

Molecular modelling of adsorption on real component surfaces

M. T. Horsch, S. Becker, M. Kohns, X. Rozanska, S. Werth, and H. Hasse TU Kaiserslautern and Materials Design

Vienna, 19th September 13 MedeA Users Group Meeting

Computational Molecular Engineering

Collaborative Research Centre (SFB) 926

CRC 926 MICOS Component Surfaces

"Microscale Morphology of Component Surfaces (MICOS)"

experiment

Morphology-property relations (MEB) Surface-generation morphology-property relations (OMEB)

fluid-wall interaction model

wall model

Long-range correction for planar interfaces

 $T = 0.979 \epsilon$ $T = 1.508 \epsilon$ $T = 1.691 \epsilon$ full LRC elongation term $T = 0.979 \epsilon$ Two-centre LJ (elongation $L = 1 \sigma$) 3.5 4 4.5 5 cutoff radius / σ

Surface tension of planar interfaces

Correlation: Universal critical scaling $\gamma = A(1 - T/T_c)^B$ with $B \approx 1.24$.

Surface tension of planar interfaces

Correlation: Universal critical scaling $\gamma = A(1 - T/T_c)^B$ with $B \approx 1.24$.

Surface tension of thin liquid films

Adsorption at real component surfaces

Titanium components

- Covered by oxide layer
- Possibly rough and/or intentionally patterned surface
- Surface may be contaminated with organic matter

First step: Reliable molecular simulation of water adsorbed on a clean and planar surface.

Quantum chemical simulations (VASP)

Computation of the electrostatic potential:

dry rutile surface

physisorbed water

VASP simulation parameters (structure optimization with PBE functional): Plane-wave cutoff at 282 eV, *k*-point spacing 0.5 Å⁻¹, *O s* pseudopotential.

Quantum chemical simulations (VASP)

Computation of the electrostatic potential:

dry rutile surface

physisorbed water

chemisorbed water

VASP simulation parameters (structure optimization with PBE functional): Plane-wave cutoff at 282 eV, *k*-point spacing 0.5 Å⁻¹, *O* s pseudopotential.

GCMC simulation of physisorption (Gibbs)

- Electrostatic grid from VASP
- Lennard-Jones parameters from literature

M. T. Horsch, S. Becker, M. Kohns, X. Rozanska, S. Werth, and H. Hasse

GCMC simulation of physisorption (Gibbs)

- Electrostatic grid from VASP
- Lennard-Jones parameters from literature

Further open issues:

- Influence of chemisorption on the electrostatic grid
- Influence of organic matter adsorbed at the surface
- Long-range interaction with the titanium substrate
- Influence of the water model

• Etc. ...

Influence of the water model

Available water models do not capture all properties equally well.

In the present case, the choice of the water model is relatively insignificant.

Contact line pinning

Epitaxial Cassie state

Wenzel's "law" for rough surfaces

According to Wenzel, the roughness factor

 $f^{ro} = \frac{actual \, surface \, area}{projected \, planar \, surface \, area}$

characterizes wetting of structured surfaces if the rough sites are entirely filled with liquid.

Wenzel's "law" assumes

$$\cos \theta^{ro} = \frac{\gamma_{vs}^{ro} - \gamma_{ls}^{ro}}{\gamma_{vl}}$$
$$= \frac{f^{ro}(\gamma_{vs}^{pl} - \gamma_{ls}^{pl})}{\gamma_{vl}} = f^{ro} \cos \theta^{pl}.$$

Wenzel's "law" for rough surfaces

According to Wenzel, the roughness factor

 $f^{ro} = \frac{actual \, surface \, area}{projected \, planar \, surface \, area}$

characterizes wetting of structured surfaces if the rough sites are entirely filled with liquid.

Wenzel's "law" assumes

$$\cos \theta^{ro} = \frac{\gamma_{vs}^{ro} - \gamma_{ls}^{ro}}{\gamma_{vl}}$$
$$= \frac{f^{ro}(\gamma_{vs}^{pl} - \gamma_{ls}^{pl})}{\gamma_{vl}} = f^{ro} \cos \theta^{pl}.$$

Conclusion

- Long-range interactions affect fluids at interfaces more significantly than the bulk phases, and sufficiently large systems need to be considered to account for both finite-size effects and the macroscopic limit.
- By quantum chemical computations with *MedeA VASP* and grandcanonical MC simulations with *MedeA GIBBS*, chemisorption and physisorption of water on a titania substrate was investigated.
- A quantitatively reliable molecular modelling approach requires a consistent treatment of both physisorption and chemisorption.
- Roughness and manufactured patterns of the surface can have a significant impact on static and dynamic wetting properties, which is not captured correctly by simple phenomenological theories.