

Molecular modelling of hydrogen bonding fluids

Cemal Engin, Alptekin Celik, Steffen Reiser, Martin Horsch, Hans Hasse

Potsdam, 10th October 12

Thermodynamics Colloquium

Computational Molecular Engineering

The nature of the hydrogen bond

Pauling (1960, "The Nature of the Chemical Bond") on the hydrogen bond:

It "was for some time thought to result from the formation of two covalent bonds," but it "is now understood that the hydrogen bond is largely ionic"

Hope: H bonds can be described by simple electrostatics (point charges).

New **IUPAC** definition (2011):

"The hydrogen bond is an attractive interaction ... from a molecule ... X—H in which X is more electronegative than H, and ... in which there is evidence for bond formation."

"The forces involved ... include

- those of an electrostatic origin,
- those arising from ... partial covalent bond formation ...,
- and those originating from dispersion."

PC-SAFT

Thermodynamics of H bonding molecules

SAFT

Modelling approaches for O—H ··· O

short-range square well

 $O - H \rightarrow$

internal degrees of freedom

simple "beak" approach

Oxygen: LJ concentric with negative charge Hydrogen: Positive partial charge (no LJ)

Classical molecular models of water

Water models following the simple beak approach (SPC, TIP3P, SPC/E) are quite popular. However, their overall reliability is relatively limited:

Vega and Abascal: "Neglecting **polarizability** prevents an accurate description of" pressure-related properties like B(T), $p_s(T)$, and p_c .

10th October 12

Recent developments in modelling water

New TIP4P-like four-site model of Huang et al. (2012)

Nearly perfect agreement for critical properties, including $p_{\rm c}$.

Poor model for the liquid density at low temperatures and probably for ice ...

Simple beak-shaped hydroxyl group model

Ethanol:

This approach is also valid for methanol and mixtures of H bonding fluids.

Hydrogen bonding in molecular simulation

Bond definition by a geometric criterion:

• Introduced by Saiz et al. for ethanol:

- Identical with the criterion of Haughney et al. for methanol
- Validated by agreement between MC results and X-ray scattering
- Applied in reduced units (assuming $\sigma_{LJ} \approx 3 \text{ Å}$) for the present study

10th October 12

Hydrogen bonding in molecular simulation

equimolar mixture of methanol and carbon dioxide

10th October 12

Zoom in: Point charge models of H bonding

The Stockmayer dipole is decomposed into two separate point charges:

Potential energy surface

Electrostatic contribution to the dimer bond energy:

simple beak fluid

symmetric charge model

Hydrogen bonds in the liquid phase

simple beak fluid

symmetric charges

For both model classes, hydrogen bonding depends significantly on the distance between the partial charges (as expected).

Vapour-liquid equilibria for the simple beak

As desired, both the dipole strength μ^2 (\rightarrow polarity) and the elongation *d* (\rightarrow intensity of H bonding) influence the VLE behaviour.

VLE for the model with symmetric charges

The symmetric model does not capture the thermodynamics of the H bond.

H bonding and the critical temperature

The critical properties were estimated by fitting a Guggenheim type binodal:

Independent μ and HB effects are only present for the simple beak model.

Conclusion

- Polarity and H bonding are distinct phenomena. However, they are sufficiently related to be captured by a single modelling framework.
- Fluid phase equilibria of pure alcohols and mixtures are reliably reproduced using beak-shaped models for the OH group (Schnabel).
- By simulating the OH group (simple beak "fluid") without a rest, it is shown that point charge models can adequately cover polarity and hydrogen bonding as related, but distinct effects.
- The geometry of the beak-shaped model makes sense. If it is further simplified such that q⁺ and q⁻ are equidistant from the LJ centre, the H bonding effects become entirely subordinated to those of the dipole.
- Water may be an exception ...