as a whole. This is, �rst of all, due to the fa
t that translators areusually built for in�nite languages and the unfolding of the generator-translator-system in
ludesthe entire input language of the translator. One rule similar to that shown in Figure 6 is enoughto generate a Petri graph of in�nite size.In the few
ases of translators for �nite languages,
orre
tness
an be veri�ed by having themtranslate a
omplete di
tionary or, if that is impossible, whi
h means that their input language isstill very large, the unfoldings are even larger and
an not be pro
essed either. Therefore, somerestri
tions are ne
essary to allow for an algorithmi
 analysis of their behaviour.
3.2 Unfolding Only as Far as NecessaryFor �nding a test
ase, a �nite pre�x of the unfolding, i.e. a
onne
ted subgraph that in
ludesthe start graph, is suÆ
ient, supposed that the start graph a
tually enables a rewriting sequen
ethat in
ludes ea
h of the target rules. However, we do not know now in advan
e how large theunfolding must be for our purpose, and in general, there is no way to de
ide whether a test
ase
an be found or not (a graph grammar
an emulate a Turing ma
hine). A test
ase generator musttherefore
onstrain the size of the unfolding and eventually give up if it
an not �nd a result.10

E E2

1

?Figure 8: Petri graph for the mitosis rule from Figure 6
t8

t1 t4

t5t2t3
T

T

t6

t7Figure 9: Causality relation with a possible
on�guration for �ring t5 and t7Restri
tions on the size of the Petri graph alone are insuÆ
ient, be
ause a �nite net
an stillhave an in�nite state spa
e. Consider the Petri graph of Figure 8 that
orresponds to the mitosisrule applied to the start graph, where arbitrarily many tokens
an be �red into the right edge.This problem
an be over
ome by adding a dummy pla
e, intially marked with one token, to thepreset of every transition that does not redu
e the marking of any other pla
e [2℄. In the resultingPetri graph, there is no transition that
an be �red more than on
e. Sin
e in an unfolding, everypla
e s has | •s |≤ 1, we obtain a safe Petri graph.A test
ase generator
an unfold a grammar step by step a

ording to breadth �rst sear
h orsome kind of heuristi
s and every time an instan
e of a target rule is inserted to the Petri graph,sear
h for a
on�guration that allows this transition and at least one instan
e of all other target rulesto be �red. This way of atta
king the problem
an be referred to as on-the-
y �rability
he
king,be
ause there are interleaving steps of grammar unfolding and attempts to �nd
on�gurations for�ring transitions.When there are few intera
tions between the restri
tions imposed by inhibitor ar
s, �nding a
on�guration or proving it impossible is easy, as in the
ase of the net from Figure 5, where <C
anbe
onstru
ted independently for the inhibitor ar
s leading to t7 and t5. One of the two possiblesolutions is displayed in Figure 9.In an appendix to [2℄, some ideas are presented
on
erning the sear
h for
on�gurations inmore
ompli
ated
ases. For the implementation, a di�erent approa
h was
hosen, whi
h will bedes
ribed in the following se
tion.
3.3 Modular Approach to Unfolding and Coverability CheckingInstead of s
anning for test
ases on the
y while the unfolding of the grammar is
onstru
ted, itis also possible to unfold the grammar �rst and the CPN obtained as a part of the resulting Petrigraph afterwards. Although su
h a modular approa
h is, in prin
iple, by no means more eÆ
ientthan a monolithi
 one (rather the other way round), it allows the exploitation of existing softwarefor the two major parts of the problem: 1) to
onstru
t a �nite pre�x of the unfolding, and 2) todete
t a �ring sequen
e that
ontains instan
es of all target rules. This approa
h
an be referredto as sequential �rability
he
king be
ause it
onsists of two distin
t steps.The �rst step of the task
an be delegated to an external GTS unfolder. For this purpose, theunfolding must be limited a priori. In [2℄, two kinds of restri
tions are proposed. They have to be11

ombined in order to get a �nite o

urren
e graph:� depth restriction k:a rule r is unfolded and a transition t added to the graph, if in the extended graph, notransitions t1, . . . , tk would exist su
h that t1 < · · · < tk < t, where < is the
ausalityrelation over the CPN
omponent of the Petri graph.� width restriction w: every instan
e of the rule is unfolded exa
tly w times.In our
ase aunfold, a part of AUGUR, is used to
reate an unfolding pre�x of width 1 and variabledepth. NAC are not pro
essed and must be evaluated separately (
ompare Se
tion 4).For the se
ond step, the Model Che
king Kit
an be invoked to
he
k
overability properties ofsafe Petri nets [15℄. Before this is possible, the CPN must be transformed into a Petri net, whi
his a

omplished by introdu
ing a
omplement pla
e for every pla
e of the original net. This ispossible be
ause in the original net all pla
es
ontain, for all rea
hable markings, either exa
tlyone token or none. In general,
omplementation as des
ribed below works for all k-safe nets. Atthis stage of the problem, we
an be sure the CPN is even (1-)safe, supposed that dummy pla
eswith an initial marking of 1 have been added to all transitions with empty presets.
Construction of a Petri net equivalent to a safe CPNLet N = (S, T, b, f, ρ, χ) be a k-safe CPN with fun
tions b, f, ρ, χ : T × S→ {0, . . . , k} and the initialmarking M0. Let S ′
onsist of all s ∈ S and a new pla
e �s for every s. We de�ne ∀s ∈ S, t ∈ T :

M ′

0(�s) = k −M0(s) and:� b ′(t, s) = b(t, s) + ρ(t, s) ∧ f ′(t, s) = f(t, s) + ρ(t, s)� s ⊸ t ⇒ b ′(t, �s) = k − χ(t, s) + 1 ∧ f ′(t, �s) = b(t, s) − f(t, s) + k− χ(t, s) + 1� s 6⊸ t ⇒ b ′(t, �s) = f(t, s) ∧ f ′(t, �s) = b(t, s)We
all N ′ = (S ′, T, b ′, f ′, 0, 0) the Petri net equivalent to N, where 0 is the
onstant zero fun
tion,and M ′

0 its initial marking. The invariant M(s) +M(�s) = k holds by indu
tion for all rea
hablemarkingsM of N ′ and all s ∈ S, sin
e for all transitions t ∈ T :
(f ′(t, s) − b ′(t, s)) + (f ′(t, �s) − b ′(t, �s)) = 0In the modi�ed net, for a transition t and s ⊸ tthe �ring
ondition is b ′(t, s) ≤M(s) ∧ b ′(t, �s) ≤M(�s) or

b(t, s) + ρ(t, s) ≤M(s) ∧ k − χ(t, s) < k−M(s),whi
h
orresponds to the �ring
ondition for N. Firing a transition a�e
ts the marking of s equallyin both nets, whi
h means that N and N ′ enable the same �ring sequen
es.A
tually, it is suÆ
ient to
omplement those pla
es that have outgoing inhibitor ar
s. Look atFigure 10, whi
h shows the Petri net equivalent to the CPN in Figure 5, to see how
omplementationworks for (1-)safe nets: read ar
s repla
ed by write-ba
k ar
s and
omplementary pla
es addedfor p1 and p6. Finally, inhibitor ar
s are substituted with write-ba
k ar
s to the
omplementarypla
es. In addition to this, dummy pla
es were inserted to the presets of t1 and t3 (the originalnet from Figure 5 is not safe).The Petri net obtained that way is equivalent to the original net in the sense that both of themenable the same �ring sequen
es, and that a �ring sequen
e applied to both graphs leads to equalmarkings of all pla
es that are de�ned in both nets. In [9℄, a di�eren
e is pointed out: transitionsthat are not in
on
i
t in the
ontext-dependent net
an be in
on
i
t in the modi�ed net. Thisdi�eren
e need not be
onsidered for our appli
ation, but
an be relevant in other
ases.12

p0

t5

t4t1

t3

t6

t8

t2p3

p4

p5p6

t7

p20 p21

c1

c6

p1

d3 d1

Figure 10: Safe Petri net
orresponding to the P/T net from Figure 5Now, a test
ase
an be
omposed. For this purpose, we introdu
e an additional target pla
efor ea
h target rule and add it to the postset of every instan
e of the rule. For the resulting net, a
overability
he
ker is asked for a �ring sequen
e σ that
overs the target pla
es, that isM0 →∗

σ Msu
h that for all target pla
es sr : M(sr) ≥ 1. If su
h a σ is found, a solution to our problem
anoften be obtained by �ring the �rst, generating part of the sequen
e. The subgraph generated bythe marking at this point enables a sequen
e of transitions that in
ludes instan
es of all targetrules, whi
h makes it a valid test
ase.However, it may happen that for σ = t1t2 · · · tn there are 0 < i < j ≤ n su
h that ti
orrespondsto a translating and tj to a generating rule. In su
h a
ase one
an try to serialize the sequen
eby rearranging some of the transitions, whi
h does not always work and may be impossible evenif a valid �ring sequen
e really exists (
ompare Se
tion 4.7).
4 Implementing a Test Case Generator

4.1 The atcg ExecutableTogether with this do
ument, the implementation of a test
ase generator for translators repre-sented by GTS is released. It is based on
ode for the GTS analyzer AUGUR and therefore
alled
atcg, the AUGUR test
ase generator. The exe
utable �le takes three arguments:� gts: union of generating grammar and translating GTS� depth: depth of the generated pre�x of the unfolding� target: a set of target rewriting rulesIn addition to this, some options
an be passed to the program:

-a dire
tory
ontaining AUGUR binaries
-c dire
tory
ontaining
he
k exe
utable (Model Che
king Kit)
-d do not unfold the graph transformation system
-e dire
tory
ontaining neato exe
utable
-f �re up to level (normally 0)
-g output �le for the unfolding (petri graph in GXL format)
-h display help
-n output �le for the unfolding (PEP low level net format)
-o output �le for the test
ase (GXL format)13

GTXL processing

aunfolddepth
Petri graph

PG GXL processing assign levels

evaluate NAC

write net property

target create dummy & target places

PEP ll_net processing

Model Checking Kit

serialize GXL processing

NEATO

GTS

property safe Petri net

witness set test case

postscript

Figure 11: Program
ow of the implemented test
ase generator
-p output �le for a visualization as posts
ript
-v promulgate version number
-w working dire
tory (must have writing permission)Note that atcg
alls AUGUR binaries instead of invoking them by fun
tion
alls. This allowsa user to swit
h between di�erent versions of AUGUR or to repla
e it by an equivalent set ofexe
utable �les. The aunfold binary is however required to support the -cc option, whi
h in
reasesits performan
e eminently, but is missing in older versions.If option -d is sele
ted, the program will assume that the unfolding is already up to date.By default, if gts.xml is the �le
ontaining the GTS, the unfolding is loaded from gts.unf.xml. Adi�erent lo
ation
an be indi
ated with option -g.The rules in gts have attributes
alled their levels (
ompare Se
tions 4.5 and 5.3). We areinterested only in exe
utions where rules are applied in in
reasing order of levels. The value ̥passed together with option -f indi
ates the level where the translator begins. Rules with levelslower than ̥ are
onsidered part of the generating grammar, whereas rules with levels greater orequal to ̥ are part of the translating GTS.

4.2 Combining Internal and External ModulesA modular stru
ture
ombining both the exe
ution of
ode that belongs to atcg and
alls toexternal binaries was
hosen. A survey on their intera
tion is given in Figure 11.Given its three mandatory arguments gts, depth and target, atcg tries to �nd an element - ahypergraph - in the sour
e language of the translator that allows, among others, the target rules tobe applied during the pro
ess of translation. To a
hieve this, it performs essentially the followingsteps:1. produ
e an unfolding of the gts, ignoring NAC, with a depth given by the user2. assign levels to transitions of the Petri graph, i.e. the unfolding of gts3. add dummy pla
es and target pla
es to the Petri graph4. s
an for mat
hes of NAC and
reate
omplement pla
es with write-ba
k ar
s14

5.
he
k whether the target pla
es are
overable� no? abort� yes? load a �ring sequen
e (witness set) that
overs the pla
es6. serialize the �ring sequen
e (abort if that is impossible)7. build the test
ase by �ring the generating part of the sequen
eThe internal and external modules implementing these steps will be des
ribed in the followingpassages. Compare [7℄ for a manual to AUGUR and its
omponents and Se
tion 6 of this do
umentfor a survey on the modi�
ations and additions made to the
ode of AUGUR in order to obtaininternal
omponents of the test
ase generator.
4.3 Document ProcessingSeveral data formats must be pro
essed:� Graph Ex
hange Language GXL 1.0.1 (read and write)� the variant of GXL used for Petri graphs (read and write)� Graph Transformation Ex
hange Language GTXL (read)� the PEP ll net format for low level Petri nets (write)For a des
ription of these do
ument types read Se
tion 5 or, respe
tively, the literature indi
atedthere. The library libxml2 is used for parsing and writing the XML formats (all ex
ept for thePEP ll net format).
4.4 Unfolding the Grammar with aunfoldThe tool aunfold is a part of AUGUR that
an
onstru
t the k-depth approximated unfolding of agraph grammar [7℄. Its input is a GTXL �le and its output a Petri graph in GXL format (
ompareSe
tion 5). The
all made to aunfold is:
aunfold -cc gts.xml gts.unf.xmlThe width restri
tion from Se
tion 3.3 is not supported dire
tly. If all rules are to be unfolded
w times for the same mat
h, this
an be a
hieved by pla
ing an additional hyperedge with a spe
iallabel in their
ontext and
reating w edges with that label in the start graph. NAC are ignoredby aunfold and pro
essed later on by a method of atgc.
4.5 Processing the Unfolded GrammarSome modi�
ations are ne
essary before the net produ
ed by aunfold as a part of the grammarunfolding
an be passed on to the model
he
ker for safe Petri nets. We begin by adding levelvalues to transitions.In general, the level of a transition is a level of the
orresponding rule. An additional require-ment is raised by the fa
t that we want to be able to serialize �ring sequen
es of the net, i.e. itshould be possible to �re the transitions of level 0 �rst, then the transitions of level 1, and so on.Speaking in terms of [2℄, we want to ensure that the model
he
ker returns a sequen
e "
ompatiblewith the grammar ordering", whi
h is a ne
essary
ondition for obtaining a test
ase.15

0 0

021 0

2 t8t7

t1 t4

t5t6t2t3

Figure 12: Levels and
ausality relation for the CPN from Figure 5For that purpose we demand that the level of a transition t is larger than all levels of transitionsin ⌊t⌋. Instan
es of rules that operate on various levels are always given the least value
ompatiblewith this requirement. If that is impossible, the transition is removed together with the wholesubgraph of the Petri graph that depends on it.Suppose that in Figure 12, the transitions t1, t2, t4, and t5 have level 0, t3 and t8 have level
1 and the others have level 2. Then, in the net passed on to the model
he
ker, transition t8 willno longer appear. For the implementation, a simple DFS
an be used. However, even after theremoval of su
h transitions, the net may enable non-serializable �ring sequen
es due to restri
tionsimposed by inhibitor ar
s.The next step
reates additional pla
es. As des
ribed in se
tion 3, every transition with anempty preset is
onne
ted to a dummy pla
e in order to guarantee that the net is safe. With thismodi�
ation we know that the P/T net
omponent of the unfolding is an o

urren
e net. For ea
htarget rule, an additional target pla
e is inserted to the net, and every time we �nd an instan
eof that rule in the net, we add that pla
e to its postset. (Although the target pla
es
an have anin-degree greater than one and be marked with more than one token, this does not turn out to bea problem.)As aunfold ignores negative appli
ation
onditions, atcg pro
esses them in an additional step.For every rule r = (I, L, R,ϕL, ϕR,∇) and for all ν ∈ ∇, all mat
hes of ν(L) + eν in the Petrigraph are extended by an inhibitor ar
 leading from eν to the instan
e of r. The CPN is ta
itlystored as the equivalent Petri net (read ar
s are represented by write-ba
k ar
s and inhibitor ar
sby write-ba
k ar
s to a
omplementary pla
e).
4.6 Model Checking Kit for Safe Petri NetsThe Model Che
king Kit is a
olle
tion of programs for modelling �nite state systems that areinternally represented as safe Petri nets [15℄. Among many other formats, it
an read a Petri netin PEP format (Se
tion 5.4) and
he
k whether some of its pla
es
an be
overed. The
all madeto its binary �le check is the following:
check pep:mcs-reach gts.unf.ll_net formula | tail -n 2 > witness_setThe formula is a
onjun
tion over the target pla
es in plain text format. The last two lines ofthe output are stored in a spe
ial �le. If the pla
es
an be
overed, they
ontain what is
alled thewitness set , i.e. a �ring sequen
e that
overs them.
4.7 Building the Test CaseIn Figure 13, you
an see a rendering of the test
ase generated for the target rule KillUseless-Fun
tion. The rules of the generating grammar, i.e. those that
onstru
t the operator Op, have16

Figure 13: Test
ase enabling the target rule KillUselessFunction

t1

g3

t2

target

target

g1 g2

g4

Figure 14: Net with non-serializable �ring sequen
e {t2, g3, t1}been applied, while the target rule that belongs to the translator has not. In this
ase, it is noproblem to serialize the witness set, be
ause it is
learly possible to
onstru
t a useless fun
tionwithout applying any rules from the arithmeti
 expression optimizer.Note that here, the test
ase does not
orrespond exa
tly to the version of the rules given inSe
tion 2.2 and in [2℄. Attributes, su
h as type and order of operators, the latter of them ne
essaryto avoid
y
les, had to be represented by edges with spe
ial labels. The te
hni
al reason for this isthat AUGUR does not evaluate any higher level notation, but requires plain, basi
 GTS as de�nedabove. For Figure 13 this means that Op represents an operator, Sigma its type (addition) andOrd1 des
ribes it as �rst order, i.e. not requiring the evaluation of any other operator.If the witness set returned by the model
he
ker does not
onsist of transitions with mono-tonously in
reasing levels, atcg trys to rearrange them a

ordingly. However, su
h an attemptneed not be su

essful.Consider the safe Petri net of Figure 14 and imagine that transitions labeled with g belong tothe generator and have level 0, whereas those labeled with t are instan
es of translating rules andhave level 1. Su
h a net
an a
tually o

ur at this stage, be
ause in the
orresponding CPN (if weimagine that pla
es with an in-degree greater than one are
omplementary pla
es) no transition oflevel 0 depends on a transition of level 1.Suppose we want to �nd a �ring sequen
e for t1 and t2. A valid solution would be g1g2t1t2.However, a model
he
ker will probably return the shorter �ring sequen
e t2g3t1. This sequen
e isenabled by the initial marking of the net and
overs the target pla
es, but
an not be serialized. The
orre
t solution to the problem is missed (solutions that the program fails to dete
t for this reasono

ur, however, far less frequently than solutions missed due to depth and width restri
tions).
17

1

2

3

4

5

Op

0

1

2

3

4

Res

0Figure 15: Example output produ
ed by NEATO
4.8 Drawing Graphs with NEATONEATO is a program that layouts graphs "by
onstru
ting a virtual physi
al model and runningan iterative solver to �nd a low-energy
on�guration" [10℄. A graph intended to be drawn byNEATO must be given in the dot format like the following example:
graph "out"

{

_2 [shape=circle, width=.15, label="1"]

_3 [shape=circle, width=.15, label="2"]

_4 [shape=circle, width=.15, label="3"]

_5 [shape=circle, width=.15, label="4"]

_6 [shape=circle, width=.15, label="5"]

_8 [label="Op", shape=box]

_8 -- _2[taillabel="0", labelangle=-35, labeldistance=1]

_8 -- _3[taillabel="1", labelangle=-35, labeldistance=1]

_8 -- _4[taillabel="2", labelangle=-35, labeldistance=1]

_8 -- _5[taillabel="3", labelangle=-35, labeldistance=1]

_8 -- _6[taillabel="4", labelangle=-35, labeldistance=1]

_9 [label="Res", shape=box]

_9 -- _6[taillabel="0", labelangle=-35, labeldistance=1]

} The result
an be seen in Figure 15. Writing a hypergraph in dot format is
urrently handledby exporting it in GXL as if it were a Petri graph and then
alling the pg2neato binary in
ludedin AUGUR.
5 Exchange Formats for Nets, Graphs and Grammars

5.1 GXL as Document Type for HypergraphsTheGraph Ex
hange Language GXL is an XML do
ument type used for graphs and hypergraphs.Throughout AUGUR and also in atcg, the GXL DTD verion 1.0.1 is used [7℄, whi
h was developedby Andy S
huerr and others in 2002. An earlier version of GXL is also des
ribed in [16℄. Thefollowing example
orresponds to the graph from Figure 15.
<?xml version="1.0"?>

<gxl><graph hypergraph="true" edgemode="undirected">18

<node id="1"/><node id="2"/><node id="3"/><node id="4"/><node id="5"/>

<rel><attr name="label"><string>Op</string></attr>

<relend target="1" startorder="0"/>

<relend target="2" startorder="1"/>

<relend target="3" startorder="2"/>

<relend target="4" startorder="3"/>

<relend target="5" startorder="4"/>

</rel>

<rel><attr name="label"><string>Res</string></attr>

<relend target="5" startorder="0"/>

</rel>

</graph></gxl>Most of this is straightforward: verti
es are represented by node tags, hyperedges by rel and
onne
tions between them by relend tags. Labels are given by embedding a string
ontent intoan attr tag.However, it may be
onfusing that the example says edgemode="undire
ted", although thehypergraph it represents is
learly dire
ted, as
an be seen from the startorder values. These indi-
ate the real order of
onne
tions between a hyperedge and the nodes atta
hed to it. Hypergraphsmust be des
ribed as undire
ted in any
ase, possibly be
ause some programs would otherwisetry to orient the
onne
tions. An undire
ted hypergraph is distinguished from a dire
ted one byleaving the startorder value away.For normal graphs, write hypergraph="false" and use
<edge id="..." from="..." to="..."> ... </edge>instead of rel tags.
5.2 Application of the GXL Format to Petri graphsPetri graphs
ombine hyperedges and verti
es from hypergraphs with pla
es and transitions fromPetri nets. AUGUR applies the GXL format to Petri graphs as well, treating pla
es as hyperedgesand transitions as verti
es. While pla
es and edges
oin
ide by de�nition, a spe
ial notation isintrodu
ed in [7℄ to distinguish transitions and pla
es.In this variant of GXL, verti
es and hyperedges get additional attributes. In parti
ular, all edgesare assigned an initial marking, whi
h is 1 if they are part of the start graph and 0 otherwise. Ar
sof the Petri net are also annotated to the hyperedges by the means of additional
onne
tions thatlead to transitions. The resulting elements look as in the following example:
<!-- vertex -->

<node id="_126"><attr name="vertex"/></node>

<!-- hyperedge -->

<rel id="_141"><attr name="label"><string>Sigma</string></attr>

<attr name="initial_marking"><int>0</int></attr>

<relend target="_123" role="vertex" startorder="0"/>

<relend target="_144" role="postset">

<attr name="weight"><int>1</int></attr>

</relend>

<relend target="_164" role="preset">

<attr name="weight"><int>1</int></attr>19

E

F

1

2

3

F

2

? ?

(IncrementE)Figure 16: Rewriting rule with NAC
</relend>

</rel>

<!-- transition -->

<node id="_197"><attr name="transition"/>

<attr name="rule"><string>KillUselessFunction</string></attr>

</node>

5.3 Graph Transformation Exchange LanguageAn XML do
ument type for graph grammars - rather than GTS, be
ause start graphs are in
luded- is the Graph Transformation Ex
hange Language GTXL, whi
h is also the format aunfoldand other exe
utables require as input.As the version of GTXL supported by AUGUR does not support negative appli
ation
ondi-tions, a modi�ed do
ument type de�nition had to be used for atcg. Essentially, the proposal from[16℄ for spe
ifying NAC was followed and inserted into the version supported by AUGUR, in a waysu
h that AUGUR binaries ignore the
onditions and pro
ess the rest
orre
tly.A rewriting Rule
onsists of a LHS, a RHS and a Mapping between from verti
es of the leftto those of the right side. Both sides of the rule are given by a RuleGraph element, the left oneof whi
h
an in
lude one or more GraphCondition elements representing the negative appli
ation
onditions. A GraphCondition in
ludes another RuleGraph with exa
tly one hyperedge, theinhibitor edge, and a Mapping from nodes in the left hand side to the nodes
onne
ted to theinhibitor edge. The rule with inhibitor from Figure 16 looks as follows in GTXL:
<Rule id="IncrementE">

<LHS><RuleGraph>

<Graph hypergraph="true" edgemode="undirected">

<node id="1"/><node id="2"/><node id="3"/>

<rel><attr name="label"><string>E</string></attr>

<relend target="1"/><relend target="2"/><relend target="3"/>

</rel>

</Graph>

<GraphCondition>

<RuleGraph>

<Graph hypergraph="true" edgemode="undirected">

<node id="2"/> <node id="4"/>

<rel><attr name="label"><string>F</string></attr>

<relend target="2"/><relend target="4"/>

</rel> 20

t1
2

p1 p2 t2Figure 17: Petri net with a weighted ar

</Graph>

</RuleGraph>

<Mapping><MapElem from="2" to="2"/></Mapping>

</GraphCondition>

</RuleGraph></LHS>

<RHS><RuleGraph>

<Graph hypergraph="true" edgemode="undirected">

<node id="2"/><node id="5"/>

<rel><attr name="label"><string>F</string></attr>

<relend target="2"/><relend target="4"/>

</rel>

</Graph>

</RuleGraph></RHS>

<Mapping><MapElem from="2" to="2"/></Mapping>

</Rule>Ex
ept for the GraphCondition element, this is also understood by aunfold. For the taskof test
ase sele
tion, we need an additional element to spe
ify whether a rule belongs to thegenerating grammar or to the translating GTS, or more generally, for a generator with level 0 and
n sequentially exe
uted translators with levels from 1 to n, in what levels a rule
an be applied.For this purpose one or more attr tags with embedded int values must be provided:
<Rule id="RULEID">

<attr name="level"><int>0</int></attr>

<attr name="level"><int>2</int></attr> ...

</Rule>This attribute is ignored by other programs as well.The AUGUR exe
utable rules2LaTeX
reates LATEX input (.tex) out of a graph grammargiven in GTXL - ignoring negative appli
ation
onditions.
5.4 PEP Format for Low Level Petri NetsPEP low level nets are a simple format for Petri nets introdu
ed by the authors of the PEP tool[4℄. It is human readable and easy to pro
ess. Look at the net from example 17 in PEP format:
PEP

PTNet

FORMAT_N

%

PL % list of places

1"p1"M2 % place p1 initially marked with 2 tokens

2"p2" % place p2 initially unmarked

%

TR % list of transitions

1"t1" 21

2"t2"

%

TP % list of arcs leading from transitions to places

1<2w2 % arc with weight 2 leading from t1 to p2

PT % list of arcs leading from places to transitions

1>1 % arc from p1 to t1

2>2 % arc from p2 to t2Instead of the PEP format one
an also use the XML do
ument type for Petri nets, the PetriNet Modelling Language (PNML), that was re
ently integrated into the Model Che
king Kit [3℄.
6 Modification and Extension of AUGURThis se
tion indi
ates parts of the AUGUR
ode that were modi�ed in a relevant way and des
ribesnew
ode that was added for atcg, just in
ase anyone wants to speed it up or redu
e its memoryrequirements (whi
h is a
tually ne
essary if you want to apply it to non-trivial input).

atgc.cppThis �le
ontains the main fun
tion that evaluates the options (
ompare Se
tion 4.1) and
ontrolsthe program
ow (
ompare Figure 11 in Se
tion 4).
class GraphGrammarThe element string target formula was added. It stores the formula that is written to the property�le and passed to the Model Che
king Kit. Four methods were added, all of them doing what youwould expe
t: bool hasRule(IDTYPE id), int �ndRule(string ruleName, bool * found), voidsetTarget(
har* target) and string getTargetFormula().
TransformationRule* GTXLReader::readRule(xmlNodePtr node)The reader for GTXL �les was adapted to the new do
ument requirements (
ompare Se
tion 5.3).In parti
ular, NAC and levels are pro
essed.
class HypergraphThe
lass was modi�ed in a way that allows it to add an edge to a Hypergraph before all of theverti
es
onne
ted to it have been added, whi
h may make sense if, in a large input �le, edgesare de�ned �rst and verti
es later. Two elements, bool a
knowledged and set<IDTYPE> miss-ing verti
es were introdu
ed to mirror the
urrent state of the obje
t. When the graph is a
tuallyused, it
he
ks itself internally, whi
h
an also be done from the outside by
alling the method boolHypergraph::a
knowledge(). The new method IDTYPE extendByFirstEdgeOf(Hypergraph&h) is used to add the inhibitor edge of a NAC to the left hand side of a rewriting rule.
class PetrigraphThree elements were added: map<IDTYPE, IDTYPE> gamma mapping stores for ea
h hyper-edge in the Petrigraph the id of its generating transition, map<IDTYPE, unsigned> lambda-mapping stores transition levels and set<IDTYPE> removed transitions is used to mark tran-sitions that are no longer
onsidered part of the Petri graph. Various publi
 methods were added,among them:� void applyLevels() assigns levels (
ompare Se
tion 4.5),� void applyNAC() evaluates NAC (
ompare Se
tion 4.5),� Hypergraph getSubgraph(PTMarking m) returns the subgraph generated by the edgesmarked in m ,� void removeSubgraph(IDTYPE transition) removes a transition and the parts of the Petri-graph that depend on it, whi
h is needed by applyLevels(),22

� and void writeFormula(
har* �lename) writes a �le with a property
orresponding to thetarget rules (
ompare Se
tion 4.6).
class PTNetTwo elements were introdu
ed: map<IDTYPE, IDTYPE>
omplement, mapping ea
h pla
ewith outgoing inhibitor ar
s to its
omplementary pla
e, and map<IDTYPE, unsigned>
apa
-ity, where the
apa
ity of these pla
es is stored, i.e. the
onstant sum of the marking of a pla
eand that of its
omplementary pla
e. The methods void addReadAr
(IDTYPE t, IDTYPE p,int w), addInhibitorAr
(IDTYPE t, IDTYPE p, int w) and several methods for dealing with
apa
ities were inserted. Method void write llnet(
har* �lename) exports the net in PEP format(Se
tion 5.4), PTFiringSequen
e readSequen
e(
har* �lename, . . .) pro
esses a �le that
on-tains a witness set, and PTMarking �reInAnyOrder(PTFiringSequen
e& ptfs, bool* isFirable)attempts to serialize a �ring sequen
e.
class TransformationRuleThe
lass was
hanged to support negative appli
ation
onditions and levels,
orresponding el-ements were introdu
ed. An additional
ag is target marks whether a rule belongs to the tar-get set or not. Ten publi
 methods were added, among them IDTYPE addNAC(HypergraphsingleEdgeGraph), bool isAppli
able(unsigned
urrent) and unsigned getNextLevel(unsigned
urrent), where the parameter
urrent stands for the
urrent operating level during the depth�rst sear
h mentioned in Se
tion 4.5.

7 ConclusionThe problem of �nding test
ases for subsets of a graph transformation system has been presentedand an implementation of a test
ase generator in a

ordan
e with proposals made in [2℄ has beendes
ribed. The followed approa
h was to
all an external program for unfolding a graph grammarwithout negative appli
ation
onditions, to s
an the Petri graph and to add inhibitor ar
s wherevermat
hes of rules extended by inhibitor edges are found. It was shown how the net
omponent ofthe unfolding is
onverted to a safe Petri net, whi
h
an be
he
ked by external software as well.Whoever tries to apply atcg to non-trivial examples will realize that it takes a lot of timeand, what is more of a problem, is very memory-
onsuming. For large examples, this is
learlydue to
ombinatorial explosion, whi
h
an not be over
ome in general when graph grammarsare unfolded. The problem of telling whether a rule of a graph grammar
an ever be appliedis unde
idable, and this apparent disadvantage is at the same time the reason why systems as
omplex as
ode optimizers
an even be des
ribed by this model.Another diÆ
ulty is inherent to the
hosen approa
h: if an appli
ation as the one presentedhere involves
alls to external binaries, and �les on the hard disk are used for
ommuni
ationbetween some of the modules, it is hard to avoid that the memory requirements multiply. Inaddition to this, several modules that belong to di�erent pie
es of software have to pro
ess thesame information, whi
h is slow and memory-
onsuming if the unfoldings are large.In many
ases, heuristi
s may also be a better
hoi
e than unfolding a graph grammar upto width and depth values that are
onstant throughout the Petri graph. On the other hand,the systemati
 and modular approa
h does also
arry important bene�ts. Single modules
an berepla
ed by di�erent versions in a

ordan
e with the needs of the user, and the whole developmentpro
ess is easier and requires less
ommuni
ation. Future e�orts
ould be dire
ted towards a
ompromise between these paradigms.
AcknowledgementsI would like to thank all the people who
ontributed to the development of AUGUR, andespe
ially Barbara K�onig for proposing the topi
 and supervising the student resear
h proje
t.23

References[1℄ P. Baldan, N. Busi, et al. Fun
torial
on
urrent semanti
s for Petri nets with read and inhibitorar
s. In Pro
. CONCUR'00, pages 442{457. Springer Verlag, 2000. LNCS 1877.[2℄ P. Baldan, B. K�onig, and I. St�urmer. Generating test
ases for
ode generators by unfoldinggraph transformation systems. In Pro
. ICGT'04, pages 194{209. Springer Verlag, 2004.LNCS 3256.[3℄ J. Bart. Integration von PNML in das Model Che
king Kit. Studienarbeit Nr. 1940 (stu-dent resear
h proje
t), Universit�at Stuttgart, Institut f�ur Formale Methoden der Informatik,O
tober 2004.[4℄ E. Best and B. Grahlmann. PEP Do
umentation and User Guide Version 1.8. Universit�atOldenburg, 1998.[5℄ J. Esparza, S. R�omer, and W. Vogler. An improvement of M
Millan's unfolding algorithm. InT. Margaria and B. Ste�en, editors, Pro
. TACAS'96, pages 87{106. Springer-Verlag, 1996.LNCS 1055.[6℄ B. K�onig. Analysis and Veri�
ation of Systems with Dynami
ally Evolving Stru
tures.Habilitation thesis, Universit�at Stuttgart, Institut f�ur Formale Methoden der Informatik, De-
ember 2004.[7℄ V. Kozioura, B. K�onig, et al. AUGUR - A tool for the analysis of graph transforma-tion systems using approximative unfolding te
hniques. Universit�at Stuttgart, Institut f�urFormale Methoden der Informatik, November 2004.[8℄ K. L. M
Millan. A te
hnique of state spa
e sear
h based on unfolding. Formal Methods inSystem Design, 6(1):45{65, 1995.[9℄ U. Montanari and F. Rossi. Contextual nets. A
ta Informati
a, 32(6):545{596, 1995.[10℄ S. C. North. Drawing graphs with NEATO. Te
hni
al report, AT&T Bell Laboratories,Murray Hill, NJ, USA, April 2002.[11℄ C. A. Petri. Kommunikation mit Automaten. Dissertation, Universit�at Bonn, Rheinis
hWestf�alis
hes Institut f�ur Instrumentelle Mathematik, 1962.[12℄ L. Priese and H. Wimmel. Theoretis
he Informatik: Petri-Netze. Springer Verlag, Heidel-berg, 2003.[13℄ W. Reisig. Petri Nets: An Introdu
tion, volume 4 ofMonographs in Theoreti
al ComputerS
ien
e. An EATCS Series. Springer, 1985.[14℄ G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Trans-formation, Vol.1: Foundations, volume 1. World S
ienti�
, 1997.[15℄ C. S
hr�oter, S. S
hwoon, and J. Esparza. The Model-Che
king Kit. In W. van der Aalstand E. Best, editors, Appli
ations and Theory of Petri Nets 2003, pages 463{472. SpringerVerlag, 2003. LNCS 2679.[16℄ G. Taentzer. Towards
ommon ex
hange formats for graphs and graph transformation systems.Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 44(4), 2001.
24

