

Molekulare Simulation gekrümmter Dampf-Flüssigkeits-Grenzflächen

Dortmund, den 16. Juni 11

Martin Horsch, Enyuan Wu und Jadran Vrabec

Bundesministerium für Bildung und Forschung

Phasengrenzflächen

Phasen sind im phänomenologischen Verständnis die Bereiche, in denen sich Ordnungsparameter kontinuierlich ändern. Daraus folgt für die Grenzflächen:

- Einer oder mehrere Ordnungsparameter ändern sich sprunghaft.
- Die Grenzflächen sind echt zweidimensional.
- Sie werden im wesentlichen durch ihre Größe A und zwei Krümmungsradien R₁ und R₂ beschrieben.

[http://bythor.com/]

Molekulare Sichtweise

- Die Phasengrenze lässt sich nicht ohne weiteres als zweidimensional darstellen.
- Der Ordnungsparameter ρ ändert sich kontinuierlich (nicht sprunghaft). Die Grenzflächendicke divergiert mit $T \rightarrow T_c$.
- Fluktuationen und Konfigurationen abseits des mechanischen Gleichgewichts treten auf.

Argon, T = 122,5 K

Phasengrenze nach J. W. Gibbs

Die innere (dreidimensionale) Struktur der Phasengrenze bestimmt ihre Eigenschaften.

Beziehungen der axiomatischen Thermodynamik gelten für effektive zweidimensionale Grenzflächen.

"take some point [...] and imagine a geometrical surface to pass through this point and all other points which are similarly situated [...] called the **dividing surface** [...] all the surfaces which can be formed in the described manner are evidently parallel" [J. W. Gibbs, On the equilibrium of heterogeneous substances (1876/77), S. 380].

Die von Gibbs hergeleiteten Gesetze gelten allgemein.

Die **konkreten Werte** können aber davon abhängen, wie der Grenzbereich zwischen den Phasen auf zwei Dimensionen **projiziert** wird, d.h. von der Wahl der **trennenden Fläche**.

Phasengrenze nach J. W. Gibbs

Die innere (dreidimensionale) Struktur der Phasengrenze bestimmt ihre Eigenschaften.

Beziehungen der axiomatischen Thermodynamik gelten für effektive zweidimensionale Grenzflächen.

"take some point [...] and imagine a geometrical surface to pass through this point and all other points which are similarly situated [...] called the **dividing surface** [...] all the surfaces which can be formed in the described manner are evidently parallel" [J. W. Gibbs, On the equilibrium of heterogeneous substances (1876/77), S. 380].

Die von Gibbs hergeleiteten Gesetze gelten allgemein.

Die **konkreten Werte** können aber davon abhängen, wie der Grenzbereich zwischen den Phasen auf zwei Dimensionen **projiziert** wird, d.h. von der Wahl der **trennenden Fläche**.

Gleichgewichtsbedingung

Herleitung der Laplacegleichung:

Oberflächenspannung = freie Energie pro Oberflächenänderung

 $dF = \gamma dA + dF' + dF''$ = $\gamma dA + (\mu' - \mu'') dN' - (p' - p'') dV'$

Zusammenhang zwischen *dV*' und *dA*:

R dA = 2 dV'

Thermodynamisches Gleichgewicht:

 $(p' - p'') dV' = \gamma dA$ $p' - p'' = 2\gamma/R$

Der Laplaceradius der Spannungsoberfläche R koppelt dV' und dA.

16. Juni 11

Instabiles Phasengleichgewicht

Stabiles Phasengleichgewicht

Clusterkriterium

- Teilchen, die weniger als 1,5 σ voneinander entfernt sind, werden als flüssig betrachtet (Stillinger).
- Teilchen mit mehr als vier Nachbarn innerhalb von 1,5 σ gehören zur Flüssigphase (ten Wolde-Frenkel).
- Ein Teilchen ist flüssig, wenn es mit k Nachbarn eine Kugel bildet, deren Dichte über dem arithmetischen (a_k) bzw. geometrischen (g_k) Mittel aus ρ' und ρ" liegt.

Wedekind: Der Nukleationssatz passt am besten zum ten Wolde-Frenkel-Kriterium.

Clustergröße im Gleichgewicht

Simulationsergebnisse bestätigen die klassische Nukleationstheorie.

16. Juni 11

Viriale Oberflächenspannung

Variationale Oberflächenspannung

Wahrscheinlichkeitsdichte Testflächenansatz: 0.2 $\sigma_{\Delta U}$ Kanonische Zustandssumme 0.0001 0.0003 0.0000 ΔA^* $\Delta F = -T \ln \left\langle \exp \left(-\frac{\Delta U}{T} \right) \right\rangle$ $= f\left(\left\langle \Delta U \right\rangle, \left\langle \Delta U^{2} \right\rangle, \left\langle \Delta U^{3} \right\rangle\right) + O\left(\left\langle \Delta U^{4} \right\rangle\right)$ -0.50 -0.25 0.00 0.25 Abweichung von ΔU vom Mittel Oberflächenspannungin εσ -² Für infinitesimale Verzerrungen ist LJSTS-Fluid, $T = 0.8 \epsilon$ $\gamma = \Delta F / \Delta A$ mit $A = 4\pi Q^2 + O(Q)$. 1.10 1.05 1.00 0.2 Nichtlineare Terme entsprechen 0.95 0.90 dem Beitrag von Fluktuationen. 0.85 10 12 14 16 8 Krümmung beeinflusst y kaum. 12 4 6 8 10 14 äquimolarer Radius Q in σ

Quelle: Sampayo et

al., 2010)

16

0.50

Relevanter Zustandsbereich

- Tropfen + metastabiler Dampf
- Blase + metastabile Flüssigkeit

Planarer Grenzfall: Vorzeichenwechsel der Grenzflächenkrümmung, Divergenz des Krümmungsradius

Spinodaler Grenzfall: Die Phase auf der Außenseite wird instabil.

Analyse sphärischer Dichteprofile

Der «übliche» Ansatz von R. C. Tolman (1949) verwendet die Größen:

- äquimolarer Radius Q (aus dem Dichteprofil)
- Radius der Spannungsoberfläche $R = 2\gamma/\Delta p$, (definiert über γ)
- Oberflächenspannung γ in Abhängigkeit von 1/R (enthält γ ...)

Ohne Kenntnis von $\gamma(R)$ ist dieser Variablensatz ungünstig.

Der planare Grenzfall

Tolman-Gleichung

$$-\delta_0 = \frac{1}{2} \lim_{\varphi \to 0} \frac{d(\gamma/\gamma_0)}{d(1/R)} = \frac{1}{2} \lim_{\varphi \to 0} \frac{d\gamma}{d\varphi}$$

Die Tolmanlänge $\delta = Q - R$ kennzeichnet die Krümmungsabhängigkeit der Oberflächenspannung.

Nijmeijer-Gleichung

$$-\delta_0 = \frac{1}{\gamma_0} \left(\lim_{\varphi \to 0} \frac{d}{d(1/Q)} \varphi Q \right)$$

Ņ

Der planare Grenzfall

Tolman-Gleichung

$$-\delta_0 = \frac{1}{2} \lim_{\varphi \to 0} \frac{d(\gamma/\gamma_0)}{d(1/R)} = \frac{1}{2} \lim_{\varphi \to 0} \frac{d\gamma}{d\varphi}$$

Die Tolmanlänge $\delta = Q - R$ kennzeichnet die Krümmungsabhängigkeit der Oberflächenspannung.

Nijmeijer-Gleichung

$$-\delta_0 = \frac{1}{\gamma_0} \left(\lim_{\varphi \to 0} \frac{d}{d(1/Q)} \varphi Q \right)$$

Analyse der Größen φ und Q

16. Juni 11

Der planare Grenzfall

Tolman-Gleichung

$$-\delta_0 = \frac{1}{2} \lim_{\varphi \to 0} \frac{d(\gamma/\gamma_0)}{d(1/R)} = \frac{1}{2} \lim_{\varphi \to 0} \frac{d\gamma}{d\varphi}$$

Die Tolmanlänge $\delta = Q - R$ kennzeichnet die Krümmungsabhängigkeit der Oberflächenspannung.

Transformierter Tolman-Ansatz

$$-\delta_{0} = \lim_{Q \to \infty} R - Q = \lim_{Q \to \infty} Q - P = \eta_{0}$$

Vergleich der Radien P und Q

16. Juni 11

Zusammenfassung

- Für die Oberflächenspannung sphärischer Grenzflächen führen verschiedene Ansätze zu widersprüchlichen Resultaten.
- Ohne genaue Kenntnis der Oberflächenspannung ist es unmöglich, den Radius der Spannungsoberfläche *R* zu bestimmen.
- Der Tolman-Ansatz kann auch ohne den Radius der Spannungsoberfläche (um)formuliert und angewandt werden.
- Im planaren Grenzfall ist der Betrag der Tolmanlänge (für das LJTS-Fluid) kleiner als der Teilchenradius $\sigma/2$.
- Dieses Ergebnis ist konsistent mit der Erwartung von R. C. Tolman für den (spinodalen) Grenzfall eines Tropfens mit $R \rightarrow 0$ und $\gamma \rightarrow 0$.