

Molekulare Simulation von Poiseuilleströmungen zwischen Graphitplatten

Universität Stuttgart

ITT - Institutsseminar

Martin Horsch

19. Juni 2008

Simulation nanoskaliger Kanäle: Projektziele

- Wandstruktur der Kanäle aus Kohlenstoff und Silizium
 - Ebene Geometrie: z. B. Graphit und Graphen
 - Zylindrische Geometrie: z.B. Kohlenstoffnanoröhren
 - In erster Förderperiode charakteristische Längen bis zu 100 nm
- Durch gleichförmige Beschleunigung gesteuerte Strömungen
 - Poiseuilleströmung: zusätzliche Kraft wirkt auf das Fluid
 - Couetteströmung: zusätzliche Kraft wirkt auf den Festkörper
- Erweiterung des Molekulardynamik-Programms mardyn
 - ... um die Regelung von Strömungssimulationen
 - ... um das molekulare Modell f
 ür die Wand

l<mark>itt</mark>

Implementierung der Strömungssimulation

Ziel: Geschwindigkeit \vec{v}_{Ziel} bei möglichst stabiler Beschleunigung \vec{a}

Universität Stuttgart

Tersoffpotential für Kohlenstoff und Silizium

Mehrkörperpotential in der Form eines Paarpotentials:

$$u_{ij} = c(r_{ij}) \cdot (Ae^{-\lambda r_{ij}} - b_{ij}Be^{-\mu r_{ij}})$$

Mehrkörperterm:

Der Attraktionskoeffizient b_{ij} berücksichtigt die Bindungswinkel θ_{ijk} zu benachbarten Zentren k.

Stetige Ausblendung im Intervall $R \le r_{ij} \le S$ durch den Cutoffterm:

$$c(r_{ij}) = \frac{1}{2} \left(1 + \cos\left(\frac{\pi(r_{ij} - R)}{S - R}\right) \right) \approx \left(\frac{S - r_{ij}}{S - R}\right)^2 \cdot \left(3 - \frac{2(S - r_{ij})}{S - R}\right)$$

... für Kohlenstoff ist R = 1,8 Å und S = 2,1 Å.

Simulationen mit dem Tersoffpotential

Nachbarschaftslisten

- Tersoffpotential betrachtet alle benachbarten Tripel. Deshalb:
 - -1) in *bins* mit Kantenlängen der Größenordnung von r_{c} einsortieren
 - 2) Paarpotentiale auswerten, Liste erstellen
 - 3) Tersoffpotential auswerten
- Fluid-Wand-Wechselwirkung

• Integrator

- Abschneideradius S des Tersoffpotentials ist sehr kurz (C: 2,1 Å)
- Exponentielle Terme f
 ür Attraktion und Repulsion, dichtes System
- Wie weit müssen wir den Simulationszeitschritt reduzieren?

Simulationszeitschritt

Universität Stuttgart

Simulation von Graphitplatten (I)

Initialkonfiguration

Szenario

Das Methan soll in z-Richtung beschleunigt werden.

Simulation von Graphitplatten (II)

Simulation: Beschleunigung

Methan (LJTS), 175 K, 18.4 mol/l, 300 nm Plattenabstand, 40 m/s v (z-Richtung) v z (laufendes Mittel) a (z-Richtung) a_z (laufendes Mittel) "Ergebnis": $a_{z} = 44 \pm 30 \text{ nm/ns}^{2}$ 300 400 500 600 700 200 Zeit [ps]

Simulation: Dichte- und Geschwindigkeitsprofil

Poiseuilleströmung von Methangas: Simulation

Poiseuilleströmung von Methangas

itt

www.itt.uni-stuttgart.de

Strömung mit Fluid im Nassdampfgebiet

450

Methan (LJTS), 175 K, 2.02 mol/l, 300 nm Plattenabstand, 4 m/s, tau = 15 ps

Einfluss des Zeitparameters

Methan (LJTS), 175 K, 2.02 mol/l, 300 nm Plattenabstand, 4 m/s, tau = 1.5 ps

15 15 v (z-Richtung) a (z-Richtung) v z (lfd. Mittel) a z (lfd. Mittel) 10 Geschwindigkeit [m / s], Beschleunigung [nm / ns²] O 5 0 -5 -5 $a_{z} = 4 \pm 18 \text{ nm/ns}^{2}$ $a_{\rm z} = 4 \pm 16 \text{ nm/ns}^2$ 200 350 150 250 300 200 250 300 350 400 100 150 Zeit [ps] Zeit [ps]

Probleme und notwendige Korrekturen

 Ansatz: Korrelation Randwinkel <i>E</i>_{FW}/<i>E</i>_{FF} Anpassung <i>E</i>_{FW} an Experimente Ansatz: GAMESS Unmittelbar: Rechnungen bei 250 und 350 K Exzess-Bindungslänge auf 0,5%
Zeitparameter τ deutlich erhöhen Falls erforderlich auch konstantes a_z
Getrennte Bereiche getrennt beschleunigen Ähnlich: innere und äußere Schichten
Ausblendung als Polynom statt cos Nachbarn nicht jeden Zeitschritt bestimmen Zeitschritt für LJ-Potential vervielfachen Integration der dynamischen Lastbalancierung

Zusammenfassung

- Das MD-Programm *mardyn* wurde um das Festkörpermodell von Tersoff und um eine Strömungsregelung erweitert.
- MD-Simulationen von Poiseuilleströmungen mit Kanaldurchmessern von 300 nm sind bereits jetzt möglich. (Projektziel: 100 nm)
- Die Modellparameter müssen noch an QM-Berechnungen oder Experimente angepasst werden.
- Durch Optimierungen bei der Tersoff-Implementierung, unterschiedliche Zeitschritte, dynamische Lastbalancierung etc. ist eine erhebliche Reduktion der Rechenzeit möglich.