Surface property corrections to the classical nucleation theory

Kensington, 18th October 2010

M. T. Horsch and J. Vrabec
Yasuoka and Matsumoto (1998):

- Canonical MD simulation
- Limited time interval
- Conditions change over time
MD simulation of nucleation (II)

• Integration time step: typically between 2 and 5 fs

• Feasible simulation time: on the order of nanoseconds

• A saturated vapour with a volume of 10^{-20} m3 contains:
 - 800 000 molecules (saturated methane at 114 K)
 - 7 000 000 molecules (saturated CO$_2$ at 253 K)

• Minimal nucleation rate accessible by direct simulation:

\[
\text{#nuclei} / (\text{volume } V \times \text{time } \Delta t) = \text{nucleation rate } J
\]

\[
10 \quad / \quad (10^{-20} \text{ m}^3 \quad x \quad 10^{-9} \text{ s}) = 10^{30} / \text{m}^3\text{s}
\]

experiment up to $10^{23} / \text{m}^3\text{s}$

direct MD simulation above $10^{30} / \text{m}^3\text{s}$
MD simulation of nucleation (III)

CH\textsubscript{4}, C\textsubscript{2}H\textsubscript{6}, CO\textsubscript{2}: Good agreement with classical nucleation theory.

CNT:

- Capillarity
 \(Y = Y_0 \),
- incompressible,
- spherical drops,
- collision rate
 \[\rho (2\pi m T)^{-1/2} \].

![Graph showing nucleation rate vs. density supersaturation ratio]
Typical scenario:

- k component vapour
- nearly pure liquid

The other $k-1$ components have a “carrier gas” effect:

- thermalization
- “work” of the drop

Opposite influences on J...

[Graph with data points and labels]

- CNT / Wedekind et al.
- $\triangle > 50$ $\square > 100$ $\blacksquare > 150$
McDonald’s daemon (I)

Grand canonical MD simulation (Cielinski):

- test insertion/deletion steps alternating with MD steps
- fixed values of μ, V, and T
- test insertion of a molecule at a random position:
 $$P = \min \left(1, \exp \left(\frac{\mu - \Delta U_{\text{pot}}}{T} \right) \frac{V}{\Lambda^3 (N + 1)} \right)$$
- test deletion of a random molecule:
 $$P = \min \left(1, \exp \left(-\frac{\mu - \Delta U_{\text{pot}}}{T} \right) \frac{V}{\Lambda^3 N} \right)$$
- equal number of insertions and deletions ($\approx 10^{-4} N$ per step)

Stationary sampling of the supersaturated state ...
McDonald’s daemon (II)

The diagram shows the relationship between excess pressure in units of $\varepsilon\sigma^{-3}$ and density in units of σ^3 for different temperatures $T = 0.7\varepsilon$ and $T = 0.85\varepsilon$. The curves represent different chemical potential supersaturations S_p and S_μ.

- For $T = 0.7\varepsilon$, the excess pressure increases with supersaturation S_p and S_μ.
- For $T = 0.85\varepsilon$, the excess pressure shows a distinct behavior, possibly indicating a phase transition or a critical point.

The figure also illustrates the NVT (constant number of particles, volume, and temperature) and μVT (constant chemical potential, volume, and temperature) ensembles, showing how the chemical potential differentials affect the system at these temperatures.
Requirement for a steady state:

Elimination of liquid drops ...

\[P_{\infty}(n) = \int_0^n \frac{\exp(2F_n/T)}{\int_0^\infty \exp(2F_n/T)} \]

\[n^*_{\text{CNT}} \]

LJTS

\[S_{\mu} = 2.496 \]

\[T = 0.7 \, \varepsilon \]

- Requirement for a steady state: Elimination of liquid drops ...

- Diagram showing the relationship between threshold size (molecules) and intervention rate (LJ units, natural logarithm).

- Equation for the probability distribution function at infinite time.

- Integral representation of the probability distribution.

- Identification of specific points on the graph, such as \(n^*_{\text{CNT}} \).

- LJTS and LJTS transposed markers.

- CNT transposed marker.
McDonald’s dæmon (IV)

Nucleation rate in units of $\sigma^{-4}(\varepsilon/m)^{1/2}$

- Classical nucleation theory
- McDonald’s dæmon
- MC-FFS (van Meel et al.)

Pressure supersaturation $p/p_s(T)$

Chemical potential supersaturation

LJTS $T = 0.45 \varepsilon$

LJTS $T = 0.65 \varepsilon$

LJTS $T = 0.7 \varepsilon$

LJTS $T = 0.75 \varepsilon$

LJTS $T = 0.8 \varepsilon$

LJTS $T = 0.85 \varepsilon$
The critical liquid drop size (l)

Curved vapour-liquid equilibria:

- Liquid drop, metastable vapour
- Gas bubble, metastable liquid
Cluster criteria for the liquid phase:

Stillinger: molecules with a distance of 1.5σ or less are liquid.

Ten Wolde and Frenkel (TWF): molecules with at least four neighbors within a distance of 1.5σ are liquid.

Arithmetic mean, n neighbors (a_n): a molecule is liquid if the density in the sphere containing its n nearest neighbors exceeds $(\rho' + \rho'')/2$.

Geometric mean, n neighbors (g_n): analogous, the required density is $(\rho' \rho'')^{1/2}$.

Nuclei can also be determined as bi-connected (instead of connected) components, such that no nucleus can be separated by removing a single molecule (TWF' and g'_2 criteria).
The critical liquid drop size (III)

Carbon dioxide

\[T = 237 \text{ K} \]
\[\rho = 1.89 \text{ mol/l} \]

- \(g_2 \) (geom. mean)
- \(a_2 \) (arithm. mean)
- \(a_8 \) (arithm. mean)

Ten Wolde-Frenkel
Stillinger

\[n^{2/3} \] scaling
The critical liquid drop size (IV)

Simulation results confirm the classical predictions for n^*.
Tolman theory and cylindrical interfaces (I)

Simulation approach

LJTS fluid, generic wall model, Dispersive energy $\varepsilon_{fw} = \zeta \varepsilon$

Equilibrium state

Cylindrical meniscus, based on arithm. mean density

![Simulation diagram](image)

![Equilibrium state diagram](image)
Gibbs adsorption eqn.
\[d\gamma = -\Gamma d\mu \]

Tolman (cylindrical)
\[\frac{\gamma}{R} \frac{dR}{d\gamma} = 1 + \left(\frac{\delta}{R} + \frac{\delta^2}{2R^2} \right)^{-1} \]
\[\frac{\gamma_0}{\gamma} \approx 1 + \frac{\delta_0}{R} + \frac{2\ell^2}{R^2} \]

Young-Tolman
\[\cos \theta = \frac{\Delta \gamma_s}{\gamma} \approx \left(\frac{\gamma_0}{\Delta \gamma_s} + \frac{2\delta_0}{h} \right)^{-1} \]
Tolman theory and cylindrical interfaces (III)

Qualitative observations:

- Only for a narrow range of ζ values there is a contact angle.
- For a temperature-independent magnitude of ζ, the contact angle becomes rectangular as $\Delta \gamma_s = 0$.
- First-order wetting transition.
- General tendency: $\Delta \gamma_s \sim \Delta \rho \Delta \zeta$.
- The curvature influence on θ is negligible at high temperatures.
Tolman theory and cylindrical interfaces (IV)

Cylindrical Tolman and Block length from MD simulation:

Symmetrical LJSTS liquid-liquid

\[
\frac{T}{\varepsilon} = 1 \quad \text{grand canonical route}
\]

LJTS vapour-liquid \((r_c = 2^{7/6} \sigma)\)

\[
\frac{\text{relative deviation}}{\gamma} = \frac{\Delta y}{y}
\]

- Block length \(\ell \) “close to” \(1 \sigma\)
- \(\delta = -0.02 \sigma, \ell = 0.3 \sigma\)

(Source: Block et al., 2010)
Analysis of spherical interfaces (I)

The variational route (TA method)

Canonical partition function:

\[
\Delta F = -T \ln \left(\exp \left(-\frac{\Delta U}{T} \right) \right) \\
= f(\langle \Delta U \rangle, \langle \Delta U^2 \rangle, \langle \Delta U^3 \rangle) + O(\langle \Delta U^4 \rangle)
\]

For small deformations:

\[
\gamma = \frac{\Delta F}{\Delta A} \quad \text{with} \quad A = 4\pi Q^2 + O(\delta Q)
\]

Nonlinear terms are essential.

Tolman length much smaller than based on other methods.

Main advantages of the variational route:

- Free energy differences are considered in a direct way.
- No mechanical equilibrium assumption is applied.
Analysis of spherical interfaces (II)

The virial route

Bakker-Buff equation:

\[\gamma = R^{-2} \int_{\text{in}}^{\text{out}} dz z^2 [\rho_N(z) - \rho_T(z)] \]

\[(2\gamma)^3 = -\Delta \rho^2 \int_{\text{in}}^{\text{out}} d\rho_N(z) z^3 \]

Irving-Kirkwood pressure tensor:

\[\rho_N(z) = \sum_{\{i,j\} \in S(z)} \frac{f_{ij} \mathbf{s} \cdot \mathbf{r}_{ij}}{4\pi z^3 r_{ij}} + kT\rho(z) \]

The \(\rho_N \) profile has a minimum.

In the vicinity of the surface of tension radius, \(\rho_N \) decays.

Main advantages of the virial route:

- Equilibrium sampling – no unstable states are considered.
- The Tolman length is obtained directly as \(\delta = Q - R \).
Analysis of spherical interfaces (III)
Analysis of spherical interfaces (IV)

The grand canonical route

Excess Landau free energy:

$$\Sigma = \Omega(\rho) - \mu_{coex}(Q) \cdot [V' \rho'(Q) + V'' \rho''(Q)]$$

(from sampling of at μ, V, T const.)

Relation to the surface tension:

$$\Sigma = \int_0^{A(R)} \gamma dA = \hat{\gamma} 4\pi Q^2$$

The Tolman length is negative.

Contribution of the Block length causes the decay of γ.

Main advantages of the grand canonical route:

- A range of bubble/drop sizes is sampled at the same time.
- Leads to surface free energy (instead of surface tension).
The excess equimolar radius (I)

The standard Tolman approach is based on:

- The equimolar radius Q, related to the density profile.
- The surface of tension radius $R = \frac{2\gamma}{\Delta p}$, related to γ.
- The dependence of γ on $1/R$, which is coupled to γ itself.

As long as $\gamma(R)$ is disputed, so are R and $\delta = Q - R$ as well ...

Idea: use $\varphi(\mu, T) = \frac{\Delta p}{2}$ instead of $1/R$, and "replace" R by $P = \frac{\gamma_0}{\varphi}$.
The excess equimolar radius (II)

Van Giessen-Blokhuys eqn.

\[-\delta_0 = \frac{1}{\gamma_0} \left(\lim_{Q \to \infty} \frac{d}{d(1/Q)} \varphi Q \right) \]

Equivalent expression for the zero-curvature Tolman length from the ratio between \(P \) and \(Q \):

\[-\delta_0 = \lim_{1/Q \to 0} \frac{d}{d(1/Q)} \frac{Q}{P} \]

Theory in terms of \(P \) and \(Q \)

Simulation studies using the IK pressure tensor come to contradictory conclusions.

Van Giessen, Blokhuis

\[\delta = (-0.10 \pm 0.02) \sigma \]

LJTS with IK tensor

\[T = 0.9 \varepsilon \]

\[T = 0.85 \varepsilon \]

\[T = 0.65 \varepsilon \]

Vrabec et al.
The excess equimolar radius (III)

Tolman theory in Q, R, and $1/R$

Tolman length:

$$\delta = Q - R = Q - \frac{\nu}{\varphi}$$

Full Tolman equation:

$$\frac{\gamma}{R} \frac{dR}{dy} = 1 + \left(\frac{2\delta}{R} + \frac{2\delta^2}{R^2} + \frac{2\delta^3}{3R^3} \right)^{-1}$$

First-order expansion:

$$\frac{\nu}{\gamma} = 1 + \frac{2\nu_0}{R} + O\left(\frac{1}{R^2} \right)$$

Tolman theory in P, Q, and φ

Excess equimolar radius:

$$\eta = Q - P = Q - \frac{\nu_0}{\varphi}$$

Full Tolman equation:

$$\frac{\varphi}{\gamma} \frac{d\gamma}{d\varphi} = 2 \left(1 - \left[\frac{\eta\varphi + \nu_0}{\gamma} \right]^3 \right)$$

First-order expansion:

$$\gamma = \nu_0 + 2\eta_0 \varphi + O\left(\varphi^2 \right)$$

How do these notations relate to each other?

$$\eta_0 = \lim_{\varphi \to 0} \left(Q - \frac{\nu_0}{\varphi} \right) = -\lim_{R \to \infty} \left(Q - \frac{\gamma}{\varphi} \right) = -\delta_0$$
The excess equimolar radius (IV)

LJTS
- $\Delta \rho$ from IK tensor (Vrabec et al.)
- $\Delta \rho$ from density in-/outside

$T = 0.65 \varepsilon$
$T = 0.85 \varepsilon$
$T = 0.95 \varepsilon$
Correction of the classical nucleation theory (I)

Free energy of formation from simulation vs. CNT prediction:

LJTS fluid at $T = 0.7 \varepsilon$:
- NVT with $\rho = 0.004044/\sigma^3$ and μVT with $S_\mu = 2.866$
- $t_{NVT} = 400 (m/\varepsilon)^{1/2} s$
- $t_{NVT} = 1050 (m/\varepsilon)^{1/2} s$
- $\mu VT (n < 50)$

But (almost) everybody agrees that $\gamma(R) \to 0$ for $R \to 0$ …

Deviation for γ

Agreement for n^*, J, and $\Delta F_n = \int_0^n \gamma dA$

Could it be that the surface area is larger than CNT assumes?
Correction of the classical nucleation theory (II)

Equilibrium condition for critical droplets yields:

\[2 \, dV = R \, dA \]

interpretation

\[dA = \frac{2dV}{R} \approx \frac{8\pi Q^2}{Q - \delta} \, dQ \]

This postulate implies:

- \(\delta \) positive
- \(\gamma \) smaller than \(\gamma_0 \)
- \(A \) greater than \(4\pi Q^2 \)
- \(\Delta F_m, n^*, \) and \(J \) similar

(and vice versa)

Correlation based on \(\gamma, n^*, J \) — increase by \(\delta \), i.e. \((P + \delta) : P\)

increase by \(D_{\text{vap}}(\rho) \)

\[T = 0.9 \, \epsilon \]

\[T = 0.75 \, \epsilon \]

Correction of the classical nucleation theory (III)

LJTS

- Previous results
- Napari et al., 2009

Critical size converges to zero

$T = 0.8\, \varepsilon$

$T = 0.65\, \varepsilon$

Critical liquid drop size in molecules vs. chemical potential supersaturation ratio.
Correction of the classical nucleation theory (IV)

\[P = \frac{\gamma}{\phi} \text{ in units of } \sigma \]

\[\phi = \frac{\Delta \rho}{2} \text{ in units of } \sigma \varepsilon^3 \]

\[\phi = \frac{\Delta \rho}{2} \text{ in units of } \varepsilon / \sigma^3 \]

\[T = 0.7 \varepsilon \]

LJTS scenario

\[\lim Q = 0 \]

Tolman scenario

\[\sigma \]

\[\varepsilon \]

\[\Delta \rho \]

\[\phi \]

\[\gamma \]

\[Q \]

\[R \]
Conclusion

I know that I know nothing.

We must move beyond contradictory results and huge error bars.

This is surely possible.