

Molecular simulation of dispersed fluid phases and H bonding fluids

Martin Horsch, Steffen Reiser, Stephan Werth, and Hans Hasse

Manchester, 3rd July 2013 Microporous and Soft Matter Group Seminar

Computational Molecular Engineering

LTD Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse

Dispersed fluid phases in equilibrium

Droplet + metastable vapour

Dispersed fluid phases in equilibrium

• Droplet + metastable vapour

Spinodal limit: For the external phase, metastability breaks down.

Equilibrium vapour pressure of a droplet

Canonical MD simulation of LJTS droplets

Down to 100 molecules: agreement with CNT ($\gamma = \gamma_0$).

Equilibrium vapour pressure of a droplet

Canonical MD simulation of LJTS droplets

Down to 100 molecules: agreement with CNT ($y = y_0$).

At the spinodal, the results suggest that $R_y = 2\gamma / \Delta p \rightarrow 0$. This implies

 $\lim_{R_{\gamma}\to 0} \gamma = 0,$ as conjectured by Tolman (1949) ...

LTD Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse

Surface tension from molecular simulation

Integral over the pressure tensor

Test area method: Small deformations of the volume

Analysis of radial density profiles

The thermodynamic approach of Tolman (1949) relies on effective radii:

• Equimolar radius R_{ρ} (obtained from the density profile) with

$$\Gamma = \int_0^{R_{\rho}} dR R^2 [\rho(R) - \rho'] + \int_{R_{\rho}}^{\infty} dR R^2 [\rho(R) - \rho''] = 0$$

• Laplace radius $R_v = 2\gamma/\Delta p$ (defined in terms of the surface tension γ)

Since y and R_v are under dispute, this set of variables is inconvenient here.

Analysis of radial density profiles

Various formal droplet radii can be considered within Tolman's approach:

- Equimolar radius R_{ρ} (obtained from the density profile)
- Capillarity radius $R_{\kappa} = 2\gamma_{\omega}/\Delta p$ (defined by the planar surface tension γ_{ω})
- Laplace radius $R_v = 2\gamma/\Delta p$ (defined by the curved surface tension γ)

The capillarity radius can be obtained reliably from molecular simulation.

Extrapolation to the planar limit

- The magnitude of the excess equimolar radius is consistently found to be smaller than σ / 2.
- This suggests that the curvature dependence of γ is weak, i.e. that the deviation from γ_{∞} is smaller than 10 % for radii larger than 5 σ .
- This contradicts the results from the virial route and confirms the grand canonical and test area simulations.

Gas bubbles in equilibrium

- Droplet + metastable vapour
- Bubble + metastable liquid

Spinodal limit: For the external phase, metastability breaks down.

Planar limit: The curvature changes its sign and the radius R_v diverges.

Interpolation to the planar limit

- Convention: Negative curvature (bubbles), positive curvature (droplets).
- Properties of the planar interface, such as its Tolman length, can be obtained by interpolation to zero curvature.
- A positive slope of $\Delta p/2R_{\rho}$ over $1/R_{\rho}$ in the Nijmeijer diagram corresponds to a *negative* δ , on the order of -0.1 σ here, conforming that δ is small.
- However, $R \rightarrow 0$ for droplets in the spinodal limit for the surrounding vapour (Napari et al.) implies $\gamma \rightarrow 0$.

Finite size effects for planar liquid slabs

Curvature-independent size effect on y

Surface tension for thin slabs:

Relation with y(R) for droplets?

Curvature-independent size effect on y

Surface tension for thin slabs:

Relation with y(R) for droplets?

 δ_0 is small and probably negative

The nature of the hydrogen bond

Pauling (1960, "The Nature of the Chemical Bond") on the hydrogen bond:

It "was for some time thought to result from the formation of two covalent bonds," but it "is now understood that the hydrogen bond is largely ionic"

Hope: H bonds can be described by simple electrostatics (point charges).

New **IUPAC** definition (2011):

"The hydrogen bond is an attractive interaction \dots from a molecule \dots X —H in which X is more electronegative than H, and \dots in which there is evidence for bond formation."

The nature of the hydrogen bond

Pauling (1960, "The Nature of the Chemical Bond") on the hydrogen bond:

It "was for some time thought to result from the formation of two covalent bonds," but it "is now understood that the hydrogen bond is largely ionic"

Hope: H bonds can be described by simple electrostatics (point charges).

New **IUPAC** definition (2011):

"The hydrogen bond is an attractive interaction \dots from a molecule \dots X —H in which X is more electronegative than H, and \dots in which there is evidence for bond formation."

"The forces involved ... include

- those of an electrostatic origin,
- those arising from ... partial covalent bond formation ...,
- and those originating from dispersion."

Molecular modelling approaches for H···O

Molecular modelling approaches for H···O

short-range square well

O — H O polarizable models

O — H →

internal degrees of freedom

simple "beak" approach

Oxygen: LJ concentric with negative charge Hydrogen: Positive partial charge (no LJ)

Simple beak-shaped hydroxyl group model

Ethanol:

This approach is also valid for methanol and mixtures of H bonding fluids.

Simple beak-shaped hydroxyl group model

Ethanol:

- three LJ interaction sites
- three point charges

This approach is also valid for methanol and mixtures of H bonding fluids.

Hydrogen bonding in molecular simulation

equimolar mixture of methanol and carbon dioxide

3rd July 13

M. Horsch, S. Reiser, S. Werth, H. Hasse

Hydrogen bonding in molecular simulation

350 K 100 kPa

equimolar mixture of methanol and carbon dioxide

3rd July 13

M. Horsch, S. Reiser, S. Werth, H. Hasse

Zoom in: Point charge models of H bonding

The Stockmayer dipole is decomposed into two separate point charges:

Potential energy surface

Electrostatic contribution to the dimer bond energy:

Hydrogen bonds in the liquid phase

As expected, hydrogen bonding depends significantly on the distance between the partial charges (and on the dipole) for both model classes.

VLE of the asymmetric beak fluid

As desired, both the dipole strength μ^2 (\rightarrow polarity) and the elongation d (\rightarrow intensity of H bonding) influence the VLE behaviour.

LTD Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse

VLE of the model with preserved symmetry

The symmetric model does not capture the thermodynamics of hydrogen bonding: Phase behaviour is controlled by polarity only.

3rd July 13

M. Horsch, S. Reiser, S. Werth, H. Hasse

Classical molecular models of water

Water models following the simple beak approach (SPC, TIP3P, SPC/E) are quite popular. However, their overall reliability is relatively limited:

Vega and Abascal: "Neglecting **polarizability** prevents an accurate description of" pressure-related properties like B(T), $p_s(T)$, and p_c .

3rd July 13

Recent developments in modelling water

New TIP4P-like four-site model of Huang et al. (2012)

Nearly perfect agreement for critical properties, including p_c .

(However, comparably poor for the liquid density at low temperatures ...)

Modelling aqueous electrolyte solutions Molecular models:

lons 1 CLJ 1 point charge

Water 1 CLJ 3 partial charges

Literature models:

• Scattering of model parameters

Reference property:

Density ρ

\Rightarrow Large deviation from experimental data!

Parameters fpr Na⁺: 1.9 < $\sigma_{_{Na^+}}$ / Å < 4.1 0.06 < $\varepsilon_{_{Na^+}}$ / K < 1068.8

Parameter optimization for alkali halides

Adjustable parameters:

• Ions: 1 CLJ with 1 point charge (±1e): 2 parameters

Target:

• Reduced density for varying salinity at T = 293 K, p = 1 bar

$$\rho^{\text{m}} = \frac{\rho_{\text{solution}}}{\rho_{\text{pure solvent}}} = \rho^{\text{m}}(\sigma_{\text{cat}}, \sigma_{\text{an}}, \epsilon_{\text{cat}}, \epsilon_{\text{an}}, x)$$

Simulation conditions:

- Monte Carlo simulations
- SPC/E water model
- Simulation code: extended version of ms2

Reduced density over salt concentration

Reduced density of NaCl solutions (T = 298 K, p = 1 bar)

Aqueous electrolyte solutions: Overview

Reduced density (T = 293 K, p = 1 bar)

3rd July 13

M. Horsch, S. Reiser, S. Werth, H. Hasse

Fine tuning of the molecular models

Adjustment of the LJ energy parameters ε_{ion} to the **self-diffusion coefficient** in solution (*T* = 298 K, *p* = 1 bar)

• Reasonable parameter range:

 $200 \text{ K} \leq \mathcal{E}_{\text{Br-}} \leq 400 \text{ K}$

• Similar dependence of D_i on ε_i for all alkali and halide ions

(water model: SPC/E)

Fine tuning of the molecular models

Adjustment of the LJ energy parameters ε_{ion} to the first peak in the radial distribution function (*T* = 293 K, *p* = 1 bar)

- Reasonable match: $\mathcal{E}_{Br-} = 200 \text{ K}$
- Final compromise: $\varepsilon_{cat} = \varepsilon_{an} = 200 \text{ K}$

(water model: SPC/E)

M. Horsch, S. Reiser, S. Werth, H. Hasse

Temperature dependence of the density

Predictions for aqueous solution (T = 333 K, p = 1 bar)

³rd July 13

M. Horsch, S. Reiser, S. Werth, H. Hasse

Temperature dependence of the density

Predictions for aqueous solution (T = 333 K, p = 1 bar)

³rd July 13

M. Horsch, S. Reiser, S. Werth, H. Hasse

LTD Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse

Non-aqueous electrolyte solutions (CH₃OH)

Molecular models:

Methanol 2 CLJ 3 partial charges

Reference property:

• Reduced density $\rho^{\infty} = \frac{\rho}{\rho_n}$

$\int_{00}^{00} = \frac{\rho_{solution}}{\rho_{pure solvent}}$

Simulation:

• MC simulations at T = 298 K, p = 1 bar

3rd July 13

Methanolic electrolyte solutions

Predictions (T = 298 K, p = 1 bar)

³rd July 13

M. Horsch, S. Reiser, S. Werth, H. Hasse

Conclusion

- Mechanical and thermodynamic routes lead to contradicting results for the curvature dependence of the **surface tension**. Present results for the **excess equimolar radius** confirm the thermodynamic route.
- The surface tension of the dispersed liquid phase is reduced due to a **curvature-independent effect** which is present in planar slabs as well as spherical droplets.
- By simulating the **beak fluid**, i.e. the OH group without a rest, it is shown that point charge models can adequately cover **polarity and hydrogen bonding** as related, but distinct effects.
- Molecular models were developed for **alkali and halide ions**, which were fitted to aqueous electrolyte solution properties and correctly predict properties of **non-aqueous solutions** as well.