

MD simulation of methane in nanochannels

COCIM, Arica, Chile

<u>M. Horsch</u>, M. Heitzig, and J. Vrabec University of Stuttgart

November 6, 2008

Scope and structure

- Molecular model for graphite and the fluid-wall interaction
- Scalability of the MD simulation
- Poiseuille/Couette flow of methane through graphite channels
- Cluster criteria for systems with vapor-liquid coexistence
- Vapor-liquid equilibria of methane under confinement
- Contact angle dependence on the fluid-wall interaction

Institute of Thermodynamics and Thermal Process Engineering PD Dr.-Ing. habil. Jadran Vrabec

Methane confined in a nanochannel

Poiseuille flow:

The fluid is accelerated in *z* direction

Couette flow:

The walls are accelerated in *z* direction

Contact angle:

Meniscus perpendicular to the *z* axis

State of the art: system size

Diameter / number of particles

Vishnyakov <i>et al.</i> <i>Langmuir</i> 15: 8736	1999	<i>L</i> ≤ 1,5 nm		
Werder <i>et al.</i> <i>Nano Lett.</i> 1: 697	2001	<i>L</i> ≤ 7,5 nm		
Sokhan <i>et al.</i> <i>J. Chem. Phys.</i> 117: 8531	2002	<i>L</i> ≤ 2,8 nm	$N_{\rm wall} = 2000$	
Cui und Cochran <i>Mol. Sim.</i> 30: 259	2004	$L \leq 200 \text{ nm} (\rho_{\text{lonen}} \leq 0,02 \text{ mol/l})$		
Dimitrov <i>et al.</i> PRL 99: 054501	2007	$L \le 20 \sigma_{LJ} \equiv 6 \text{ nm}$	$N_{\rm fluid} = 25000$	
Present work	2008	L up to 75 nm	N up to 4,8 million	

Scaling with isotropic domain decomposition

Molecular dynamics code *Mardyn* (developed by the *ls*₁ project):

Institute of Thermodynamics

and Thermal Process Engineering PD Dr.-Ing. habil. Jadran Vrabec

State of the art: potential models

		fluid	wall	fluid-wall
Vishnyakov <i>et al.</i> <i>Langmuir</i> 15: 8736	1999	3CLJQ (CO ₂)	rigid	Steele (10-4-3)
Werder <i>et al.</i> Nano Lett. 1: 697	2001	SPC (water)	Walther <i>et al.</i> (carbon)	LJ
Sokhan <i>et al.</i> <i>J. Chem. Phys.</i> 117: 8531	2002	LJ	Tersoff-Brenner (carbon)	·LJ
Liu und Wang <i>Phys. Rev. B</i> 72: 085420	2005	SPC (water)	rigid	LJ
Dimitrov <i>et al.</i> PRL 99: 054501	2007	LJTS (LJTS ≡ L	LJTS, elastic J, truncated and shi	LJTS fted at $r_{ij} = 2,5\sigma$)
Present work	2008	LJTS	Tersoff (also: springs)	LJTS

Reparametrization of the Tersoff potential

More adequate potential parameters for graphite:

CutoffAttractionRepulsionR = 2.0 Å (1.8 Å)
S = 2.35 Å (2.1 Å) $\mu = 2.275 \text{ Å}^{-1} (2.2119 \text{ Å}^{-1})$ $\lambda = 3.587 \text{ Å}^{-1} (3.4879 \text{ Å}^{-1})$

Institute of Thermodynamics and Thermal Process Engineering PD Dr.-Ing. habil. Jadran Vrabec

Integration time step

Universität Stuttgart

Uniform acceleration (PI controller)

Fluid-wall interaction

Lennard-Jones energy parameter: $\mathcal{E}_{FW} = \boldsymbol{\xi} \cdot \mathcal{E}_{FF}$

Lennard-Jones size parameter: $\sigma_{\rm FW} = \eta \cdot \sigma_{\rm FF}$

Institute of Thermodynamics and Thermal Process Engineering PD Dr.-Ing. habil. Jadran Vrabec

MD simulation of Couette flow

<u>www.itt.uni-stuttgart.de</u>

Poiseuille and Couette flow: velocity profile

 $T = 0.95 \ \epsilon/k, \ \rho = 1.005 \ \rho', \ v_{target} = 10 \text{ m/s}, \ \xi = 0.353, \ \eta = 0.9466 \text{ (Wang et al.)}$

Universität Stuttgart

Institute of Thermodynamics and Thermal Process Engineering PD Dr.-Ing. habil. Jadran Vrabec

Comparison of cluster criteria

criterion a_2

Institute of Thermodynamics and Thermal Process Engineering PD Dr.-Ing. habil. Jadran Vrabec

www.itt.uni-stuttgart.de

Dependence of the contact angle on ξ

<u>www.itt.uni-stuttgart.de</u>

Conclusion

System size: acceptable scaling of *Mardyn*, *L* up to 75 nm easily possible

the system geometry requires (at least static) load balancing

Flow simulations: were carried out in the canonical ensemble

unknown interaction parameters ξ and η

Vapor-liquid interface: dependence of the contact angle on ξ was studied suitable criterion for the interface: $\rho \ge \sqrt{\rho' \rho''}$

J. Chem. Phys. **128**: 164510 Phys. Rev. E **78**: 011603