Capturing the divergence of length and time scales at the critical point by molecular dynamics simulation

Schwetzingen, June 22, 2010

Martin F. Bernreuther, Hans Hasse, Martin T. Horsch, Zengyong Lin, Svetlana K. Miroshnichenko, Christoph Niethammer, Jadran Vrabec
Corresponding states and molecular modeling

Simple molecular models

Lennard-Jones 2CLJD / 2CLJQ

σ, ε

noble gases
methane

78 real fluids
97.4% of their mixtures

Parametrization

Fit to large number of VLE data

or

\(T_c \) and \(\rho_c \)

\(T_c, \rho_c, \rho_c, \) and \(p_s(0.7 \ T_c) \)
Determination of the critical point

In the critical limit,

- the correlation length ξ,
- the relaxation time τ,
- local density fluctuations (e.g. β_T),
- local energy fluctuations (e.g. c_v),

... diverge while for VLE data, the precision decreases.

Experiment: Critical opalescence.
Innovative HPC Methods for Molecular Simulation

future challenges!

adsorption
ionic liquids
critical behaviour
toxic/explosive fluids
Direct approach: Isochoric heat capacity

relaxation of initially homogeneous systems

N = 2^{22}

u in units of ε

simulation time in LJ units

(0.00 0.02 0.04 0.06)

$T^* = 1.06$

$T^* = 1.08$

$T^* = 1.1$

relaxed state

(truncated-shifted LJ potential; the time unit roughly corresponds to 2 ps)
Indirect approach: Phase coexistence below T_c
Interfacial relaxation time

$T^* = 1.06$ (below T_c) \hspace{1cm} t^* = 900

$T^* = 1.1$ (above T_c) \hspace{1cm} t^* = 900
Interfacial relaxation time

\[T^* = 1.06 \text{ (below } T_c \text{)} \quad t^* = 4500 \]

\[T^* = 1.1 \text{ (above } T_c \text{)} \quad t^* = 4500 \]
Critical temperature by extrapolation

Binodal line for the truncated-shifted LJ fluid

\[T_c \approx 1.078 \varepsilon/k \]

Guggenheim approach
Assumption: critical exponent \(\beta = 1/3 \)
Scaling of the \textit{ls1 mardyn} program

homogeneous truncated-shifted LJ system

- HLRS nehalem cluster Baku/Laki

methane + graphite

- 2 000, 4 000, 8 000, and 16 000 particles per process

- uniform subdomains
- static load balancing

- simulation loop
- input/output
Communication and load balance

OpenMPI, gcc-4.1.2, HLRS nehalem cluster Baku/Laki.
Conclusion

Approaches to analyzing critical behaviour by molecular simulation:

- Divergence of fluctuation related quantities
- Disappearance of the vapour-liquid coexistence

... require relatively large systems and a long simulation time.

- Extrapolation of VLE properties

... data become less reliable near T_c.

- Extrapolation of interface properties

... in the vicinity of T_c, relatively large V and Δt are required as well.

competence in high performance computing \rightarrow capturing critical behaviour