Surface property corrections to the classical nucleation theory

Kensington, 18th October 2010

M. T. Horsch and J. Vrabec

Bundesministerium für Bildung und Forschung

DAAD

Deutscher Akademischer Austausch Dienst German Academic Exchange Service

00

1.4

1.2

1.0

MD simulation of nucleation (I)

0.000

0.2

0.4

0.6

0.8 time in units of ns

Conditions change over time

MD simulation of nucleation (II)

- Integration time step: typically between 2 and 5 fs
- Feasible simulation time: on the order of nanoseconds
- A saturated vapour with a volume of 10⁻²⁰ m³ contains: 800 000 molecules (saturated methane at 114 K) 7 000 000 molecules (saturated CO₂ at 253 K)
- Minimal nucleation rate accessible by direct simulation:

#nuclei / (volume V x time Δt) = nucleation rate J 10 / (10⁻²⁰ m³ x 10⁻⁹ s) = 10³⁰ / m³s

MD simulation of nucleation (III)

CH₄, C₂H₆, CO₂: Good agreement with classical nucleation theory.

MD simulation of nucleation (IV)

Typical scenario:

- *k* component vapour
- nearly pure liquid

The other k-1 components have a "carrier gas" effect:

- thermalization
- "work" of the drop

Opposite influences on J...

— CNT / Wedekind *et al.*

△ > 50 □ > 100 □ > 150

McDonald's dæmon (I)

Grand canonical MD simulation (Cielinski):

- test insertion/deletion steps alternating with MD steps
- fixed values of μ , V, and T
- test insertion of a molecule at a random position:

$$\boldsymbol{P} = \min\left(1, \exp\left(\frac{\boldsymbol{\mu} - \boldsymbol{\Delta}\boldsymbol{U}_{pot}}{\boldsymbol{T}}\right) \frac{\boldsymbol{V}}{\boldsymbol{\Lambda}^{3}(\boldsymbol{N}+1)}\right)$$

test deletion of a random molecule

$$\boldsymbol{P} = \min\left(1, \exp\left(\frac{-\boldsymbol{\mu} - \boldsymbol{\Delta}\boldsymbol{U}_{\text{pot}}}{\boldsymbol{T}}\right) \frac{\boldsymbol{V}}{\boldsymbol{\Lambda}^{3}\boldsymbol{N}}\right)$$

• equal number of insertions and deletions ($\approx 10^{-4}$ N per step)

Stationary sampling of the supersaturated state ...

McDonald's dæmon (II)

McDonald's dæmon (III)

McDonald's dæmon (IV)

(5.975 investion >20.000 fs-

0.8 T_c

 $0.6 T_{c}$

4

pressure in units of $p_{\rm c}$

The critical liquid drop size (I)

Curved vapour-liquid equilibria:

• Liquid drop, metastable vapour 8 Gas bubble, metastable liquid ۲° chemical potential in units of 7 6 5 $\Delta p = 1.5 p_{\rm c}$ Δp = -1.5 p_{c} 3 -2 2 0

The critical liquid drop size (II)

Cluster criteria for the liquid phase:

Stillinger: molecules with a distance of 1.5σ or less are liquid.

Ten Wolde and Frenkel (TWF): molecules with at least four neighbors within a distance of 1.5σ are liquid. **Arithmetic mean**, *n* neighbors (a_n) : a molecule is liquid if the density in the sphere containing its *n* nearest neighbors exceeds $(\rho'+\rho'')/2$. **Geometric mean**, *n* neighbors (g_n) : analogous, the required density is $(\rho'\rho'')^{1/2}$.

Nuclei can also be determined as **biconnected** (instead of connected) components, such that no nucleus can be separated by removing a single molecule (TWF' and g'_2 criteria).

The critical liquid drop size (III)

The critical liquid drop size (IV)

Simulation results confirm the classical predictions for n^* .

Tolman theory and cylindrical interfaces (I)

Simulation approach

LJTS fluid, generic wall model, Dispersive energy $\varepsilon_{fw} = \zeta \varepsilon$

Equilibrium state

Cylindrical meniscus, based on arithm. mean density

Tolman theory and cylindrical interfaces (II)

<u>Gibbs adsorption eqn.</u>

 $dy = -\Gamma d\mu$

Tolman (cylindrical)

$$\frac{\gamma \, dR}{R \, d\gamma} = 1 + \left(\frac{\delta}{R} + \frac{\delta^2}{2R^2}\right)^{-1}$$
$$\frac{\gamma_0}{\gamma} \approx 1 + \frac{\delta_0}{R} + \frac{2\ell^2}{R^2}$$

Young-Tolman

$$\cos \theta = \Delta \gamma_{\rm s} / \gamma$$
$$\approx \left(\frac{\gamma_0}{\Delta \gamma_{\rm s}} + \frac{2\delta_0}{h} \right)^{-1}$$

curvature in units of σ^{-1}

Tolman theory and cylindrical interfaces (III)

Qualitative observations:

- Only for a narrow range of $\boldsymbol{\zeta}$ values there is a contact angle.
- For a temperature-independent magnitude of ζ , the contact angle becomes rectangular as $\Delta \gamma_s = 0$.
- First-order wetting transition.
- General tendency: $\Delta \gamma_{\rm s} \sim \Delta \rho \Delta \zeta$.
- The curvature influence on θ is negligible at high temperatures.

Tolman theory and cylindrical interfaces (IV)

Cylindrical Tolman and Block length from MD simulation:

Analysis of spherical interfaces (I)

<u>The variational route</u> (TA method) **Canonical partition function:** $\Delta F = -T \ln \left\langle \exp \left(-\frac{\Delta U}{T} \right) \right\rangle$ $= f \left(\langle \Delta U \rangle, \langle \Delta U^2 \rangle, \langle \Delta U^3 \rangle \right) + O \left(\langle \Delta U^4 \rangle \right)$

For small deformations:

$$\gamma = \Delta F / \Delta A$$
 with $A = 4\pi Q^2 + O(\delta Q)$

Nonlinear terms are essential.

Tolman length much smaller than based on other methods. probability density Source: 1.0 0.0001 0.0000 0.000 ΔA^* 0.5 Sampayo -0.50-0.25 0.00 0.25 0.50 deviation of ΔU from mean LJSTS fluid. $T = 0.8 \epsilon$ **y in units of £0⁻²** et al., 2010) 1.101.05 1.00 0.95 0.900.8 8 10 12 14 16 0.0 4 6 10 12 16

equimolar radius in units of σ

0.2 $\sigma_{\Delta U}$

Main advantages of the variational route:

- Free energy differences are considered in a direct way.
- No mechanical equilibrium assumption is applied.

Analysis of spherical interfaces (II)

The virial route

Bakker-Buff equation:

$$\boldsymbol{\gamma} = \boldsymbol{R}^{-2} \int_{in}^{out} dz \, z^2 [\boldsymbol{\rho}_{N}(z) - \boldsymbol{\rho}_{T}(z)]$$
$$(2\boldsymbol{\gamma})^3 = -\boldsymbol{\Delta}\boldsymbol{\rho}^2 \int_{in}^{out} d\boldsymbol{\rho}_{N}(z) \, z^3$$

Irving-Kirkwood pressure tensor:

$$\boldsymbol{p}_{\mathsf{N}}(\boldsymbol{z}) = \sum_{\{i,j\}\in \mathbf{S}(\boldsymbol{z})} \frac{f_{ij} |\mathbf{s}\cdot\mathbf{r}_{ij}|}{4\pi \boldsymbol{z}^{3} \boldsymbol{r}_{ij}} + \boldsymbol{k} T \boldsymbol{\rho}(\boldsymbol{z})$$

The $p_{\rm N}$ profile has a minimum.

In the vicinity of the surface of tension radius, p_N decays.

Main advantages of the virial route:

- Equilibrium sampling no unstable states are considered.
- The Tolman length is obtained directly as $\delta = Q R$.

Analysis of spherical interfaces (III)

Analysis of spherical interfaces (IV)

The grand canonical route

Excess Landau free energy:

 $\Sigma = \Omega(\rho) - \mu_{\text{coex}}(Q) \cdot [V'\rho'(Q) + V''\rho''(Q)]$ (from sampling of at μ , V, T const.)

Relation to the surface tension:

$$\boldsymbol{\Sigma} = \int_0^{\mathcal{A}(R)} \boldsymbol{\gamma} d\boldsymbol{A} = \hat{\boldsymbol{\gamma}} \, \boldsymbol{4} \boldsymbol{\pi} \boldsymbol{Q}^2$$

The Tolman length is negative. Contribution of the Block length causes the decay of *γ*.

(Source: Block et al., 2010)

Main advantages of the grand canonical route:

- A range of bubble/drop sizes is sampled at the same time.
- Leads to surface free energy (instead of surface tension).

The excess equimolar radius (I)

The standard Tolman approach is based on:

- The equimolar radius Q, related to the density profile.
- The surface of tension radius $R = 2\gamma/\Delta p$, related to γ .
- The dependence of γ on 1/R, which is coupled to γ itself.

As long as $\gamma(R)$ is disputed, so are R and $\delta = Q - R$ as well ...

The excess equimolar radius (II)

Van Giessen-Blokhuis eqn.

$$-\boldsymbol{\delta}_{0} = \frac{1}{\boldsymbol{\gamma}_{0}} \left(\lim_{\boldsymbol{Q} \to \infty} \frac{\boldsymbol{d}}{\boldsymbol{d}(1/\boldsymbol{Q})} \boldsymbol{\varphi} \boldsymbol{Q} \right)$$

Equivalent expression for the zero-curvature Tolman length from the ratio between *P* and *Q*:

$$-\delta_0 = \lim_{1/Q \to 0} \frac{d}{d(1/Q)} \frac{Q}{P}$$

Theory in terms of P and Q

Simulation studies using the IK pressure tensor come to contradictory conclusions.

The excess equimolar radius (III)

Tolman theory in *Q*, *R*, and *1/R*

Tolman length:

$$\boldsymbol{\delta} = \boldsymbol{Q} - \boldsymbol{R} = \boldsymbol{Q} - \frac{\boldsymbol{\gamma}}{\boldsymbol{\varphi}}$$

Full Tolman equation:

$$\frac{\gamma \, dR}{R \, d\gamma} = 1 + \left(\frac{2\delta}{R} + \frac{2\delta^2}{R^2} + \frac{2\delta^3}{3R^3}\right)^{-1}$$

First-order expansion:

$$\frac{\gamma_0}{\gamma} = 1 + \frac{2\delta_0}{R} + O\left(\frac{1}{R^2}\right)$$

Tolman theory in *P*, *Q*, and φ Excess equimolar radius:

$$\boldsymbol{\eta} = \boldsymbol{Q} - \boldsymbol{P} = \boldsymbol{Q} - \frac{\boldsymbol{\gamma}_0}{\boldsymbol{\varphi}}$$

Full Tolman equation:

$$\frac{\varphi \, d\gamma}{\gamma \, d\varphi} = \frac{2}{3} \left(1 - \left[\frac{\eta \varphi + \gamma_0}{\gamma} \right]^3 \right)$$

First-order expansion:

$$\boldsymbol{\gamma} = \boldsymbol{\gamma}_0 + 2\boldsymbol{\eta}_0\boldsymbol{\varphi} + \boldsymbol{O}(\boldsymbol{\varphi}^2)$$

How do these notations relate to each other?

$$\boldsymbol{\eta}_{0} = \lim_{\boldsymbol{\varphi} \to \mathbf{0}} \left(\boldsymbol{Q} - \frac{\boldsymbol{Y}_{0}}{\boldsymbol{\varphi}} \right) = -\lim_{\boldsymbol{R} \to \infty} \left(\boldsymbol{Q} - \frac{\boldsymbol{Y}}{\boldsymbol{\varphi}} \right) = -\boldsymbol{\delta}_{0}$$

The excess equimolar radius (IV)

Correction of the classical nucleation theory (I)

Free energy of formation from simulation vs. CNT prediction:

But (almost) everybody agrees that $\gamma(R) \rightarrow 0$ for $R \rightarrow 0 \dots$

Deviation for γ \leftarrow Agreement for n^* , J, and $\Delta F_n = \int_0^n \gamma dA$

Could it be that the surface area is larger than CNT assumes?

Correction of the classical nucleation theory (II)

Equilibrium condition for critical droplets yields:

Correction of the classical nucleation theory (III)

Correction of the classical nucleation theory (IV)

Conclusion

I know that I know nothing.

We must move beyond contradictory results and huge error bars.

This is surely possible.