

Dependence of the surface tension on curvature

rigorously determined from the density profiles of nanodroplets

Athens, 1st September 11

M. T. Horsch,^{1, 2, 3} S. Eckelsbach,² H. Hasse,¹ G. Jackson,³ E. A. Müller,³ G. Reina,⁴ and J. Vrabec²

¹*TU Kaiserslautern* ²*Universität Paderborn* ³*Imperial College London* ⁴*Universität Stuttgart*

ThEt DAAD

Deutscher Akademischer Austausch Dienst German Academic Exchange Service

VLE at a curved interface

• Droplet + metastable vapour

Spinodal limit: For the external phase, metastability breaks down.

VLE at a curved interface

- Droplet + metastable vapour
- Bubble + metastable liquid

Spinodal limit: For the external phase, metastability breaks down.

Planar limit: The curvature changes its sign and the radius R_v diverges.

Stability in the canonical ensemble

Unstable and stable phase equilibria

Equilibrium vapour pressure over a droplet

Canonical MD simulation of LJTS droplets

Down to 100 molecules: Agreement with CNT ($\gamma = \gamma_0$).

Canonical MD simulation of LJTS droplets

Down to 100 molecules: Agreement with CNT ($\gamma = \gamma_0$). At the spinodal, the results suggest that $R_{\gamma} = 2\gamma / \Delta p \rightarrow 0$. This implies

Laboratory of

Engineering Thermodynamics

Prof. Dr.-Ing. H. Hasse

$$\lim_{R_{\nu}\to 0}\gamma=0,$$

as conjectured by Tolman (1949) ...

TECHNISCHE UNIVERSITÄT

AISERSLAUTERN

Surface tension from molecular simulation

The Tolman length

... characterizes the curvature dependence of the surface tension according to the Tolman equation

$$\left(\frac{\partial \ln R_{\gamma}}{\partial \ln \gamma}\right)_{\tau} = 1 + \frac{1}{2} \left(\frac{\delta}{R_{\gamma}} + \left[\frac{\delta}{R_{\gamma}}\right]^{2} + \frac{1}{3} \left[\frac{\delta}{R_{\gamma}}\right]^{3}\right)^{-1}$$

in terms of γ and $1/R_{\gamma}$. It is defined by the deviation

$$\delta = R_{\rho} - R_{\gamma}$$

between the equimolar radius R_{ρ} with

$$\int_{0}^{R_{\rho}} (\rho_{0} - \rho_{R}) R^{2} dR = \int_{R_{\rho}}^{\infty} (\rho_{R} - \rho_{\infty}) R^{2} dR$$

and the Laplace radius R_{v} .

8.0 LJTS fluid $T = 0.7 \epsilon k$ capillarity $\mathcal{E}\sigma^{-2}$ 0.6 surface tension spinodal. limit 0.4 Tolman's 0.2 scenario δ = 0.51 σ 0.0 0.4 8.0 0.0 pressure difference / $\varepsilon\sigma$

Analysis of spherical density profiles

The Tolman approach is based on the quantities:

Centre for Process Systems Engineering

- Equimolar radius R_{ρ} (from the density profile)
- Laplace radius $R_{\gamma} = 2\gamma/\Delta p$ of the surface of tension (determined via γ)
- Surface tension γ as a function of $1/R_{\gamma}$ (which requires γ ...)

Without previous knowledge of $\gamma(R_{\nu})$, this set of variables is inconvenient.

TECHNISCHE UNIVERSITÄT

Laboratory of

Engineering Thermodynamics

Prof. Dr.-Ing. H. Hasse

Analysis of spherical density profiles

The Tolman approach is based on the quantities:

Centre for Process Systems Engineering

- Equimolar radius R_{ρ} (from the density profile)
- Laplace radius $R_{\gamma} = 2\gamma/\Delta p$ of the surface of tension (determined via γ)
- Surface tension γ as a function of $1/R_{\gamma}$ (which requires γ ...)

Without previous knowledge of $\gamma(R_{\gamma})$, this set of variables is inconvenient.

TECHNISCHE UNIVERSITÄT

AISERSLAUTERN

Laboratory of

Engineering Thermodynamics

Prof. Dr.-Ing. H. Hasse

The excess equimolar radius

Tolman theory in R_{ρ} , R_{γ} , and $1/R_{\gamma}$

Tolman length:

Technische Universitä

$$\delta = R_{\rho} - R_{\gamma}$$

Tolman equation:

$$\left(\frac{\partial \ln R_{\gamma}}{\partial \ln \gamma}\right)_{\tau} = 1 + \left(\frac{2\delta}{R} + \frac{2\delta^2}{R^2} + \frac{2\delta^3}{3R^3}\right)^{-1}$$

First-order expansion:

$$\gamma = \gamma_0 - 2\delta_0\gamma_0 \frac{1}{R_{\gamma}} + O\left(\frac{1}{R_{\gamma}^2}\right)$$

Tolman theory in R_{ρ} , R_{κ} , and γ/R_{γ}

Excess equimolar radius:

$$\eta = R_{\rho} - R_{\kappa}$$

Tolman equation:

$$\left(\frac{\partial \ln \gamma R_{\gamma}^{-1}}{\partial \ln \gamma}\right)_{\tau} = \frac{3}{2} \left(1 - \left[\frac{\eta \gamma R_{\gamma}^{-1} + \gamma_{0}}{\gamma}\right]^{3}\right)^{-1}$$

First-order expansion:

$$\gamma = \gamma_0 + 2\eta_0 \frac{\gamma}{R_{\gamma}} + O\left(\frac{\gamma^2}{R_{\gamma}^2}\right)$$

How do these notations relate to each other?

$$\eta_{0} = \lim_{\Delta \rho \to 0} \left(R_{\rho} - \frac{\gamma_{0}}{\gamma R_{\gamma}^{-1}} \right) = -\lim_{\Delta \rho \to 0} \left(Q - \frac{\gamma}{\gamma R_{\gamma}^{-1}} \right) = -\delta_{0}$$

Extrapolation to the planar limit

Conclusion

- The virial (Irving-Kirkwood) and test area approaches lead to contradicting results for the curvature dependence of γ .
- Without knowledge of the surface tension, it is impossible to determine the Laplace radius R_{v} .
- In terms of the capillarity radius R_{κ} (instead of R_{γ}) and the pressure difference Δp (instead of $1/R_{\gamma}$), Tolman's approach can still be applied.
- For the LJTS fluid, the planar limit of the Tolman length δ is smaller in magnitude than 1 σ .
- This result is consistent with "Tolman's scenario" ($R \rightarrow 0$ and $\gamma \rightarrow 0$) for the spinodal limit, if δ is assumed to be curvature independent.