Surface analysis algorithms in the *mardyn* program and the *ls1* project

Stuttgart, 15th December '10

M. T. Horsch

Bundesministerium für Bildung und Forschung

DAAD

Deutscher Akademischer Austausch Dienst German Academic Exchange Service

Surface tension

The virial route 0.7 E 0.6 Yo surface tension in units of $arepsilon\sigma^2$ **Bakker-Buff equation:** LJTS fluid 6⁸⁸000 $\boldsymbol{\gamma} = \boldsymbol{R}^{-2} \int_{in}^{out} dz \, z^2 [\boldsymbol{\rho}_{N}(z) - \boldsymbol{\rho}_{T}(z)]$ 0.8 E $(2\gamma)^3 = -\Delta \rho^2 \int_{in}^{out} d\rho_N(z) z^3$ 0.4 Yo % % Irving-Kirkwood pressure tensor: $\boldsymbol{p}_{\mathsf{N}}(\boldsymbol{z}) = \sum_{\{i,j\}\in\mathbf{S}(\boldsymbol{z})} \frac{f_{ij} |\mathbf{s}\cdot\mathbf{r}_{ij}|}{4\pi \boldsymbol{z}^{3} \boldsymbol{r}_{ii}} + k T \boldsymbol{\rho}(\boldsymbol{z})$ 0.2 o® 0.95 *E* Yo Normal pressure decays at *R*. Vrabec et al. Significant decrease of y due 0.0 to spherical curvature. **10² 10³ 10⁴** 10² 10³ 104 droplet size in molecules

- Main advantages of the virial route:
 - Equilibrium analysis (no unstable configurations)
 - Yields the surface of tension radius $R = 2\gamma/\Delta p$.

Surface tension

<u>The variational route</u>

Canonical partition function:

$$\Delta F = -T \ln \left\langle \exp \left(-\frac{\Delta U}{T} \right) \right\rangle$$
$$= f \left(\langle \Delta U \rangle, \langle \Delta U^2 \rangle, \langle \Delta U^3 \rangle \right) + O \left(\langle \Delta U^4 \rangle \right)$$

For small deformations:

$$\gamma = \Delta F / \Delta A$$
 with $A = 4\pi Q^2 + O(\delta Q)$

Nonlinear terms are essential.

Tolman length much smaller than based on other methods.

Main advantages of the variational route:

- Free energy differences are considered in a direct way.
- No mechanical equilibrium assumption is applied.

Discretization of interfaces

Effective radii for a droplet

Capillarity radius $P = 2\gamma_0/\Delta p$, from the Laplace equation and the surface tension in the planar case.

Equimolar radius \mathbf{Q} , from condition $\Gamma = 0$ for the excess density.

Laplace radius $R = 2\gamma/\Delta p$, based on a known value of the surface tension for the curved interface.

Conservative radius $R_{\rm C}$ for which the excess free energy is $4\pi R_{\rm C}^2 \gamma_0$.

Radii $R(\rho)$ for a density $\rho' > \rho > \rho''$.

Discretization of interfaces

Clustering

Cluster critieria for the dispersed liquid phase

- Molecules with a distance between the centres of mass $r_{ij} < r_{St}$ are regarded as part of the liquid phase (Stillinger).
- At least n = 4 neighbours are required within a sphere with the radius r_{St} around the centre of mass (ten Wolde-Frenkel).
- A molecule is liquid if the sphere around its *n* nearest neigbours has an average density greater than the arithmetic (a_n) or the geometric (g_n) mean between ρ' and ρ'' .

Clustering

Population statistics

Nucleation in supersaturated vapours

Yasuoka and Matsumoto (1998):

- Canonical MD simulation
- Limited time interval
- Conditions change over time

Higher-level evaluation subsequent to cluster detection:

- Population statistics, yielding a nucleation rate
- Cluster identification and tracking of growth and decay
- Evaluation of cluster temperature to analyze the heat transfer

Population statistics

Confined fluid systems

Confined fluid systems

Simulation approach

LJTS fluid, generic wall model, Dispersive energy $\varepsilon_{fw} = \zeta \varepsilon$

Equilibrium state

Cylindrical meniscus, based on arithm. mean density

x coordinate in units of σ

Functionality within the *Is1* project

Main initial application of *Is1 mardyn:*

"structure and properties of fluids at interfaces"

	moldy	mardyn b´	b´´	trunk
Interfacial profiles		planar	spherical	planar
Surface tension	_	virial	variational	both
Cluster detection	ο	arith. mean	local <i>p</i>	local p
Population statistics	ο	-	_	_
Adsorption	_	0	Ο	Ο
Nanoscopic flow	_	Ο	Ο	Ο