

Interpretation of density profiles and pair correlation functions

Martin Horsch and Cemal Engin

Paderborn, 22nd June 12

IV. Annual Meeting of the Boltzmann Zuse Society

Surface tension of nanodroplets

Tolman (1949): Size dependence of γ is due to curvature, coupled by the length δ_0 .

New consensus emerging today: δ_0 is too small to describe the dominating effect ...

Liquid slab size effect on interfacial profiles

Mode of the long-range cutoff correction

Heterogeneous or fluctuating systems

Objective: Simulation of systems with ...

- an arbitrary heterogeneous structure
- significant long-range fluctuations (e.g., near T_c)

Heterogeneous or fluctuating systems

hierarchy of longrange corrections

short-range correction

cutoff radius $r_{\rm c}$

Modelling polarity and hydrogen bonding

Stockmayer model extended by an elongation parameter *d*

LJ concentric with point charge

LJ concentric with dipole

Modelling polarity and hydrogen bonding

Stockmayer model extended by an elongation parameter *d*

Modelling polarity and hydrogen bonding

monomer fraction

electrostatic pair potential

Further objectives on the basis of the present parameter study:

- SAFT-like equation of state for the elongated Stockmayer model
- Prediction of VLE for multi-site models of hydrogen bonding fluids

Industrially important reactive systems

Correlation function controlling the S_N^2 reaction of protonated EOX with water: methylene (EOX⁺) \leftrightarrow oxygen (H₂O)

- High economic interest
- Difficult experiments
- Few reliable data
- Need for predictive modelling and simulation

Transient radial distribution function

Discussion

- Could it be that the diameter effect (rather than the curvature effect) determines the influence of droplet size on the surface tension?
- How should we implement the cutoff correction for anisotropic or fluctuating systems in (long-term!) future releases of *ls1 mardyn*?
- For modelling a chemical reaction: How does the relaxation time of the fluid phase, during which the correlation function for the transition state are established, relate to its average life time?
- Does it make sense as a perspective to work on methods for reactive ensembles with classical force fields? (E.g., with reaction probabilities speficied as a function of kinetic energy and orientation.)