

Molecular simulation of curved vapour-liquid interfaces

M. T. Horsch,¹ S. Werth,¹ S. V. Lishchuk,² J. Vrabec,³ and H. Hasse¹ TU Kaiserslautern,¹ U. of Leicester,² and U. of Paderborn³

Manchester, 5th September 13 Thermodynamics 2013

Computational Molecular Engineering

Dispersed fluid phases in equilibrium

Droplet + metastable vapour

5th September 13

Dispersed fluid phases in equilibrium

Droplet + metastable vapour

Spinodal limit: For the external phase, metastability breaks down.

Equilibrium vapour pressure of a droplet

Canonical MD simulation of LJTS droplets

Down to 100 molecules: agreement with CNT ($\gamma = \gamma_0$).

Equilibrium vapour pressure of a droplet

Canonical MD simulation of LJTS droplets

Down to 100 molecules: agreement with CNT ($\gamma = \gamma_0$).

At the spinodal, the results suggest that $R_y = 2\gamma / \Delta p \rightarrow 0$. This implies

 $\lim_{R_{\gamma}\to 0} \gamma = 0,$ as conjectured by Tolman (1949) ...

Analysis of radial density profiles

The approach of Gibbs and Tolman is based on formal radii of the droplet.

- Equimolar radius R_{ρ} (obtained from the density profile)
- Laplace radius $R_v = 2\gamma/\Delta p$ (defined by the surface tension y)
- Capillarity radius $R_{\kappa} = 2\gamma_0/\Delta p$ (defined by the planar surface tension γ_0)

The capillarity radius can be obtained reliably from molecular simulation.

Extrapolation to the planar limit

- The magnitude of the excess equimolar radius is consistently found to be smaller than σ / 2.
- This suggests that the curvature dependence of y is weak: The deviation from the planar surface tension is smaller than 10 % for radii larger than 5 σ .

^{5&}lt;sup>th</sup> September 13

Dispersed fluid phases in equilibrium

Droplet + metastable vapour

Spinodal limit: For the external phase, metastability breaks down.

Gas bubbles in equilibrium

- Droplet + metastable vapour
- Bubble + metastable liquid

Spinodal limit: For the external phase, metastability breaks down.

Planar limit: The curvature changes its sign and the radius R_v diverges.

5th September 13

Interpolation to the planar limit

- Convention: Negative curvature (bubbles), positive curvature (droplets).
- Properties of the planar interface, such as its Tolman length, can be obtained by interpolation to zero curvature.
- A positive slope of $\Delta p/2R_{\rho}$ over $1/R_{\rho}$ in the Nijmeijer diagram corresponds to a *negative* δ , on the order of -0.1 σ here, conforming that δ is small.
- However, $R \rightarrow 0$ for droplets in the spinodal limit for the surrounding vapour (Napari et al.) implies $\gamma \rightarrow 0$.

^{5&}lt;sup>th</sup> September 13

Curvature-independent size effect on *y*

Surface tension for thin slabs:

reduced tension $y(a)/y_0$

Relation with y(R) for droplets?

Curvature-independent size effect on *y*

Surface tension for thin slabs:

 $\gamma_0(T)$

Conclusion

- In agreement with the Laplace equation, the vapour pressure of droplets is **supersatured** due to **curvature**.
- The magnitude of this effect agrees well with the **capillarity approximation** down to droplets containing 100 molecules. Very high supersaturations, however, correspond to extremely small droplets, implying a decrease in the surface tension.
- An approach based on effective radii which can be rigorously determined by simulation proves the **Tolman length** to be small, explaining the good agreement with the capillarity approximation.
- For a dispersed liquid phase that occupies an extremely small volume, the surface tension is reduced due to a **curvature-independent effect** which is present in planar slabs as well as spherical droplets.