

M. T. Horsch,^{1, 2} C. Avendaño Jiménez,^{2, 3} H. Frentrup,^{2, 4} M. Heitzig,⁴ Y.-T. Hsiang,⁴ A. Marín Torres,¹ A. Salih,² E. A. Müller,² J. Vrabec,⁵ H. Hasse¹

¹TU Kaiserslautern, ²Imperial College, ³Cornell U, ⁴U Stuttgart, ⁵U Paderborn

SimMolMod Workshop, Dortmund, 15th September 11

Nanoporous membranes: Molecular model

Dispersive fluid-wall interaction

Both fluid-fluid and fluid-wall dispersion is modelled by the Lennard-Jones potential ... two effective interaction parameters:

unlike LJ size parameter $\sigma_{fw} = \eta \cdot \sigma$

unlike LJ energy parameter $\varepsilon_{fw} = \xi \cdot \varepsilon$

Tolman equation (cylindrical)

Centre for Process Systems Engineering nperial College, Londor

$$\frac{\gamma_0}{\gamma} = 1 + \frac{\delta}{R} + O(\delta^2 R^{-2})$$

Laboratory of

Engineering Thermodynamics

Prof. Dr.-Ing. H. Hasse

Technische Universität KAISERSLAUTERN

Grand canonical MD simulation

• Specification of μ , V, and T

TECHNISCHE UNIVERSITÄ KAISERSLAUTERN

• Test insertions and deletions of single particles in alternation with MD steps:

$$P_{\text{ins}} = \min\left[1, \exp\left(\frac{\boldsymbol{\mu} - \boldsymbol{\Delta} \boldsymbol{U}_{\text{pot}}}{T}\right) \frac{\boldsymbol{V}}{\boldsymbol{\Lambda}^{3}(\boldsymbol{N}+1)}\right]$$

$$\boldsymbol{P}_{del} = \min\left[1, \exp\left(\frac{-\boldsymbol{\mu} - \boldsymbol{\Delta}\boldsymbol{U}_{pot}}{T}\right)\frac{1}{\boldsymbol{\Lambda}^{3}\boldsymbol{\rho}}\right]$$

Graphite + argon (LJTS), $T = 0.85 \epsilon/k, \mu = \mu_s(T)$

Application: Chemical potential gradient induced Poiseuille flow

Laboratory of Engineering Thermodynamics Prof. Dr.-Ing. H. Hasse

Explicit compensation of the pressure drop

Density-gradient NE steady-state MD

The accelerating force is only applied to the fluid molecules within a specified control volume.

It overcompensates the pressure drop, so that (equivalent) density, pressure, and chemical potential gradients are actually present.

15th September 11

Viscous and diffusive mass transfer

Following the approach of Travis and Gubbins, the transport diffusion coefficient D_t consists of contributions from two different mechanisms:

$$J_{i} = -D_{t} \nabla \rho_{i} = -L_{s} \nabla (\mu_{i}/T) - D_{t}' \nabla \rho$$

Diffusive transport: Self-diffusivity D_s , expressed above in terms of the Onsager type coefficient L_s , caused by the random thermal movement of <u>individual molecules</u>.

Viscous transport: Ordered <u>collective motion</u> of the molecules due to a <u>pressure gradient</u>, which can be understood in terms of a fluid continuum.

In principle, equilibrium MD computes D_s , whereas NEMD yields D_t .

Avendaño's dæmon

The self-diffusivity can be determined by NEMD if a gradient in μ (\rightarrow diffusive transport) is present without a pressure gradient (\rightarrow viscous transport).

Actually identical fluid molecules are assigned different labels (blue or green "colour") and accelerated in opposite directions by Avendaño's dæmon.

Entrance effects

By comparison between the flow in

- an infinite (i.e. periodic) channel
- an "open" system including a bulk section ...

... the influence of the channel entrance and exit regions on the overall effective diffusivity can be isolated.

Velocity profile and boundary slip

From nanofluidics to microfluidics

Methane in graphite: T = 166 K; values of η and ξ from Wang et al.

Nanopore with a patterned surface

Rotation inside the cavity

Massively parallel molecular dynamics

weak and strong scaling of the *ls1 mardyn* program

Technische Universität

AISERSLAUTERN

Laboratory of

Engineering Thermodynamics

Prof. Dr.-Ing. H. Hasse

Conclusion

- \Rightarrow The relation between the fluid-wall dispersive energy and the contact angle in a slit pore was established using a Lennard-Jones model.
- ⇒ Planar Poiseuille flow can be investigated by non-equilibrium MD simulation, e.g. by DCV-GCMD, dp compensation, and DG-NESSMD.
- \Rightarrow Darcy's law was found to hold down to the molecular length scale. Significant boundary slip was present for diameters below 100 nm.
- \Rightarrow Avendaño's dæmon makes self-diffusion accessible to NEMD for confined systems, for which the Green-Kubo formalism is less suitable.
- ⇒ Massively parallel MD (e.g. with ls1 mardyn) promises to make a molecular analysis of microfluidics feasible within the present decade.