

Non-equilibrium molecular dynamics simulation of real fluids in nanoporous materials

Martin Horsch, Hendrik Frentrup, Carlos Avendaño Jiménez, Alicia Marín Torres, Alaaeldin Salih, Jadran Vrabec, Erich Müller, Hans Hasse

¹TU Kaiserslautern, ²Imperial College London, ³Cornell U., ⁴U. Paderborn

Workshop "Industrial Use of Molecular Thermodynamics", Lyon, 19th March 12

Exact compensation of the pressure drop

Exact compensation of the pressure drop

LTD Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse

Overcompensation of the pressure drop

The accelerating force is only applied to the fluid molecules within a specified control volume.

It overcompensates the pressure drop, so that (equivalent) density, pressure, and chemical potential gradients are actually present.

Viscous and diffusive mass transfer

The transport diffusion coefficient D_t consists of contributions from two different mechanisms:

$$J_i = -D_t \nabla \rho_i = -L_f \nabla (\mu_i / T) - D'_t \nabla \rho$$

Diffusive transport: Mobility $D_0 = D_s + D_{\xi}$, expressed above in terms of the Onsager type coefficient L_f , caused by the random thermal movement of individual molecules.

Viscous transport: Ordered collective motion of the molecules due to a pressure gradient, which can be understood in terms of a fluid continuum.

In principle, equilibrium MD computes D_s , whereas NEMD yields D_t .

Note: For a pure substance, μ_i and p cannot be varied independently.

Avendaño's dæmon

The mobility D_0 can be determined by NEMD if a gradient in μ (\rightarrow diffusive transport) is present without a pressure gradient (\rightarrow viscous transport).

Actually identical fluid molecules are assigned different labels (blue or green "colour") and accelerated in opposite directions by Avendaño's dæmon.

LTD Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse

Membrane topology

By comparison between the flow in

- an infinite (i.e. periodic) channel
- an "open" system including a bulk section ...

... the influence of the channel entrance and exit regions on the overall effective diffusivity can be isolated.

Effective diffusivity

Diffusivities are obtained as linear response coefficients, i.e. in the limit where the accelerating force, which perturbs the equilibrium state of the system, approaches zero

Nanofiltration membranes: Molecular model

19th March 12 M. Horsch, H. Frentrup, C. Avendaño, A. Marín, A. Salih, J. Vrabec, E. Müller, and H. Hasse

Nanofiltration membranes: Molecular model

Velocity profile and boundary slip

Velocity profile and boundary slip

ECHNISCHE UNIVERSITÄT

KAISERSLAUTERN

Methane in graphite: T = 166 K; values of η and ξ from Wang *et al.*

LTD

Lehrstuhl für Thermodynamik

Prof. Dr.-Ing. H. Hasse

LTD Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse

Water in polar nanofiltration membranes

Quantitative water model: TIP4P/2010 (Huang *et al.*) Qualitative P84 polyimide pore model: Graphite with superimposed point charges

Massively parallel MD simulation

MD code ls1 mardyn ("large systems 1: molecular dynamics")

spatial domain decomposition

exploits the concurrency due to the limited range of the interactions

central, marginal, and halo cells

(dynamic) load balancing

the simulated system and the HPC hardware may be heterogeneous

uses octrees or space-filling curves

linked-cell algorithm

load balancing based on k-dimensional trees

Massively parallel MD simulation

MD code Is1 mardyn: scaling on the Hermit (top 12) at HLRS

Conclusion

- ⇒ Poiseuille flow can be investigated by non-equilibrium MD simulation, i.e., by compensating or overcompensating the pressure drop.
- ⇒ Avendaño's dæmon makes purely diffusive transport (i.e., the mobility coefficient) accessible to NEMD for confined systems.
- ⇒ For methane in graphite, Darcy's law was found to hold down to the molecular length scale significant boundary slip was present for diameters below 100 nm.
- \Rightarrow In case of water in a polar membrane material, no significant boundary slip was detected.
- \Rightarrow Massively parallel MD (e.g. with ls1 mardyn) promises to make a molecular analysis of microfluidics feasible within the present decade.