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Optimized potential parameters for graphite:

Cutoff

R = 2.0 Å (1.8 Å)
S = 2.35 Å (2.1 Å)

Repulsion

λ = 3.587 Å-1 (3.4879 Å-1)

Attraction

μ = 2.275 Å-1 (2.2119 Å-1)

Nanoporous membranes: Molecular model
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Tin et al. (2004), Ind. Eng. Chem. Res. 43: 6467.
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Dispersive fluid-wall interaction
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T = 166.3 K

ξ = 0.075; η = 1
ξ = 0.160; η = 1

ξ = 0.353; η = 0.947
ξ = 0.497; η = 0.957

graphite / methane

unlike LJ size parameter σfw = η · σ

unlike LJ energy parameter εfw = ξ · ε

Both fluid-fluid and fluid-wall dispersion is modelled by the Lennard-Jones
potential … two effective interaction parameters:
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Vapour-liquid interfaces under confinement
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Grand canonical MD simulation
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• Specification of μ, V, and T

• Test insertions and deletions of single
particles in alternation with MD steps:
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Application: Chemical potential gradient induced Poiseuille flow

maxμ minμ

Graphite + argon (LJTS),
T = 0.85 ε/k, μ = μs(T)
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Explicit compensation of the pressure drop
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(-) z

zz

Opposite forces act 
on fluid molecules 
and wall atoms in 
the entire system.

Periodic boundary con-
dition: No actual gradi-
ents. Friction and force 
cancel out exactly.

Non-equilibrium
molecular dyna-
mics (NEMD) of a
stationary flow.
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Density-gradient NE steady-state MD
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The accelerating force is only applied to
the fluid molecules within a specified
control volume.

It overcompensates the pressure drop,
so that (equivalent) density, pressure,
and chemical potential gradients are
actually present.
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Viscous and diffusive mass transfer
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Following the approach of Travis and Gubbins, the transport diffusion 
coefficient Dt consists of contributions from two different mechanisms:

( ) pDTμLρDJ tiii ∇′−∇−=∇−=   st

Diffusive transport: Self-diffusivity Ds, expressed above in terms of the
Onsager type coefficient Ls, caused by the random
thermal movement of individual molecules.

Viscous transport: Ordered collective motion of the molecules due to a
pressure gradient, which can be understood in terms
of a fluid continuum.

In principle, equilibrium MD computes Ds, whereas NEMD yields Dt.
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Avendaño’s dæmon
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The self-diffusivity can be determined by NEMD if a gradient in μ (→ diffus-
ive transport) is present without a pressure gradient (→ viscous transport).

Actually identical fluid molecules are assigned different labels (blue or green
“colour”) and accelerated in opposite directions by Avendaño’s dæmon.
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Entrance effects
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By comparison between the flow in 

• an infinite (i.e. periodic) channel

• an “open” system including a
bulk section …

… the influence of the channel entrance
and exit regions on the overall effective
diffusivity can be isolated.
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Velocity profile and boundary slip
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Methane in graphite

T = 166 K
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From nanofluidics to microfluidics
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Methane in graphite: T = 166 K; values of η and ξ from Wang et al.
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Nanopore with a patterned surface
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Rotation inside the cavity
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2D

v = 0.8
C = 0.5

Oliver et al. (2006)

3D

v = 0.82
C = 0.5

Hsiang et al. (present)

… induced by Poiseuille flow:
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Massively parallel molecular dynamics
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uniform subdomains
static load balancing

methane + graphitehomogeneous truncated-shifted LJ system
weak and strong scaling of the ls1 mardyn program
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Conclusion
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⇒ The relation between the fluid-wall dispersive energy and the contact
angle in a slit pore was established using a Lennard-Jones model.

⇒ Planar Poiseuille flow can be investigated by non-equilibrium MD
simulation, e.g. by DCV-GCMD, dp compensation, and DG-NESSMD.

⇒ Darcy’s law was found to hold down to the molecular length scale.
Significant boundary slip was present for diameters below 100 nm.

⇒ Avendaño’s dæmon makes self-diffusion accessible to NEMD for
confined systems, for which the Green-Kubo formalism is less suitable.

⇒ Massively parallel MD (e.g. with ls1 mardyn) promises to make a
molecular analysis of microfluidics feasible within the present decade.


