The function of the function o

Molekulardynamische Simulation von mehrphasigen Strömungen realer Fluide in nanoskaligen Kanälen

Universität Stuttgart

Pforzheim Statusseminar des SFB 716

Martin Horsch, Jadran Vrabec und Hans Hasse

9. September 2008

Simulation nanoskaliger Kanäle: Projektziele

- durch gleichförmige Beschleunigung gesteuerte Strömungen
- molekulare Simulation nanoskaliger Kanäle
 - Simulation großer Systeme erforderlich
 - in erster Förderperiode charakteristische Längen bis zu 100 nm
- mehrphasige Fluide in Kanälen aus Kohlenstoff/Silizium
 - Untersuchung der Koexistenz fluider Phasen
 - Implementierung eines geeigneten Festkörpermodells
 - Untersuchung der Fluid-Wand-Wechselwirkung

www.itt.uni-stuttgart.de

Stand der Technik

Kanaldurchmesser / Systemgröße

Vishnyakov <i>et al.</i> <i>Langmuir</i> 15: 8736	1999	<i>L</i> ≤ 1,5 nm	
Werder <i>et al.</i> <i>Nano Lett.</i> 1: 697	2001	<i>L</i> ≤ 7,5 nm	
Sokhan <i>et al.</i> <i>J. Chem. Phys.</i> 117: 8531	2002	<i>L</i> ≤ 2,8 nm	$N_{\rm Wand} = 2000$
Cui und Cochran <i>Mol. Sim.</i> 30: 259	2004	$L \leq 200 \text{ nm} (\rho_{\text{lonen}} \leq 0,0)$	2 mol/l)
Dimitrov <i>et al.</i> PRL 99: 054501	2007	$L \le 20 \sigma_{LJ} \equiv 6 \text{ nm}$	$N_{\rm Fluid} = 25000$
Projekte D.1 und A.1	2008	<i>L</i> ≤ 150 nm	N bis zu 4,8 Mio.

Stand der Technik

		Fluid	Wand	Fluid-Wand
Vishnyakov <i>et al.</i> <i>Langmuir</i> 15: 8736	1999	3CLJQ (CO ₂)	starr	Steele (10-4-3)
Werder <i>et al.</i> <i>Nano Lett.</i> 1: 697	2001	SPC (Wasser)	Walther <i>et al.</i> (Kohlenstoff)	LJ
Sokhan <i>et al.</i> <i>J. Chem. Phys.</i> 117: 8531	2002	LJ	Tersoff-Brenner (Kohlenstoff)	LJ
Liu und Wang <i>Phys. Rev. B</i> 72: 085420	2005	SPC (Wasser)	starr	LJ
Dimitrov <i>et al.</i> <i>PRL</i> 99: 054501	2007	LJTS (LJTS ≡ L	LJTS, elastisch J stetig abgeschnitte	LJTS en bei r _{ij} = 2,5 <i>σ</i>)
Projekte D.1 und A.1	2008	LJTS	Tersoff (alternativ: Federn)	LJTS

Mehrphasiges System im Gleichgewicht: Simulation

- Getrennte Äquilibrierung beider Phasen
- Einsetzung eines kleinen Tropfens (100<N<10000) in den Dampf
- Ein maßgeblicher Anteil der Stoffmenge befindet sich im Tropfen
- Vollständige Verdampfung des Tropfens ist unmöglich
- Gleichgewicht nach wenigen Nanosekunden

Lennard-Jones, stetig abgeschnitten bei 2,5 σ (LJTS)

<mark>i t</mark>

<u>www.itt.uni-stuttgart.de</u>

Mehrphasiges System im Gleichgewicht: Auswertung

Simulation der Wand

Mehrkörperpotential in der Form eines Paarpotentials:

$$u_{ij} = c(r_{ij}) \cdot (Ae^{-\lambda r_{ij}} - b_{ij}Be^{-\mu r_{ij}})$$

Stetige **Ausblendung** im Intervall $R \le r_{ij} \le S$ durch den Cutoffterm:

$$c(r_{ij}) = \frac{1}{2} \left(1 + \cos\left(\frac{\pi(r_{ij} - R)}{S - R}\right) \right) \approx \left(\frac{S - r_{ij}}{S - R}\right)^2 \cdot \left(3 - \frac{2(S - r_{ij})}{S - R}\right)$$

... für Kohlenstoff ist R = 1,8 Å und S = 2,1 Å.

Der Attraktionskoeffizient b_{ij}

berücksichtigt die Bindungswinkel θ_{ijk} zu benachbarten Zentren k.

Strömung von Methan zwischen Graphitplatten

MolClou ime: 52.00 (52.00) animation: stopped (x20.000 fwrd)

Poiseuilleströmung:

Universität Stuttgart

Beschleunigung des Fluids in z-Richtung

Couetteströmung:

Beschleunigung einer der Platten in z-Richtung

Integrationszeitschritt

Universität Stuttgart

Fluid-Wand-Wechselwirkung

Lennard-Jones-Energieparameter: $\mathcal{E}_{FW} = \boldsymbol{\xi} \cdot \boldsymbol{\mathcal{E}}_{FF}$

Universität Stuttgart

Implementierung der Strömungssimulation

Ziel: Geschwindigkeit \vec{v}_{Ziel} bei möglichst stabiler Beschleunigung \vec{a}

Anpassung der Beschleunigung:

$$\dot{a} = v_{\text{Ziel}} - v - \tau \dot{v}$$
 (PI-Regler)

Dichteprofil: flüssiges Methan in einem engen Kanal

T = 175 K; $\rho = 18,4$ mol/l; L = 3 nm; $\xi = 0,353$ 0,06 - 0,12 ns Dichte des Fluids in mol/l 0 0 0 0 0,42 - 0,48 ns 20 10 0 2 6 y-Koordinate in nm

Poiseuilleströmung von flüssigem Methan

Detektierung von Phasengrenzflächen

Clusterkriterien für das LJTS-Fluid (analog für CO₂):

 \Rightarrow Stillinger (1963)

Molekül *i* hat einen Nachbarn *j* mit $r_{ij} \le 1,5\sigma$

⇒ Rein ten Wolde und Frenkel (1998) Molekül *i* hat vier Nachbarn mit $r_{ij} \le 1,5\sigma$

⇒ arithmetisches Mittel Kugel um Molekül *i* und zwei Nachbarn mit $\rho \ge \frac{\rho' + \rho''}{2}$

 \Rightarrow geometrisches Mittel

Kugel um Molekül *i* und zwei Nachbarn mit $\rho \ge \sqrt{\rho' \rho''}$

Universität Stuttgart

 \Rightarrow Kible (2008)

Stillinger-, Zusammenhangs-, und Energiekriterium

i t t

Anwendbarkeit der Clusterkriterien

	CO	₂ 237 K	CO ₂ 285 K		
X vap	VLE	sup	VLE	sup	
Stillinger	1,7%	43,8%	2,4%	13,5%	
RTWF	3,1%	90,3%	13,8%	80,1%	
arithmetisch	3,5%	89,4%	13,4%	76,8%	
geometrisch	2,4%	47,0%	8,6%	52,8%	
Kible	2,6%	83,5%	10,0%	72,3%	

Das Clusterkriterium von Stillinger kann in der Nähe des kritischen Punktes nicht mehr klar zwischen Flüssigkeit und (übersättigtem) Dampf unterscheiden.

Fluktuation detektierter Tropfen

Kontaktwinkel eines Meniskus

www.itt.uni-stuttgart.de

Abhängigkeit des Kontaktwinkels von ξ

Skalierung von *mardyn*

Universität Stuttgart

Zusammenfassung

Systemgröße: Projektziel erreicht (L > 100 nm)

Systemgeometrie erfordert Lastbalancierung

Strömungssimulationen: im kanonischen Ensemble

unbekannter Wechselwirkungsparameter ξ

Phasengrenzfläche: Abhängigkeit des Randwinkels von ξ untersucht Geeignete Definition der Phasengrenze: $\rho \ge \sqrt{\rho' \rho''}$

J. Chem. Phys. **128**: 164510 Phys. Rev. E **78**: 011603 ASME J. Heat Transfer (im Druck)