

BCNucleation-Aggregation Workshop

Grand canonical molecular dynamics simulation of homogeneous nucleation

Universitat de Barcelona, Departament de Física Fonamental, June 18, 2009

M. Horsch, H. Hasse, and J. Vrabec

Molecular simulation of nucleation

Indirect simulation:

Transition path sampling Determination of the critical size ... by observing single droplets in non-equilibrium ... by observing single droplets in equilibrium

Direct simulation:

... of a metastable state far from the spinodal line ... of nucleation at a high supersaturation, decreasing over time

... of a metastable state near the spinodal line ... of nucleation at a constantly high supersaturation

The critical nucleus

... is defined by a *stable* or *unstable* equilibrium with the vapor.

It is essential to know the supersaturation in terms of $\Delta \mu$.

Equilibrium vapor pressure

Equilibrium condition for a droplet containing *j* molecules:

p = p(T, j)

 ΔG at constant *p* and *T*: 1 unstable equilibrium

 ΔF at constant V and T:

1 unstable equilibrium
1 stable equilibrium

Systems containing a single droplet

- Vapor and liquid are equilibrated separately.
- A small (j < 10000) droplet is inserted into the vapor.
- If the droplet cannot evaporate completely, an equilibrium is established within a few nanoseconds.

t-s-LJ fluid (r_c = 2.5 σ)

Surface tension

Integration of the $p_N(r)$ profile:

$$\gamma^{-3} = \frac{-(p_{\rm I}-p)^2}{8} \int_0^\infty r^3 \left[\frac{dp_{\rm N}(r)}{dr}\right] dr$$

Size dependence (Tolman):

$$\frac{\gamma_{\infty}}{\gamma} = 1 + \frac{2\delta_{\mathrm{T}}}{R_{\gamma}} + O(R_{\gamma}^{-2})$$

Correlation from simulation data for $T = 0.65, 0.70, \dots 0.95 \epsilon/k$:

$$\frac{\delta_{\rm T}}{R_{\rm Y}} = \left(\frac{0.7}{1 - T/T_{\rm c}} - 0.9\right) j^{-1/3}$$

Tolman equation

The higher order terms of the Tolman equation should not be neglected.

Direct MD simulation of nucleation

- Integration time step typically between 1 and 5 fs; Feasible simulation time: on the order of nanoseconds.
- > A saturated vapor with $V = 10^{-20}$ m³ contains: 800,000 molecules (methane at 114 K = 0.6 T_c) 7,000,000 molecules (CO₂ at 253 K = 0.83 T_c)
- > Minimal nucleation rate accessible by direct simulation:

Grand canonical molecular dynamics

Algorithm according to Cielinski:

- fixed values of μ , V und T
- test insertion of a molecule at a random position

$$\boldsymbol{P}_{\text{ins}} = \max\left[1, \exp\left(\frac{\mu - \Delta U_{\text{ins}}}{kT}\right) \frac{V}{\Lambda^3 (N+1)}\right]$$

• test deletion of a random molecule

$$P_{\rm del} = \max\left[1, \exp\left(\frac{-\mu - \Delta U_{\rm ins}}{kT}\right)\frac{V}{\Lambda^3 N}\right]$$

• equal number of test insertions and deletions $(10^{-5} - 10^{-3} / \text{step})$

Supersaturation from *NVT* and μVT simulation

Szilárd's demon

SZILÁRD

McDonald's demon

Interactive presentation: McDonald's demon

Comparison: *NVT* and μVT simulation

Nucleus size distribution

t-s-LJ fluid at $T = 0.7 \epsilon/k$: $\mu VT (S = 2.866)$ and $NVT (\rho = 0.004044 \sigma^3)$ simulation

Good agreement with CNT for *j*^{*} and the number of small nuclei.

Threshold dependence of the intervention rate

CNT predicts an acceptable value for j^* and underestimates J significantly.

GCMD simulation of nucleation: Results

Conclusion

- MD simulation of **equilibria** allows sampling over an arbitrary time interval, eventually leading to the desired level of accuracy.
- Single droplets can be stable in the canonical ensemble.
- A supersaturated vapor near the spinodal line can be stabilized by grand canonical simulation with McDonald's demon.
- The **classical theory** leads to acceptable results for the t-s-LJ fluid. However, it does not take into account curvature effects on the surface tension.

