MD study of Poiseuille/Couette flow and the vapor-liquid interface of methane in nanochannels

Institute for Computational Physics, Stuttgart Oberseminar "Physik mit Höchstleistungsrechnern"

M. Horsch, M. Heitzig, and J. Vrabec

December 8, 2008

Methane confined in a nanochannel

Poiseuille flow: The fluid is accelerated in *z* direction

Couette flow: The walls are accelerated in opposite z directions

Contact angle: Meniscus perpendicular to the *z* axis

tuttgart.de

Scaling with isotropic domain decomposition

Molecular dynamics code Mardyn (developed by the ls1 project):

Reparametrization of the Tersoff potential

CutoffAttractionRepulsionR = 2.0 Å (1.8 Å)
S = 2.35 Å (2.1 Å) $\mu = 2.275 \text{ Å}^{-1} (2.2119 \text{ Å}^{-1})$ $\lambda = 3.587 \text{ Å}^{-1} (3.4879 \text{ Å}^{-1})$

Uniform acceleration (PI controller)

Poiseuille, $v_{\text{target}} = 10 \text{ m/s}$, $\tau = 3 \text{ ps}$, L = 15 nm, liquid CH₄ at 166 K

-0 0

Fluid-wall interaction

Lennard-Jones energy parameter: $\mathcal{E}_{FW} = \boldsymbol{\xi} \cdot \mathcal{E}_{FF}$

Lennard-Jones size parameter: $\sigma_{FW} = \eta \cdot \sigma_{FF}$

Institute of Thermodynamics and Thermal Process Engineering PD Dr.-Ing. habil. Jadran Vrabec

MD simulation of Couette flow

0

Poiseuille and Couette flow: velocity profile

 $T = 0.95 \ \epsilon/k, \ \rho = 1.005 \ \rho', \ v_{\text{target}} = 10 \text{ m/s}, \ \xi = 0.353, \ \eta = 0.9466 \text{ (Wang et al.)}$

Poiseuille and Couette flow: viscosity

 $T = 0.95 \ \epsilon/k, \ \rho = 1.005 \ \rho', \ v_{target} = 10 \text{ m/s}, \ \xi = 0.353, \ \eta = 0.9466 \text{ (Wang et al.)}$

Couette flow	Poiseuille flow
Slip velocity $v_{\rm s} = 2 \text{ m/s}$	Slip velocity $v_{\rm s} = 8 \text{ m/s}$
Shear stress $ au = 200 \text{ kPa}$	Pressure drop $dp/dz = -9 \text{ kPa/nm}$
Kinematic viscosity $v = 1.10^{-6} \text{ m}^2$	/s Kinematic viscosity $v = 2.10^{-7} \text{ m}^2/\text{s}$
Reynolds number 0.08 < Re < 0	0.6 < Re < 1.0

Dependence of flow properties on the channel size

Universität Stuttgart

Institute of Thermodynamics and Thermal Process Engineering PD Dr.-Ing. habil. Jadran Vrabec

Disperse systems: cluster criteria

Stillinger: molecules with a distance of 1.5σ or less are liquid.

Ten Wolde and Frenkel (TWF): molecules with at least four neighbors within a distance of 1.5σ are liquid. **Arithmetic mean**, *n* neighbors (a_n): a molecule is liquid if the density in the sphere containing its *n* nearest neighbors exceeds ($\rho'+\rho''$)/2. **Geometric mean**, *n* neighbors (g_n): analogous, the required density is ($\rho'\rho''$)^{1/2}.

Nuclei can also be determined as **biconnected** (instead of connected) components, such that no nucleus can be separated by removing a single molecule (TWF' and g'_2 criteria).

Comparison of cluster criteria

Fluctuation in equilibrium: 7.0-10⁻⁴ (Stillinger), 7.4-10⁻⁴ (g₂), 3.6-10⁻⁴ (g'₂)

i t t

tuttgart.de

Dependence of the contact angle on ξ

Dependence of the contact angle on T and ξ

Simulation results for the LJTS fluid can be correlated as

 $\cos \theta(T^*, \xi) = \tanh[\exp(6.25T^*)(0.156\xi - 0.0170)].$

Conclusion

System size: acceptable scaling of *Mardyn*, *L* up to 75 nm easily possible the system geometry requires (static) load balancing

Flow simulations: were carried out in the canonical ensemble unknown interaction parameters ξ and η

Vapor-liquid interface: dependence of the contact angle on ξ and T suitable criterion for the interface: $\rho = (\rho' \rho'')^{\frac{1}{2}}$