

Turbulence, Heat and Mass Transfer (THMT '09)

Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation

Sapienza Università di Roma, September 14, 2009

M. T. HORSCH, J. VRABEC, M. BERNREUTHER, H. R. HASSE

Molecular modeling

Geometry:

 \Rightarrow Bond lengths and angles

Electrostatics: ⇒ Position and magnitude of point polarities

Dispersion and repulsion:

- \Rightarrow Lennard-Jones
 - potential parameters

INSTITUT FÜR VERFAHRENSTECHNIK

Ethylene oxide: Simulation challenge

Industrial Fluid Properties
 Simulation Collective

Ohio Supercomputer Center

Ethylene oxide: Deviation from experimental data

Flow induced by an additional force

Poiseuille flow

- ⇒ periodic boundary condition
- $\Rightarrow \text{acceleration } a_z$ of fluid molecules
 in z direction
- $\Rightarrow \text{ wall velocity } v_z = 0$ in z direction

Pressure drop:

$$-\frac{d\rho}{dz} = \frac{F_z}{V} = \rho a_z$$

Graphite model and implementation

Optimized potential parameters for graphite:

CutoffAttractionRepulsionR = 2.0 Å (1.8 Å)
S = 2.35 Å (2.1 Å) $\mu = 2.275 \text{ Å}^{-1} (2.2119 \text{ Å}^{-1})$ $\lambda = 3.587 \text{ Å}^{-1} (3.4879 \text{ Å}^{-1})$

INSTITUT FÜR VERFAHRENSTECHNIK

ThEt

Boundary layers and adsorption

THERMODYNAMIK UND ENERGIETECHNIK PROF. DR.-ING. HABIL. JADRAN VRABEC

Poiseuille flow of methane in a graphite channel

Fluid velocity profile

Fluid velocity profile

PROF. DR.-ING. HABIL. JADRAN VRABEC

Properties of nanoscopic Poiseuille flow

Conclusion

Molecular simulation ...

- ... is of increasing relevance for chemical engineering
- ... can be applied to nanoscopic flow, heat and mass transfer
- ... can analyze systems up to the μ m scale as a HPC application
- ⇒ Fluid flow in nanoscopic channels can be simulated by imposing an additional uniform acceleration on fluid molecules
- \Rightarrow Highly accurate effective potentials for many fluids and solids are available, facilitating the simulation of real surface effects