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Surface tension
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Main advantages of  the virial route:

• Equilibrium analysis (no unstable configurations)

• Yields the surface of  tension radius R = 2γ/Δp.

Normal pressure decays at R.

Significant decrease of  γ due 

to spherical curvature.

The virial route

Bakker-Buff  equation:
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Surface tension

Main advantages of  the variational route:

• Free energy differences are considered in a direct way.

• No mechanical equilibrium assumption is applied.

Nonlinear terms are essential.

Tolman length much smaller

than based on other methods.
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equimolar radius in units of  ζ

deviation of  ΔU from mean
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-2 LJSTS fluid, T = 0.8 ε

Canonical partition function:
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For small deformations:

γ = ΔF/ΔA with A = 4πQ 2 + O(δQ)



Discretization of interfaces

Effective radii for a droplet

Capillarity radius P = 2γ0/Δp, from 

the Laplace equation and the 

surface tension in the planar case.

Equimolar radius Q, from condition 

Γ = 0 for the excess density.

Laplace radius R = 2γ/Δp, based 

on a known value of  the surface 

tension for the curved interface.

Conservative radius RC for which 

the excess free energy is

Radii R(ρ) for a density ρ´ > ρ > ρ´´ .
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Discretization of interfaces

capillarity radius P in units of 
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LJTS fluid

p  from density profiles

p  from IK pressure tensor (Vrabec et al.)
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Clustering

• Molecules with a distance between the 

centres of  mass rij < rSt are regarded as 

part of  the liquid phase (Stillinger).

• At least n = 4 neighbours are required

within a sphere with the radius rSt around

the centre of  mass (ten Wolde-Frenkel).

• A molecule is liquid if  the sphere around its

n nearest neigbours has an average density

greater than the arithmetic (an) or the

geometric (gn) mean between ρ´ and ρ´´.

n = 5

Cluster critieria for the dispersed liquid phase



liquid drop size in number of molecules
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Population statistics

time in units of ns
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Yasuoka and Matsumoto (1998):

• Canonical MD simulation

• Limited time interval

• Conditions change over time

Nucleation in supersaturated vapours

Higher-level evaluation subsequent to cluster detection:

• Population statistics, yielding a nucleation rate

• Cluster identification and tracking of  growth and decay

• Evaluation of  cluster temperature to analyze the heat transfer



Population statistics

threshold size (molecules)
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Requirement for a steady state:

Elimination of  liquid drops …



Confined fluid systems

y coordinate in units of nm
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Poiseuille flow of methane through nanoporous carbon



Confined fluid systems

x coordinate in units of 
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Simulation approach

LJTS fluid, generic wall model,

Dispersive energy εfw = ζε



Functionality within the ls1 project

Main initial application of  ls1 mardyn:

“structure and properties of  fluids at interfaces”

moldy mardyn b´ b´´ trunk
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Interfacial profiles – planar spherical planar

Surface tension – virial variational both

Cluster detection o arith. mean local ρ local ρ

Population statistics o – – –

Adsorption – o o o

Nanoscopic flow – o o o  
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


