

12th HLRS Results and Review Workshop

Molecular modeling of hydrogen bonding fluids: vapor-liquid coexistence and interfacial properties

High Performance Computing Center Stuttgart (HLRS), October 8, 2009

M. HORSCH, M. HEITZIG, T. MERKER, T. SCHNABEL, Y.-L. HUANG, H. HASSE, J. VRABEC

Technology Vision 2020: The US chemical industry

Molecular modeling: Force fields

Geometry

Bond lengths and angles

Electrostatics

Position and magnitude of dipoles, quadrupoles and partial charges

Dispersion and repulsion

- Parameters of
 - Lennard-Jones potentials

Numerous parameters

THERMODYNAMIK UND ENERGIETECHNIK PROF. DR.-ING. HABIL. JADRAN VRABEC ThEt

Modeling of hydrogen bonding fluids: Ammonia

- NH₃ model of Eckl *et al.*
- ◊ ○▲ Other models
 - Correlation of experimental data

THERMODYNAMIK UND ENERGIETECHNIK PROF. DR.-ING. HABIL. JADRAN VRABEC Excellent reliability for the extrapolation of thermophysical properties

Ammonia: Predicted transport properties

+ experimental data

• simulation results

THERMODYNAMIK UND ENERGIETECHNIK PROF. DR.-ING. HABIL. JADRAN VRABEC

ThEt

Molecular simulation of fluid mixtures

MD simulation of a single droplet

- Vapor and liquid are equilibrated separately
- A small (n < 10000) droplet is inserted into the vapor
- If the droplet cannot evaporate completely, an equilibrium is established within a few nanoseconds

truncated-shifted LJ fluid ($r_c = 2.5 \sigma$)

Vapor-liquid coexistence: Cluster criteria

Stillinger: molecules with a distance of 1.5σ or less are liquid. **Ten Wolde and Frenkel** (TWF): molecules with at least four neighbors within a distance of 1.5σ are liquid. **Arithmetic mean**, *n* neighbors (a_n): a molecule is liquid if the density in the sphere containing its *n* nearest neighbors exceeds ($\rho'+\rho''$)/2. **Geometric mean**, *n* neighbors (g_n): analogous, the required density is ($\rho'\rho''$)^{1/2}.

Nuclei can also be determined as **biconnected** (instead of connected) components, such that no nucleus can be separated by removing a single molecule (TWF' and g'_2 criteria).

Comparison of cluster criteria

Droplet interface properties

Contact angle: Simulation of a meniscus

Contact angle and fluid-wall dispersion

High performance computing

THERMODYNAMIK UND ENERGIETECHNIK PROF. DR.-ING. HABIL. JADRAN VRABEC ThEt

Innovative HPC-Methoden und Einsatz für hochskalierbare Molekulare Simulation (IMEMO)

Bundesministerium für Bildung und Forschung

Project scheduled from October 2008 to December 2011

Project associates:

Industrial associates:

Conclusion

Molecular simulation for process engineering ...

- is already applied in the industry
- raises high expectations
- is a common endeavor of engineers, natural scientists, and computer scientists
- relies on HPC: Hardware, software, and algorithms