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MD simulation of a single droplet

Vapor and liquid are
equilibrated separately

A small (j < 10000)
droplet is inserted into 
the vapor

If the droplet cannot
evaporate completely,
an equilibrium is
established within a few
nanoseconds

t-s-LJ fluid (rc = 2.5 σ)
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Single droplet in non-equilibrium
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The critical nucleus size cannot be clearly detected by non-equilibrium simulation

t-s-LJ fluid

Vapor properties:

N = 130,000
ρ = 0.0268 / σ 3
T = 0.80 ε/k

Time interval ≈ 1 ns

Classical theory: j* = 850
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NpT: N = 6000, p = 1170 kPa
NVT: N = 5000, ρ = 1.40 mol/l
NVT: N = 2000, ρ = 2.16 mol/l
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methane at 149 K

Equilibrium vapor pressure

Equilibrium condition for 
a droplet containing j 
molecules:

( )jTpp ,=

ΔG at constant p and T:

1 unstable equilibrium

ΔF at constant V and T:

1 unstable equilibrium
1 stable equilibrium
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pressure in units of εσ-3
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Critical nucleus from equilibrium MD simulation

present simulation data
classical theory—

Kelvin equation:

Good prediction of the critical
size for low temperatures

Above 0.8 Tc, significant
deviations are present
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time in nanoseconds
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Nucleation from MD in the NVT ensemble

Yasuoka and Matsumoto (1998):

Number of emerging nuclei with >j molecules per volume and time

Typical approach:

determine the nucleation
rate for various j values

250,000 methane molecules
at 130 K and 1.606 mol/l
(full LJ potential)
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pressure in units of εσ-3
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Nucleation rate following Yasuoka & Matsumoto

t-s-LJ fluid
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Algorithm: MC insertion/deletion steps alternating with MD steps

• fixed values of μ, V und T

• test insertion of a molecule at a random position

• test deletion of a random molecule

• equal number of insertions and deletions (10-6N to 10-3N / step)

Grand canonical MD

( )
μ⎡ ⎤− Δ⎛ ⎞

= ⎢ ⎥⎜ ⎟ Λ +⎢ ⎥⎝ ⎠⎣ ⎦

pot
ins 3min 1,exp

1
U VP

kT N

μ⎡ ⎤− − Δ⎛ ⎞
= ⎢ ⎥⎜ ⎟ Λ⎝ ⎠⎣ ⎦

pot
del 3min 1,exp

U VP
kT N

Thermodynamic conditions of supersaturated state are maintained 
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McDonald‘s demon

McDONALD
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CNT shifted
to ln J = -22.0

t-s-LJ fluid
T = 0.7 ε/k
S = 2.496

Probability for a nucleus of
growing from size i to infinite size:

and in particular:

Intervention rate as a function of the threshold size

CNT predicts an acceptable value for j* and underestimates J significantly
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nucleus size in number of molecules
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nucleus size in number of molecules
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Maximal overheating of growing nuclei

Ethane: 280 K, 2.80 mol/l, NVT
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pressure in units of εσ-3
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GCMD simulation of nucleation: Results

McDonald‘s demon
classical theory
Hale
Reiss & Reguera
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Conclusion

MD simulation of steady states allows sampling over an arbitrary  

time interval, eventually leading to the desired level of accuracy

Single droplets can be stable in the canonical ensemble

A supersaturated vapor near the spinodal line can be stabilized 

by grand canonical simulation with McDonald‘s demon

Classical nucleation theory leads to acceptable results for

the t-s-LJ fluid
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