

CCP5 Annual Meeting

Surface property corrected modification of the classical nucleation theory

Sheffield Hallam University, September 15, 2010

Martin Horsch, Hans Hasse, and Jadran Vrabec

The critical droplet

... is defined by a *stable* or *unstable* equilibrium with the vapour phase.

Equilibrium vapour pressure

Equilibrium condition for a droplet containing *n* atoms:

$$p = p(T,n)$$

 ΔG at constant *p* and *T*: 1 unstable equilibrium

 ΔF at constant V and T:

1 unstable equilibrium
1 stable equilibrium

Canonical MD simulation of curved interfaces

PROF. DR.-ING. HABIL. JADRAN VRABEC

Droplet properties in equilibrium

Droplet properties in equilibrium: Discussion

PROF. DR.-ING. HABIL. JADRAN VRABEC

Nucleation: Direct simulation vs. experiment

Integration time step typically between 1 and 5 fs; Feasible simulation time: on the order of nanoseconds.

 A saturated vapor with V = 10⁻²⁰ m³ contains: 800 000 molecules (saturated methane at 114 K) 7 000 000 molecules (saturated CO₂ at 253 K)

> Minimal nucleation rate accessible by direct simulation:

#nuclei / (volume V x time Δt) = nucleation rate J 10 / (10⁻²⁰ m³ x 10⁻⁹ s) = 10³⁰ / m³s

Direct MD simulation above 10³⁰ / m³s

Experiment up to 10²³ / m³s

INSTITUTE OF PROCESS ENGINEERING

Innovative HPC Methods and Applications for Highly Scalable Molecular Simulation (IMEMO)

Project associates:

Industrial associates:

Direct MD simulation of nucleation

Yasuoka-Matsumoto method:

- Canonical MD simulation
- Limited time interval for nucleation
- Conditions change over time

GCMD, i.e. MD steps alternating with GCMC insertion/deletion steps

Thermodynamic conditions of the supersaturated state are maintained

INSTITUTE OF PROCESS ENGINEERING

Video: McDonald`s dæmon

INSTITUTE OF PROCESS ENGINEERING

ThEt

Nucleation rates from GCMD + McDonald`s dæmon

Nucleus size distribution

LJTS fluid at $T = 0.7 \epsilon/k$: $\mu VT (S_{\mu} = 2.866)$ and $NVT (\rho = 0.004044 \sigma^3)$ simulation

Good agreement with CNT for n^* and the number of small nuclei.

Surface property corrected CNT

Equilibrium condition for critical droplets yields 2 dV = R dA and hence

$$dA = \frac{2dV}{R} \approx \frac{8\pi Q^2}{Q-\delta} dQ.$$

 δ is positive $\longrightarrow dA$ is larger than according to capillarity approximation.

ThEt

Surface property corrected nucleation theory

Effect: A larger surface area compensates the lower surface tension.

Conclusion

- **MD simulation of equilibria** allows sampling over an arbitrary time interval, eventually leading to the desired level of accuracy.
- Single droplets can be stabilized in the canonical ensemble.
- A supersaturated vapour near the spinodal line can be stabilized by grand canonical simulation with McDonald's dæmon.
- The **classical theory** leads to acceptable results for the LJTS fluid. However, it does not take into account curvature effects on the surface tension.
- A consistent description is given by postulating an increased surface of tension.